JPS62288117A - Production of doped silica glass - Google Patents

Production of doped silica glass

Info

Publication number
JPS62288117A
JPS62288117A JP12978886A JP12978886A JPS62288117A JP S62288117 A JPS62288117 A JP S62288117A JP 12978886 A JP12978886 A JP 12978886A JP 12978886 A JP12978886 A JP 12978886A JP S62288117 A JPS62288117 A JP S62288117A
Authority
JP
Japan
Prior art keywords
dopant
doped silica
silica glass
sol
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12978886A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12978886A priority Critical patent/JPS62288117A/en
Publication of JPS62288117A publication Critical patent/JPS62288117A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/34Wet processes, e.g. sol-gel process adding silica powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce doped silica glass at a low cost, by adding a specific dopant to a partially hydrolyzed liquid of an alkyl silicate, converting the obtained sol to gel and drying, sintering and vitrifying the gel. CONSTITUTION:A partially hydrolyzed liquid produced by adding ethanol and hydrochloric acid to an alkyl silicate is added with a chloride as a dopant and optionally fine silica particles to obtain a sol. The sol is converted to gel in a container and the obtained wet gel is dried and sintered to obtain the objective glass.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は光ファイバ用母材、先導波路、低膨張ガラス等
に用いられているドープトシリカガラスのゾルゲル法に
よる製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the production of doped silica glass, which is used for optical fiber base materials, guiding waveguides, low expansion glass, etc., by the sol-gel method. Regarding the method.

〔従来の技術〕[Conventional technology]

従来のゾルゲル法によるドープトシリカガラスの製造方
法としては、アルキルシリケートの部分加水分解溶液に
ドーパントを添加して得られるゾルをゲル化させてウェ
ットゲルを作り、該ウェットゲルを乾燥、焼結してガラ
ス化する方法があった。(元本ら、■特許−整理N11
20670.松尾ら、N(L20671) 〔発明が解決しようとする問題点〕 しかし、前述の方法では、ドーパントとして高価なアル
コキシドを用いるため、得られるドープトシリカガラス
のコストが高いという問題点があった。そこで本発明の
目的は、上記の問題点を解決するもので、ドープトシリ
カガラスを安いコストで提供するものである。
The conventional method for manufacturing doped silica glass using the sol-gel method involves adding a dopant to a partially hydrolyzed solution of an alkyl silicate, gelling the resulting sol to create a wet gel, and drying and sintering the wet gel. There was a method of vitrifying it. (Motomoto et al., ■Patent-Organization N11
20670. Matsuo et al., N (L20671) [Problems to be Solved by the Invention] However, the above-mentioned method uses an expensive alkoxide as a dopant, so there is a problem that the cost of the obtained doped silica glass is high. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide doped silica glass at a low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のドープトシリカガラスの製造方法は、アルキル
シリケートの部分加水分解溶液にドーパントを添加して
得られるゾルをゲル化させてウェットゲルを作り、該ウ
ェットゲルを乾燥、焼結してガラス化する、ドープトシ
リカガラスの製造方法において、前記ドーパントとして
塩化物を用いることを特徴とする。
The method for producing doped silica glass of the present invention involves gelling a sol obtained by adding a dopant to a partially hydrolyzed solution of an alkyl silicate to form a wet gel, and drying and sintering the wet gel to form a glass. The method for producing doped silica glass is characterized in that a chloride is used as the dopant.

以下実施例により詳しく説明する。This will be explained in detail below using examples.

〔実施例1〕 エチルシリケート49A2rとエタノール211 dノ
17.合液ニl1lL2規定の塩酸64.Ofを加え、
加水分解溶液の急激なゲル化を防ぐために5℃の温度に
液温を保った状態で加水分解反応を部分的に行なった。
[Example 1] Ethyl silicate 49A2r and ethanol 211 d-17. Combined liquid 11L2 normal hydrochloric acid 64. Add Of,
In order to prevent rapid gelation of the hydrolysis solution, the hydrolysis reaction was partially carried out while maintaining the solution temperature at 5°C.

この温度のまま前記溶液にテトラエトキシゲルマニウム
172−4rを加えて激しく攪拌した後、0.2規定の
塩酸10&8fを加えて加水分解を終了させ、加水分解
溶液とした。
Tetraethoxygermanium 172-4r was added to the solution at this temperature and stirred vigorously, and then 0.2N hydrochloric acid 10&8f was added to complete the hydrolysis to obtain a hydrolyzed solution.

一方エチルシリケー)78a、3.fとエタノール83
9dの混合液に29%アンモニア水51m。
On the other hand, ethyl silicate) 78a, 3. f and ethanol83
Add 51ml of 29% ammonia water to the mixture of 9d.

工3r / −k 859 d 、水271.7rの混
合液を加えて、20℃で攪拌してシリカ微粒子を作り、
120時間放置後減圧濃縮した。その後、乾燥工程の歩
留りをあげるために濃縮液のアルコール分を水とfi7
Uした後、前記加水分解溶液と混合を行なった際に急激
なゲル化を起こさないようにPH値を2規定の塩酸を用
いて五8に調整して、平均粒径0,18μ扉のシリカ微
粒子の分散溶液とした。
Add a mixture of 3r/-k 859d and 271.7r water and stir at 20°C to make silica fine particles.
After standing for 120 hours, it was concentrated under reduced pressure. After that, in order to increase the yield of the drying process, the alcohol content of the concentrate was mixed with water and fi7
After U, the pH value was adjusted to 58 using 2N hydrochloric acid to prevent rapid gelation when mixed with the hydrolysis solution, and the silica with an average particle size of 0.18μ was added. A dispersion solution of fine particles was prepared.

次に、前記加水分解溶液とシリカ微粒子の分散溶液を混
合した後、0.2規定のアンモニア水と水を用いて体積
を1872m/、PH値を五6oに4桜し、その後2分
間脱気を行ないゾル溶液とした。該ゾル溶液を、テアo
ン製の円筒容器(内径50 mn 、長さ1000 r
rm )に高さ900mmまで流し入れたところ、40
分でゲル化した。なお、ゾル溶液は、ゲル化まで5℃に
保っている。また、原料のうち、エチルシリケート、テ
トラエトキシゲルマニウム、エタノールは蒸留により精
製したものを用い、塩酸、アンモニア水については電子
材料グレードのものをα2μmのフィルターで濾過する
ことで精型したものを用いた。また水については、イオ
ン交換と、濾過によって精製した超純水を用いた。
Next, after mixing the hydrolyzed solution and the dispersion solution of silica fine particles, the volume was adjusted to 1872 m/4 and the pH value was adjusted to 56 degrees using 0.2N ammonia water and water, and then degassed for 2 minutes. A sol solution was obtained. The sol solution was
Cylindrical container (inner diameter 50 mn, length 1000 m)
rm) to a height of 900mm, 40
Gelified in minutes. Note that the sol solution was kept at 5°C until gelation. In addition, among the raw materials, ethyl silicate, tetraethoxygermanium, and ethanol were purified by distillation, and hydrochloric acid and aqueous ammonia were purified from electronic materials grade by filtering through an α2 μm filter. . As for water, ultrapure water purified by ion exchange and filtration was used.

同様にして作製したウェットゲル10本を3日間35℃
で熟成の後、開口率[lL4%の回転乾燥容器に移し入
れてウェットゲルを(L 1 rpmの速度で回転させ
ながら60℃で乾燥したところ15日間で、室内に放置
しても割れないドライゲルが歩留り100%で10本得
られた。
10 wet gels prepared in the same way were heated at 35°C for 3 days.
After aging, the wet gel was transferred to a rotating drying container with an open area ratio of 4% (L) and dried at 60°C while rotating at a speed of 1 rpm. Ten pieces were obtained with a yield of 100%.

次に前記ドライゲル1o本を焼結炉に入れ、昇温速度3
0℃/ h rで100″1+まで加熱し、この温度で
5時間保持し、その後昇温速度30 ’0/hr、で2
00℃まで加熱し、この温度で5時間保持し、再びその
後昇温速度50 ”0 / h rで300″CJまで
加熱し、この温度で5時間保持して脱g&着水処理を行
なった。
Next, 10 pieces of the dry gel were placed in a sintering furnace, and the heating rate was 3.
Heat to 100″1+ at 0°C/hr, hold at this temperature for 5 hours, then heat to 2°C at a heating rate of 30′0/hr,
The sample was heated to 00° C., held at this temperature for 5 hours, and then heated again at a temperature increase rate of 50″0/hr to 300″CJ, and held at this temperature for 5 hours to perform deg & water landing treatment.

つづいてo2ガスを流しながら昇温速度60℃/ h 
rで30o℃から700’Oまで加熱し、この温度で2
0時間保持し、その後昇温変度30t!/hrで105
0℃まで昇温し、この温度で10時間保持して、脱炭素
、脱塩化アンモニウム処理と脱水縮合反応の促進処理を
行なった。
Then, while flowing O2 gas, the temperature was increased at a rate of 60℃/h.
Heat from 30oC to 700'O with r, and at this temperature 2
After holding for 0 hours, the temperature increase variation was 30t! /hr 105
The temperature was raised to 0° C. and maintained at this temperature for 10 hours to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction.

次に、Hθガスのみを流しながら昇温速度3゜t) /
 h rで1050℃から1250℃まで昇温し、この
温度で5時間保持して閉孔化処理を行なった。
Next, while flowing only Hθ gas, the temperature was increased at a rate of 3°t) /
The temperature was raised from 1050° C. to 1250° C. for hr and held at this temperature for 5 hours to perform a pore-closing treatment.

つづいて試料を1250℃から昇温速度60’0/ h
 rで1350℃まで加熱し、この温度で1時間保持す
ると無孔化し、円筒状の透明ガラスかわれずに10本得
られた。
Next, the sample was heated from 1250℃ at a heating rate of 60'0/h.
When the glass was heated to 1350° C. and held at this temperature for 1 hour, it became non-porous, and 10 pieces of cylindrical transparent glass were obtained without breaking.

該透明ガラスの大きさは2五2rHnφX 417.5
dであった。またXMA、および工CPでGeの定量を
行なりたところ、Geがほぼ10 mot%含まれてい
ることが確認された。
The size of the transparent glass is 252rHnφX 417.5
It was d. Furthermore, when Ge was quantified using XMA and CP, it was confirmed that approximately 10 mot% of Ge was contained.

本実施例で得られたガラスロッドと純シリカのクラッド
チューブからロッドインチューブ法を用い外径125μ
m、コア径50μmのステップインデックス光ファイバ
を作製した。得られた光ファイバの伝送損失を測定した
ところ、[185μmで4. Q dE/Km  以下
の損失であり、コア母材として十分低損失であることが
確認できた。
Using the rod-in-tube method from the glass rod and pure silica clad tube obtained in this example, the outer diameter was 125 μm.
A step index optical fiber with a core diameter of 50 μm was fabricated. When the transmission loss of the obtained optical fiber was measured, it was found to be [4. The loss was less than Q dE/Km, and it was confirmed that the loss was sufficiently low as a core base material.

〔実施例〕〔Example〕

第2表に示した原料を用いて実施例1と同様な方法に従
って円筒状のガラスを作製したところ、実施例1と同じ
大きさのガラスが歩留り100%で10本得られた。な
お第1表には実施eirJ1で用いた原料のリストを示
した。またGθの定輩を行なったところ、ガラス巾にG
θが均一にほぼ10mot%含まれていることが確認さ
れた。
When cylindrical glasses were produced in the same manner as in Example 1 using the raw materials shown in Table 2, 10 glasses of the same size as in Example 1 were obtained with a yield of 100%. Note that Table 1 shows a list of raw materials used in implementation eir J1. In addition, when we performed a Gθ constant test, we found that the Gθ
It was confirmed that θ was uniformly contained at approximately 10 mot%.

また本実施例で得られたガラスロッドと純シリカのクラ
ッドチューブからコツトインチェー1法を用い外径12
5μm、コア径50μmのステップインデックス光ファ
イバを作製した。得られた光ファイバの伝送損失を測定
したところ、0.85μmで4.0 dB/Km以下の
損失であり、コア母材として十分低損失であることが確
認できた。
In addition, the glass rod obtained in this example and the pure silica clad tube were used to obtain an outer diameter of 12
A step index optical fiber with a core diameter of 5 μm and a core diameter of 50 μm was fabricated. When the transmission loss of the obtained optical fiber was measured, it was found that the loss was 4.0 dB/Km or less at 0.85 μm, and it was confirmed that the loss was sufficiently low as a core base material.

このようにドーパントとして塩化物を用いた場合でも、
ドーパントとしてアルコキシドを用いた場合と同様に高
品質なドープトシリカガラスが製造できることがわかっ
たが、製造コストに占める原料費を計算した結果をも第
1表と第2表に示した。
Even when using chloride as a dopant in this way,
It was found that high-quality doped silica glass could be produced in the same manner as when alkoxide was used as a dopant, and Tables 1 and 2 also show the results of calculating the raw material cost as a percentage of the production cost.

@1表と第2表から明らかなように、ドーパントとして
塩化物を用いた場合の方が、ドーパントとして金属アル
コキシドを用いた場合に比べて原料コストが大幅に安い
。また製造工程もほぼ同じなので、製造コストも当然安
くなった。
As is clear from Tables 1 and 2, the raw material cost is significantly lower when a chloride is used as a dopant than when a metal alkoxide is used as a dopant. Also, since the manufacturing process is almost the same, manufacturing costs are naturally lower.

アルコキシドは、塩化物を対応するアルコールと反応さ
せて合成するために、一般的に塩化物よりも高価である
。そのためドーパントとしては塩化物の方が原料コスト
の点からみてイf利である。本実施例ではゲルマニウム
ドープトシリカガラスの例で説明したが、例えばチタン
、ジルコニウム。
Alkoxides are generally more expensive than chlorides because they are synthesized by reacting the chloride with the corresponding alcohol. Therefore, chloride is more advantageous as a dopant in terms of raw material cost. In this example, germanium-doped silica glass was used as an example, but titanium and zirconium may also be used.

アルミニウム等でも原料費が安くなることは明らかであ
る。
It is clear that the cost of raw materials such as aluminum will also be reduced.

第1表 * 水の単価は低いため 0円/2とした。Table 1 *Since the unit price of water is low, it was set at 0 yen/2.

第2表 * 水の単価は安いため 0円/?とした。Table 2 *The unit price of water is low, so 0 yen/? And so.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、アルキルシリケート
の部分加水分解溶液にドーパントを添加して得られるゾ
ルをゲル化させてウェットゲルを作り、該ウェットゲル
を乾燥、焼結してガラス化する、ドープトシリカガラス
の製造方法において、前記ドーパントとして塩化物を用
いる構成を有しているために、ドーパントとしてアルコ
キシドを用いる従来法に比べて安いコストでドープトシ
リカガラスを提供することができる。
As described above, according to the present invention, a sol obtained by adding a dopant to a partially hydrolyzed solution of alkyl silicate is gelled to produce a wet gel, and the wet gel is dried and sintered to vitrify it. In the method for producing doped silica glass, since chloride is used as the dopant, doped silica glass can be provided at a lower cost than the conventional method using an alkoxide as the dopant.

そのため、光ファイバ用母材H→→4嗣ユ、光導波路 
      、低膨張 ガラス等に幅ひろく応用されよう。
Therefore, optical fiber base material H→→4th grade, optical waveguide
It will be widely applied to low expansion glass, etc.

以  上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)アルキルシリケートの部分加水分解溶液にドーパ
ントを添加して得られるゾルをゲル化させてウェットゲ
ルを作り、該ウェットゲルを乾燥、焼結してガラス化す
るドープトシリカガラスの製造方法において、前記ドー
パントとして塩化物を用いたことを特徴とするドープト
シリカガラスの製造方法。
(1) In a method for producing doped silica glass, the sol obtained by adding a dopant to a partially hydrolyzed solution of alkyl silicate is gelled to form a wet gel, and the wet gel is dried and sintered to vitrify it. , A method for producing doped silica glass, characterized in that a chloride is used as the dopant.
(2)前記ゾルには、シリカ微粒子が含まれていること
を特徴とする特許請求の範囲第1項記載のドープトシリ
カガラスの製造方法。
(2) The method for producing doped silica glass according to claim 1, wherein the sol contains fine silica particles.
JP12978886A 1986-06-04 1986-06-04 Production of doped silica glass Pending JPS62288117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12978886A JPS62288117A (en) 1986-06-04 1986-06-04 Production of doped silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12978886A JPS62288117A (en) 1986-06-04 1986-06-04 Production of doped silica glass

Publications (1)

Publication Number Publication Date
JPS62288117A true JPS62288117A (en) 1987-12-15

Family

ID=15018243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12978886A Pending JPS62288117A (en) 1986-06-04 1986-06-04 Production of doped silica glass

Country Status (1)

Country Link
JP (1) JPS62288117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346122B1 (en) * 1999-12-28 2002-08-01 삼성전자 주식회사 Fabrication method of doped silica glass by sol-gel process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100346122B1 (en) * 1999-12-28 2002-08-01 삼성전자 주식회사 Fabrication method of doped silica glass by sol-gel process

Similar Documents

Publication Publication Date Title
US5068208A (en) Sol-gel method for making gradient index optical elements
JPS62288117A (en) Production of doped silica glass
GB2100248A (en) Preparing porous bodies of doped silica gel
JPS59131538A (en) Production of quartz glass
JPS6296339A (en) Production of optical fiber preform
WO2001068544A1 (en) Erbium-doped multicomponent glasses manufactured by the sol-gel method
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS6191033A (en) Production of optical fiber preform
JPS62207723A (en) Production of glass
JPS62119131A (en) Production of base material for optical fiber
JPS62207721A (en) Preparation of lens having refractive index distribution
JPS6217027A (en) Preparation of quartz glass
JPS61186237A (en) Production of parent material for optical fiber of quartz glass
JPS62113737A (en) Production of quartz glass
JPS62187132A (en) Production of glass for optical fiber
JPS62292651A (en) Production of base material for quartz optical fiber
JPS6126525A (en) Production of quartz glass
JPS62246835A (en) Production of base material for quartz glass optical fiber
JPS63144137A (en) Production of optical fiber preform
JPH0393637A (en) Production of glass
JPS62292627A (en) Production of glass
JPS62288122A (en) Production of glass body by sol-gel method
JPS6217036A (en) Production of glass for optical fiber
JPS62278138A (en) Production of glass tube
JPH03137027A (en) Production of distributed index lens