JPS6228717A - Method for driving liquid crystal display device - Google Patents

Method for driving liquid crystal display device

Info

Publication number
JPS6228717A
JPS6228717A JP17044085A JP17044085A JPS6228717A JP S6228717 A JPS6228717 A JP S6228717A JP 17044085 A JP17044085 A JP 17044085A JP 17044085 A JP17044085 A JP 17044085A JP S6228717 A JPS6228717 A JP S6228717A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
driving
glass base
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17044085A
Other languages
Japanese (ja)
Other versions
JPH0792562B2 (en
Inventor
Kenichi Nakagawa
謙一 中川
Kojiro Tsubota
坪田 耕次郎
Kunihiko Yamamoto
邦彦 山本
Yutaka Ishii
裕 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60170440A priority Critical patent/JPH0792562B2/en
Publication of JPS6228717A publication Critical patent/JPS6228717A/en
Publication of JPH0792562B2 publication Critical patent/JPH0792562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To expand the operating margin, to improve the memory characteristic, to shorten the writing time, and so forth, by constituting a driving voltage to be impressed across electrodes of a pulse-waveform voltage which is produced by superposing a constant DC voltage upon an AC voltage. CONSTITUTION:An oriented film is formed on a glass base plate by arranging glass base materials with ITO transparent conductive films formed in a paired pattern in a condition where the glass base materials face each other and two glass base plates are sticked together after performing wrapping on a polyvinyl alcohol film. After the glass base plates are sticked together, liquid crystal is enclosed and homogeneously oriented. After performing driving tests on each cell with AC waveforms and finding the memory effect and extent of the peak voltage, at which display can be done, an offset voltage VOS, at which the switching characteristic and memory effect become symmetrical, is found by adjusting the offset voltage, and then, extent of the peak voltage which can make display when a multiplex driving waveform, in which the offset voltage VOS is superposed, is used is found. By selecting the offset voltage VOS from the results thus found, the memory state can be stabilized and the marging of the driving voltage can be expanded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、キラル・スメクチックC相液晶等の強誘電性
を示す液晶を用いる強誘電性液晶表示装置の駆動方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for driving a ferroelectric liquid crystal display device using a liquid crystal exhibiting ferroelectricity such as a chiral smectic C-phase liquid crystal.

〈発明の背景〉 現在、最も広く用いられている液晶表示装置の動作モー
ドは、ツィステッド・ネマチック電界効果型であるが、
応答時間が10mS (ミリ秒)以上と遅いことが短所
である。最近、その欠点を克服するための動作モードの
一つとして、強誘電性を示すキラル・スメクチックC相
液晶を利用した光スイツチング素子(5urface 
−5tabilizedFerroelectric 
Liquid −Crystal Display:以
下5SF−LCDと略t)が、N、A、 C1arkと
S、T。
<Background of the Invention> Currently, the operating mode of liquid crystal display devices most widely used is the twisted nematic field effect type.
The disadvantage is that the response time is slow at 10 mS (milliseconds) or more. Recently, as one of the operating modes to overcome this drawback, optical switching devices (5surface
-5 tabilized Ferroelectric
Liquid-Crystal Display: hereinafter abbreviated as 5SF-LCD) is N, A, C1ark, S, T.

Lagerwallによって、Appl、 Phys、
 Leff、。
By Lagerwall, Appl, Phys,
Leff.

36.899(1980)に公表された。5SF−LC
Dは、薄い液晶セル内においては、印加電界の極性と液
晶の自発分極との相互作用によって、これら液晶の配向
方向のセル面内方位角が制御できることに基づくもので
ある。
36.899 (1980). 5SF-LC
D is based on the fact that in a thin liquid crystal cell, the in-plane azimuth of the liquid crystal can be controlled by the interaction between the polarity of the applied electric field and the spontaneous polarization of the liquid crystal.

この動作モードの原理を簡単に第3図及び第4図ととも
に説明する。第3図(A)は電界印加時の5SF−LC
Dセルの断面を示したもので1はガラス基板、2は透明
電極、3は液晶分子、4は偏光子、5は検光子、6は外
部光である。セル内部の電界は図中の上から下に向って
いる。この電界に対して、液晶分子3の双極子モーメン
トは矢印のように配列する。第3図(I3)はこの状態
の分子配向をセル面に垂直な方向から見た図であるが、
液晶分子3はその配列格子面の垂線から角度θだけ傾い
ている。このセルを第3図IB)に記した角度配置でク
ロスニコル中に配置すると光は遮断され、暗状態を表示
する。
The principle of this operation mode will be briefly explained with reference to FIGS. 3 and 4. Figure 3 (A) shows 5SF-LC when an electric field is applied.
This figure shows a cross section of the D cell, and 1 is a glass substrate, 2 is a transparent electrode, 3 is a liquid crystal molecule, 4 is a polarizer, 5 is an analyzer, and 6 is external light. The electric field inside the cell is directed from top to bottom in the figure. With respect to this electric field, the dipole moments of the liquid crystal molecules 3 are arranged as shown by the arrows. Figure 3 (I3) shows the molecular orientation in this state as seen from the direction perpendicular to the cell surface.
The liquid crystal molecules 3 are tilted by an angle θ from the perpendicular to the lattice plane. When this cell is placed in a crossed nicol configuration in the angular arrangement shown in FIG. 3 (IB), light is blocked and a dark state is displayed.

次に、印加電界の極性を反航ニすると第4図(Alに示
したように液晶分子はその双極子モーメントを反転させ
、同時に第4図(13)に示したようにセル面内での方
位角を変えて一〇だけ傾く。この状態では、液晶層を通
過した光は、正常光と異常光との間に位相差が生じるた
め、直線偏光は楕円偏光となり検光子5を通過する光成
分が生じ、明状態を表示する。
Next, when the polarity of the applied electric field is reversed, the liquid crystal molecules reverse their dipole moment as shown in Figure 4 (Al), and at the same time, as shown in Figure 4 (13), the liquid crystal molecules reverse their dipole moments in the cell plane as shown in Figure 4 (13). The azimuth is changed and the light is tilted by 10. In this state, the light passing through the liquid crystal layer has a phase difference between the normal light and the abnormal light, so the linearly polarized light becomes elliptically polarized light and the light passing through the analyzer 5 component is generated and displays a bright state.

このように5SF−LCDの表示状態は、液晶層の光軸
とクロスニフルの配置の角度関係及び印加電界の極性の
2つの要素により決定される。以下の説明では明状態を
表示する電界極性を正とする。
In this way, the display state of the 5SF-LCD is determined by two factors: the angular relationship between the optical axis of the liquid crystal layer and the arrangement of the cross nifles, and the polarity of the applied electric field. In the following description, the electric field polarity indicating a bright state is assumed to be positive.

5SF−LCDは、メモリ効果を示す。すなわち、第5
図に示したように、正と負のパルス状の電界によって明
暗状態はスイッチングした後に電圧をOvにしても、そ
れぞれの明暗状態がそのまま保持される。これをメモリ
効果と称す。
5SF-LCD exhibits memory effects. That is, the fifth
As shown in the figure, even if the voltage is changed to Ov after the bright and dark states are switched by the positive and negative pulsed electric fields, the respective bright and dark states are maintained as they are. This is called the memory effect.

5SF−LCDの応答時間では、前述の文献によれば τにη/PSIIE  ・・・・・・・・・・・・・・
・ (11(ここ゛にηとPsはそれぞれ液晶材料の粘
度と自発分極を表わし、Eは電界強度を表す。)という
式で表わされている。印加電界と応答時間はあらゆる電
界強度(E)lこわたって常に式(1)の関係に従って
いる訳ではないが、低い電圧でも長時間印加すれば表示
状態が変化する可能性がある点には注意を要する。
According to the above-mentioned literature, in the response time of 5SF-LCD, τ is equal to η/PSIIE.
・(11 (where η and Ps represent the viscosity and spontaneous polarization of the liquid crystal material, respectively, and E represents the electric field strength.) The applied electric field and response time are expressed as ) Although the relationship of equation (1) is not always followed throughout the period, it should be noted that the display state may change if even a low voltage is applied for a long time.

本発明の駆動方法が適用される動作モードは、上に述べ
たように液晶分子配向のセル面内での方位角が印加電界
の極性(こよって制御することができ、またそれがメモ
リー効果を有するものであれば良く、表示を行なうため
の光学的現象を特定するものではない。表示セルは透過
型の構成のみ1よらず反射型の構成でも同様に適用され
る。また、強誘電性液晶に二色性色素を溶解したゲスト
ホスト液晶を用いて、吸光係数が入射光の偏光角度によ
って異なるという現象を利用するものであってもよい。
As mentioned above, the operating mode to which the driving method of the present invention is applied is that the azimuthal angle of the liquid crystal molecular alignment in the cell plane can be controlled by the polarity of the applied electric field (thereby controlling the memory effect). It does not specify the optical phenomenon for displaying.The display cell is not limited to a transmissive type configuration, but a reflective type configuration is also applicable.Furthermore, ferroelectric liquid crystal Alternatively, a guest-host liquid crystal in which a dichroic dye is dissolved may be used to utilize the phenomenon that the extinction coefficient varies depending on the polarization angle of incident light.

従来公知の大容量表示5SF−LCDのマルチプレック
ス駆動波形は、原理的に第5図へ)に示したような正負
が対称となる交流波形を基本としている。前述したよう
に本来5SF−LCDにおいては正または負の電圧印加
によってスイッチングされ、その後はメモリー効果の利
用により表示状態が保持される。しかし、マトリクス状
の電極構成のS S F−LCDを正または負の直流パ
ルスでマルチプレックス駆動しようとすると非選択絵素
にも不可避的に直流バイアスが印加されるため、既に書
き込んだ表示状態が乱され失なわれる。そこで、第5図
(Alに示したように、正のパルスt32と負のパルス
t35それぞれの直前に負の補償パルス’31と正の補
償パルスt34を付加することとし、直流成分の無い交
流波形で表示状態をスイッチングすればバイアス波形も
交流になる。その具体的fs例を第6図に示す。
The multiplex driving waveform of a conventionally known large-capacity display 5SF-LCD is basically an AC waveform whose positive and negative sides are symmetrical as shown in FIG. 5). As described above, 5SF-LCDs are originally switched by applying a positive or negative voltage, and thereafter the display state is maintained by utilizing the memory effect. However, when trying to multiplex drive an SSF-LCD with a matrix electrode configuration using positive or negative DC pulses, DC bias is inevitably applied to non-selected picture elements, so the display state that has already been written may change. Disturbed and lost. Therefore, as shown in FIG. 5 (Al), we decided to add a negative compensation pulse '31 and a positive compensation pulse t34 immediately before the positive pulse t32 and the negative pulse t35, respectively, to form an AC waveform with no DC component. If the display state is switched with , the bias waveform also becomes alternating current.A concrete example of fs is shown in FIG.

第6図tA+は走査電極の電圧波形Vx 、同の)は信
号電極の電圧波形vY  、同FC)は絵素の液晶に印
加される電圧波形VXVY、同(Diは透過光強度の変
化である。各電極へ供給する電圧のレベルはa≧3とし
たl / aバイアス法に従うレベル1こ設定されてい
る。また、t41の期間とt4゜の期間は波形の位相1
80°異なっており、これによって、消去と書込みを選
別する。このような交流の駆動波形によって、表示内容
を乱さないバイアス波形が得られ、5SF−LCDのメ
モリー効果を大容量表示に利用することが慨ね可能とな
る。
In Figure 6, tA+ is the voltage waveform Vx of the scanning electrode, tA+ is the voltage waveform VY of the signal electrode, FC) is the voltage waveform VXVY applied to the liquid crystal of the picture element, and Di is the change in transmitted light intensity. The level of the voltage supplied to each electrode is set to level 1 according to the l/a bias method where a≧3.Also, during the period t41 and the period t4°, the phase 1 of the waveform is set.
There is a difference of 80 degrees, and erasing and writing are selected based on this difference. By using such an AC drive waveform, a bias waveform that does not disturb the display contents can be obtained, and it becomes possible to utilize the memory effect of the 5SF-LCD for large-capacity display.

しかしながら、この完全な正負対称の交流駆動波形では
、実用に耐え得る品位の表示はできないのが現状である
。すなわち、駆動波形の諸パラメータ(ピーク電圧、バ
イアス電圧、パルス幅)を最適化しても、なお動作マー
ジンが狭いため(こ、1回の走査では書き込みが不充分
な部分が残る等の現象で見られた。
However, at present, this AC drive waveform with perfect positive and negative symmetry cannot display a display with a quality that can withstand practical use. In other words, even if the various parameters of the drive waveform (peak voltage, bias voltage, pulse width) are optimized, the operating margin is still narrow (this can be seen due to phenomena such as insufficient writing remaining in one scan). It was done.

〈発明の目的〉 本発明は5SF−LCDの駆動において、液晶層に電圧
を印加する絵素電極間1こ発生する駆動波形が交流電圧
に一定の直流電圧vos (vos\0)の重畳された
波形となるような駆動電圧を電極に供給することにより
、動作マージンの拡大、メモリー特性の改善、書込み時
間の短縮等を図った新規な駆動方法を提供することを目
的とする。
<Purpose of the Invention> The present invention provides a method for driving a 5SF-LCD in which the drive waveform generated between the pixel electrodes that applies voltage to the liquid crystal layer is a constant DC voltage vos (vos\0) superimposed on an AC voltage. The present invention aims to provide a novel driving method that expands the operating margin, improves memory characteristics, shortens write time, etc. by supplying a driving voltage with a waveform to the electrodes.

〈発明の原理、と作用〉 本発明は5SF−LCDが明→暗、暗→明とスイッチン
グする過程が従来考えられていたような正負対称なもの
ではなく、LCD内部に直流バイアスが存在するという
新たな事実を実験結果として見い出したことに基いて創
作されたものである。
<Principle of the invention and operation> The present invention is based on the fact that the process in which the 5SF-LCD switches from bright to dark and from dark to bright is not symmetrical between positive and negative as previously thought, but that a DC bias exists inside the LCD. It was created based on new facts discovered as experimental results.

以下この新事実とその駆動法への利用について説明する
This new fact and its use in the driving method will be explained below.

まず、スイッチング過程とメモリー状態を透過光強度の
変化で観察するにあたって、5SF−LCDの分子の動
きに伴なう光軸の変化の対称性が、透過光強度の変化に
偏りなく反映されるように第1図(A+に示した角度配
置で5SF−LCDセルをクロスニコル中に配置した。
First, when observing the switching process and memory state by changes in the intensity of transmitted light, the symmetry of the change in the optical axis due to the movement of molecules in the 5SF-LCD ensures that the changes in the intensity of transmitted light are reflected evenly. A 5SF-LCD cell was placed in a crossed nicol configuration with the angular arrangement shown in FIG. 1 (A+).

すなわち、スメクチック相の層法線jが偏光子の偏光軸
Fとω−22,5゜の角度を為すようにセルを配置する
。検光子の偏光軸Xは偏光子の偏光軸fと直交している
。また明状態での液晶のディレクタ0と暗状態での液晶
u のディレクタ0はスメクチックC相での分子のチD ルト角θだ゛けヲから逆向きにねじれている。このよう
に構成すれば明→暗、暗→明のスイッチング過程で分子
の動きが層法線7について対称である限り、それに伴な
う透過光量の変化も対称となり、分子の動きの対称性を
光学的測定に反映できる。
That is, the cell is arranged so that the layer normal j of the smectic phase forms an angle of ω-22.5° with the polarization axis F of the polarizer. The polarization axis X of the analyzer is orthogonal to the polarization axis f of the polarizer. Further, the director 0 of the liquid crystal in the bright state and the director 0 of the liquid crystal u in the dark state are twisted in opposite directions from the tilt angle θ of the molecules in the smectic C phase. With this configuration, as long as the movement of molecules is symmetrical with respect to the layer normal 7 in the switching process of light → dark and dark → bright, the accompanying change in the amount of transmitted light will also be symmetrical, and the symmetry of the movement of molecules will be improved. This can be reflected in optical measurements.

このような測定システムで種々の配向処理を施して作製
した5SF−LCD試料について、メモリー効果の対称
性を調べたところ程度の差はあれ全ての試料についてメ
モリ効果が非対称であった。代表的な例を第1図031
に示す。このような現象は5SF−LCDの表示特性と
して好ましいものではなく、極端な場合には、双安定と
はならずに、片方の状態のみが安定な単安定となってし
まい、マルチプレックス駆動で表示が不可能となる。
When the symmetry of the memory effect was investigated for 5SF-LCD samples prepared by performing various alignment treatments using such a measurement system, it was found that the memory effect was asymmetrical for all samples, although there were differences in degree. A typical example is shown in Figure 1 031
Shown below. Such a phenomenon is not desirable for the display characteristics of 5SF-LCD, and in extreme cases, it becomes monostable with only one stable state instead of bistable, which makes it difficult to display with multiplex drive. becomes impossible.

そこで、発明者は、対称で双安定なメモリ効果が得られ
るように検討を重ねた結果、液晶に印加する交流波形に
直流オフセット電圧を重畳すれば対称な特性と安定なメ
モリー効果が得られることを見い出した。第1図[C1
にオフセット電圧VO5(Vos\QV)を適切に設定
して得られたメモリー効果を示す。
Therefore, as a result of repeated studies to obtain a symmetrical and bistable memory effect, the inventor discovered that by superimposing a DC offset voltage on the AC waveform applied to the liquid crystal, symmetrical characteristics and a stable memory effect can be obtained. I found out. Figure 1 [C1
shows the memory effect obtained by appropriately setting the offset voltage VO5 (Vos\QV).

このように、直流オフセット電圧を考慮してはじめて対
称性のよい特性になることは、応答時間。
In this way, response time can only be achieved with good symmetry when DC offset voltage is taken into account.

分極反転電流、D−Eヒステリシスについても見られた
。これらのことから、5SF−LCD内部には内部バイ
アス電界Eibなる電界があって、外部からElbを打
消すだけのVO3を含む電圧を印加して初めて液晶分子
が対称な動きを示すと思われる。
Polarization reversal current and DE hysteresis were also observed. From these facts, it is thought that there is an internal bias electric field Eib inside the 5SF-LCD, and that the liquid crystal molecules exhibit symmetrical movement only when a voltage containing VO3 sufficient to cancel Elb is applied from the outside.

セラミック系強誘電体では内部バイアスの存在は既に知
られているが、強誘電性液晶についてはElbが存在す
ることはこれまでに報告が無い。
Although the existence of internal bias is already known in ceramic ferroelectric materials, the existence of Elb in ferroelectric liquid crystals has not been reported so far.

5SF−LCDにおける内部バイアスの原因は未だ特定
できないが、液晶の分子配向方向に何らかの原因で偏り
が生じているためであることは確実である。従って、2
枚のガラス基板に性質の異る配向膜処理を施した場合に
は双極子モーメントの配向に偏りが生じ、これによって
内部バイアスの生ずることが予想される。しかし、実際
には側基板の双方に全く同じ配向膜を設けて作製した5
SF−LCDにおいても、内部バイアスEibが零でな
い値を示すことが判明した。
Although the cause of the internal bias in the 5SF-LCD has not yet been identified, it is certain that it is due to a bias in the molecular orientation direction of the liquid crystal for some reason. Therefore, 2
When two glass substrates are treated with alignment films with different properties, it is expected that the orientation of the dipole moment will be biased and that this will cause an internal bias. However, in reality, the same alignment film was provided on both side substrates.
It has been found that the internal bias Eib also exhibits a non-zero value in the SF-LCD.

このような内部バイアスを持った5SF−LCDをマル
チプレックス駆動するにあたって内部バイアスを考慮し
ていない正負対称の交流駆動波形を用いると次のような
不都合が生ずる。第1にメモリー状態が安定に保持でき
ない。これは第1図031に示した現象である。第2に
、次に説明するように動作マージンが減少する。尚、簡
単のために1 / aバイアス法の波形を用いて説明す
るが、書込み・消去用パルスと補償用パルスの組合せで
交流化した駆動波形であれば、本質的には同じである。
When multiplex driving a 5SF-LCD having such an internal bias, using a positive/negative symmetrical AC drive waveform that does not take the internal bias into consideration causes the following disadvantages. First, the memory state cannot be maintained stably. This is the phenomenon shown in FIG. 1 031. Second, operating margin is reduced, as explained next. For the sake of simplicity, the waveform of the 1/a bias method will be used in the explanation, but any drive waveform converted to alternating current by a combination of write/erase pulses and compensation pulses is essentially the same.

第2図は、Eib>Oの場合のSSI”−LCDのスイ
ッチング特性とそれを駆動するために必要なパルスの波
高値の関係を示したものである。第2図(A+は、縦軸
にメモリー状態での透過光強度、横軸に双極性パルスの
波高値をとっている。2本の曲線はそれぞれ明状態から
暗状態および暗状態から明状態へのスイッチングを表わ
している。今、Elbが零でないのでそれぞれの曲線の
閾電圧と飽和電圧は、第2図(A+の横軸に書き入れで
あるように、各電圧の対称な部分v1.v2 と非対称
な成分Eibを用いて表わせる。第2図β)と第2図F
C+は、それぞれこのような特性の5SF−LCDをオ
フセット電圧なしでマルチプレックス駆動する際の選択
電圧波形(波高値±V5)および半選択電圧波形(波高
値±Vn5)である。ここで、±V、は明暗状態をスイ
ッチングできるように v8≧Vl+Eibか−)−V5≦−Vl+Eibを満
たしている。また、±Vrlsは明暗状態を変化させな
いように Vns≦v2+Eibかつ−”ns≧−V2+Eibを
満たしている。
Figure 2 shows the relationship between the switching characteristics of the SSI''-LCD and the peak value of the pulses necessary to drive it when Eib>O. The transmitted light intensity in the memory state, and the peak value of the bipolar pulse is plotted on the horizontal axis.The two curves represent switching from the bright state to the dark state and from the dark state to the bright state, respectively.Now, Elb is not zero, the threshold voltage and saturation voltage of each curve can be expressed using the symmetrical part v1.v2 and the asymmetrical component Eib of each voltage, as shown in the horizontal axis of FIG. 2 (A+). Figure 2 β) and Figure 2 F
C+ is a selection voltage waveform (peak value ±V5) and a half-selection voltage waveform (peak value ±Vn5) when multiplex driving a 5SF-LCD with such characteristics without an offset voltage, respectively. Here, ±V satisfies v8≧Vl+Eib or −V5≦−Vl+Eib so that bright and dark states can be switched. Further, ±Vrls satisfies Vns≦v2+Eib and −”ns≧−V2+Eib so as not to change the bright/dark state.

ここで、この駆動波形のマージンvMを見積っテミル。Here, estimate the margin vM of this drive waveform.

今、E1b\0である場合を考えているので、印加電圧
の余裕は正の電圧領域と負の領域とで対称ではない。こ
のような場合マージンとしては、正と負の領域でのマー
ジンの共通部分が真のマージンとなる。従って、v5 
 については第2図(C)に示したようにv5− (v
、+E、5)だけの余裕があり、■n5については第2
図FC+に示したように−Vn、 −(−V2 +EH
,)だけの余裕がある。
Since we are now considering the case where E1b\0, the applied voltage margin is not symmetrical between the positive voltage region and the negative voltage region. In such a case, the true margin is the common portion of the margins in the positive and negative regions. Therefore, v5
As shown in Fig. 2(C), v5− (v
, +E, 5), and for ■n5, the second
As shown in Figure FC+, -Vn, -(-V2 +EH
,).

マージンvMはこれらの余裕の和と考えて、VM=[V
s(V、+EH,))+4 ”ns  (V2+E1b
))=(V、 −V、、 )−(V、 −v2 )−Z
EH。
Considering the margin vM as the sum of these margins, VM=[V
s(V, +EH,))+4”ns (V2+E1b
))=(V, -V,, )-(V, -v2)-Z
EH.

を得る。つまり、内部バイアスEibの存在によって動
作マージンが2Eibだけ狭くなっていることがわかる
get. In other words, it can be seen that the operating margin is narrowed by 2 Eib due to the presence of the internal bias Eib.

発明者らは、以上のような知見と考察に基づき、内部バ
イアスを相殺するような大きさと極性の直流オフセット
電圧VO9を駆動波形に重畳することにより、メモリー
の保持とマージンの拡大を計った。その結果、後述する
実施例1,2に示す如く、2枚の基板の配向膜が同種で
ある5SF−LCDのみならず、メモリー効果の無かっ
た異種配向膜の5SF−LCDも、良好にマルチプレッ
クス駆動することができた。
Based on the above knowledge and consideration, the inventors attempted to maintain memory and expand the margin by superimposing a DC offset voltage VO9 with a magnitude and polarity that offsets the internal bias on the drive waveform. As a result, as shown in Examples 1 and 2 described below, not only the 5SF-LCD in which the alignment films on the two substrates are of the same type, but also the 5SF-LCD in which the alignment films of different types, which had no memory effect, can be successfully multiplexed. I was able to drive it.

本発明の駆動法は、スタティック駆動においても有効で
ある。5SF−LCDを矩形波でスイッチングした場合
、明から暗への応答速度と暗から明への反応速度は一般
fこ異なっている。この相違もまた、内部バイアスに起
因するものと考えられ、実際、後述する実施例3,4に
示す如く、VO5を適切に選ぶことにより、2つの応答
速度を等しくすることができる。5SF−LCDを光シ
ャッタ等に応用する場合、遅い方の反応速度に合せてシ
ステムを設計しなければならないので、2つの応答速度
を等しくすれば、5SF−LCDの高速応答性を無駄な
く発揮させることができる。
The driving method of the present invention is also effective in static driving. When switching a 5SF-LCD using a square wave, the response speed from bright to dark and the response speed from dark to bright are generally different by f. This difference is also considered to be due to internal bias, and in fact, as shown in Examples 3 and 4, which will be described later, by appropriately selecting VO5, the two response speeds can be made equal. When applying the 5SF-LCD to an optical shutter, etc., the system must be designed to suit the slower response speed, so if the two response speeds are made equal, the high-speed response of the 5SF-LCD can be fully utilized. be able to.

以上述べたように、本発明の原理は5SF−LCDの応
答速度、メモリー効果、スイッチング特性などに見られ
る非対称な特性が、その内部バイアスに起因するもので
あることを見出し、その内部バイアスを駆動電圧の直流
オフセットで相殺することである。従って、直流オフセ
ット電圧を含んだ駆動波形を用いた5SF−LCDの駆
動法は本発明に適用可能である。
As described above, the principle of the present invention is to discover that the asymmetric characteristics seen in the response speed, memory effect, switching characteristics, etc. of 5SF-LCD are caused by its internal bias, and to drive the internal bias. This is done by canceling the voltage with a DC offset. Therefore, a 5SF-LCD driving method using a driving waveform including a DC offset voltage is applicable to the present invention.

〈発明の効果〉 以上詳述した如く、2枚の基板の配向膜の種類が同じで
あっても5SF−LCDの内部バイアスE1bは一般l
こゼロではないので、本発明の駆動法が良好な表示を行
なう上で有効となる。さらに、2枚の基板の配向膜とし
て、異る極性の材料を用いて、無電界時の表示状態を明
または暗のいずれかに固定する方法が知られているが、
この方法は必然的に双安定なメモリー効果がないために
マルチプレックス駆動には適さないとされてきた。しか
し、このような片安定な5SF−LCDも、本発明に係
る駆動法によれば、メモリー効果を生がしたマルチプレ
ックス駆動を行うことができる。従って本発明は、5S
F−LCDによる大容量表示装置の実用化に不可欠の技
術である。
<Effects of the Invention> As detailed above, even if the types of alignment films on the two substrates are the same, the internal bias E1b of the 5SF-LCD is generally l
Since this is not zero, the driving method of the present invention is effective in providing good display. Furthermore, a method is known in which the display state in the absence of an electric field is fixed to either bright or dark by using materials with different polarities as the alignment films of the two substrates.
This method has been considered unsuitable for multiplex operation due to the necessarily lack of bistable memory effects. However, even in such a monostable 5SF-LCD, multiplex driving with a memory effect can be performed according to the driving method according to the present invention. Therefore, the present invention provides 5S
This is an essential technology for the practical application of large-capacity display devices using F-LCDs.

〈実施例1,2〉 マトリクス状に交叉するように、1対のパターン化され
たITO透明導電膜付きガラス基板を対向配置し、該ガ
ラス基板上に、表1に示した配向膜を形成した。ポリビ
ニルアルコール(PVA)の膜にはラビングを施した。
<Examples 1 and 2> A pair of patterned glass substrates with ITO transparent conductive films were arranged facing each other so as to intersect in a matrix, and the alignment films shown in Table 1 were formed on the glass substrates. . The polyvinyl alcohol (PVA) film was rubbed.

それぞれ基板間間隙が2μmとなるように貼合せた後、
キシルスメクチックC相を示す液晶を封入し、ホモジニ
アス配向させて、マトリクス型5SF−LCDを作製し
たそれぞれのセルを1/6バイアス法の交流波形で駆動
試験し、メモリー効果と表示が可能となるピーク電圧の
範囲を求めた。次にオフセット電圧VO5を調節して、
スイッチング特性とメモリー効果が対称となるVO5を
求め、そのVO8を重畳したマルチプレックス駆動波形
を用いた時に表示可能となるピーク電圧の範囲を求めた
。表1にまとめたように、これらの結果から、オフセッ
ト電圧VO5を適切に選定することによりメモリー状態
の安定化、駆動電圧の余裕の拡大ができ、さらに、従来
、マルチプレックスには適さなかった実施例2のような
片メモリーのセルにも双安定なメモリー効果を賦与でき
ることがわかる。
After laminating each substrate so that the gap between the substrates was 2 μm,
A matrix-type 5SF-LCD was fabricated by enclosing a liquid crystal exhibiting a xylsmectic C phase and homogeneously aligning each cell. Driving tests were conducted using an AC waveform using a 1/6 bias method to determine the memory effect and the peak that enables display. The voltage range was determined. Next, adjust the offset voltage VO5,
We determined VO5 with symmetrical switching characteristics and memory effect, and determined the range of peak voltage that can be displayed when using a multiplex drive waveform in which VO8 was superimposed. As summarized in Table 1, these results show that by appropriately selecting the offset voltage VO5, it is possible to stabilize the memory state and expand the drive voltage margin. It can be seen that a bistable memory effect can be imparted to a single memory cell as in Example 2.

〈実施例3,4〉 上記実施例1,2で作製した5SF−LCDに100H
z、±IOVの矩形波を印加し、応答時間を測定した。
<Examples 3 and 4> 100H was applied to the 5SF-LCD produced in Examples 1 and 2 above.
A square wave of z, ±IOV was applied, and the response time was measured.

応答時間の定義は、印加電圧の極性を切り換えた時点か
ら、光強度変化の50%の光強度になるまでの時間で定
義し、明から暗および暗から明への応答時間を、それぞ
れ、τ4とτ。
The response time is defined as the time from when the polarity of the applied voltage is switched until the light intensity reaches 50% of the light intensity change, and the response time from light to dark and from dark to light is defined as τ4, respectively. and τ.

とした。表2に、それぞれの5SF−LCDについて、
vos=0■の場合と、τd=τ、となるようにVO5
を設定した場合の応答時間を示す。
And so. In Table 2, for each 5SF-LCD,
In the case of vos=0■, VO5 so that τd=τ,
Shows the response time when .

表2Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の基本原理と構成を説明する
説明図である。 第3図及び第4図は5SF−LCDの動作モードを説明
する説明図である。 第5図は5SF−LCDの明暗状態のスイッチング動作
を説明する説明図である。 第6図は正負対称の交流波形を用いた5SF−LCDの
駆動法を説明するパルス波形図である。 ■・・・ガラス基板、2・・・透明電極、3・・・液晶
分子、4・・・偏光子、5・・・検光子、6・・・外部
光。 夜理人 弁理士 福 士 愛 彦(他2名)第1図
FIG. 1 and FIG. 2 are explanatory diagrams explaining the basic principle and configuration of the present invention. FIGS. 3 and 4 are explanatory diagrams illustrating the operation mode of the 5SF-LCD. FIG. 5 is an explanatory diagram illustrating the switching operation of the 5SF-LCD in bright and dark states. FIG. 6 is a pulse waveform diagram illustrating a method of driving a 5SF-LCD using an alternating current waveform with positive and negative symmetry. ■...Glass substrate, 2...Transparent electrode, 3...Liquid crystal molecules, 4...Polarizer, 5...Analyzer, 6...External light. Night attorney Patent attorney Aihiko Fukushi (and 2 others) Figure 1

Claims (1)

【特許請求の範囲】 1、強誘電性を示す液晶を封入し、1対の電極間でホモ
ジニアス配向させた液晶表示装置の駆動方法において、
前記1対の電極間に印加する駆動電圧を交流電圧に一定
の直流電圧を重畳したパルス波形電圧で構成したことを
特徴とする液晶表示装置の駆動方法。 2、1対の電極をマトリックス状に配置した電極で構成
した特許請求の範囲第1項記載の液晶表示装置の駆動方
法。
[Claims] 1. A method for driving a liquid crystal display device in which a liquid crystal exhibiting ferroelectricity is sealed and homogeneously aligned between a pair of electrodes,
A method for driving a liquid crystal display device, characterized in that the driving voltage applied between the pair of electrodes is a pulse waveform voltage obtained by superimposing a constant DC voltage on an AC voltage. 2. The method for driving a liquid crystal display device according to claim 1, wherein the electrodes are arranged in a matrix.
JP60170440A 1985-07-30 1985-07-30 Driving method for liquid crystal display device Expired - Lifetime JPH0792562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170440A JPH0792562B2 (en) 1985-07-30 1985-07-30 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170440A JPH0792562B2 (en) 1985-07-30 1985-07-30 Driving method for liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS6228717A true JPS6228717A (en) 1987-02-06
JPH0792562B2 JPH0792562B2 (en) 1995-10-09

Family

ID=15904957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170440A Expired - Lifetime JPH0792562B2 (en) 1985-07-30 1985-07-30 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0792562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260124A (en) * 1986-05-06 1987-11-12 Canon Inc Driving method for optical modulating element
JPS62260125A (en) * 1986-05-06 1987-11-12 Canon Inc Method for driving optical modulating element
US5933128A (en) * 1995-05-17 1999-08-03 Canon Kabushiki Kaisha Chiral smectic liquid crystal apparatus and driving method therefor
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187324A (en) * 1983-04-08 1984-10-24 Hitachi Ltd Optical device
JPS6015624A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Driving method of liquid crystal switch element for printer
JPS6033535A (en) * 1983-08-04 1985-02-20 Canon Inc Driving method of optical modulating element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187324A (en) * 1983-04-08 1984-10-24 Hitachi Ltd Optical device
JPS6015624A (en) * 1983-07-08 1985-01-26 Hitachi Ltd Driving method of liquid crystal switch element for printer
JPS6033535A (en) * 1983-08-04 1985-02-20 Canon Inc Driving method of optical modulating element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260124A (en) * 1986-05-06 1987-11-12 Canon Inc Driving method for optical modulating element
JPS62260125A (en) * 1986-05-06 1987-11-12 Canon Inc Method for driving optical modulating element
US5933128A (en) * 1995-05-17 1999-08-03 Canon Kabushiki Kaisha Chiral smectic liquid crystal apparatus and driving method therefor
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization
US7830344B2 (en) 2000-04-28 2010-11-09 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization

Also Published As

Publication number Publication date
JPH0792562B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US5189536A (en) Ferroelectric liquid crystal element having uniform high temperature alignment
US5189535A (en) Liquid crystal display element and method for driving same
JPH05249435A (en) Antiferroelectric liquid crystal element
US5136408A (en) Liquid crystal apparatus and driving method therefor
US5278684A (en) Parallel aligned chiral nematic liquid crystal display element
JP2003121882A (en) Reflective ferroelectric liquid crystal display device and driving method therefor
O'Callaghan et al. Bistable FLCOS devices for doubled‐brightness micro‐projectors
US7123330B2 (en) Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle
JPS6228717A (en) Method for driving liquid crystal display device
JPS60235121A (en) Driving method of liquid crystal element
CA1304485C (en) Liquid crystal display element and method for driving same
US5250215A (en) Ferroelectric liquid-crystal mixtures containing mercapto compounds
JP3365587B2 (en) Liquid crystal device
JPH0756545B2 (en) Driving method of liquid crystal matrix display panel
JPS6224228A (en) Driving method for liquid crystal display device
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
US5844653A (en) Liquid crystal mixture
JP2612504B2 (en) Liquid crystal device
JP3210575B2 (en) Antiferroelectric liquid crystal composition with small change in response speed
JP2727239B2 (en) Ferroelectric liquid crystal device
JPH03100520A (en) Ferroelectric liquid crystal element
JPH1067987A (en) Liquid crystal electrooptical device
JPH04371919A (en) Driving method for liquid crystal electrooptical element
JPH04311921A (en) Method of driving liquid crystal electro-optical element
JPH01214824A (en) Driving method for ferroelectric liquid crystal element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term