JPS62287058A - Method for evaluating corrosion resistance of zr alloy - Google Patents

Method for evaluating corrosion resistance of zr alloy

Info

Publication number
JPS62287058A
JPS62287058A JP12796286A JP12796286A JPS62287058A JP S62287058 A JPS62287058 A JP S62287058A JP 12796286 A JP12796286 A JP 12796286A JP 12796286 A JP12796286 A JP 12796286A JP S62287058 A JPS62287058 A JP S62287058A
Authority
JP
Japan
Prior art keywords
corrosion
alloy
temp
pressure water
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12796286A
Other languages
Japanese (ja)
Inventor
Iwao Takase
高瀬 磐雄
Masatoshi Inagaki
正寿 稲垣
Masayoshi Kanno
管野 正義
Jiro Kuniya
国谷 治郎
Hajime Umehara
梅原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12796286A priority Critical patent/JPS62287058A/en
Publication of JPS62287058A publication Critical patent/JPS62287058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To exactly evaluate the sensitivity to white corrosion in the high-temp. high-pressure water and steam in nuclear reactor environment by immersing a weld heat affected pseudo material formed by quick cooling a Zr alloy from a prescribed temp. region into the high-temp. high-pressure water. CONSTITUTION:The porous white corrosion arises on the surface of a welded joint material of a Zr-2.5Nb alloy for nuclear service when said material is immersed into the high-temp. high-pressure water enriched with oxygen by air bubbling. The inventor discovered that the above-mentioned corrosion is significant particularly in the weld metal part and the heat affected zone thereof. The weld heat affected pseudo material formed by quickly cooling the weld zone of a fuel structural material made of the Zr-Nb alloy or the base metal thereof at >=10 deg.C/sec rate from the alpha+beta and beta temp. is immersed into the high-temp. high-pressure water enriched with oxygen by the above-mentioned method in accordance with the above-mentioned result. The presence or absence of the white corrosion generated by such immersion is investigated, by which the corrosion resistance of the specimen Zr-Nb alloy is exactly judged and evaluated.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は新規なZr合金溶接部の耐食性評価法に係わり
、大幅高燃焼度燃料集合体に合った構造部材の材料選定
として特に、白色全面腐食感受性の評価に好適な腐食試
験法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a new method for evaluating the corrosion resistance of Zr alloy welded parts, and the present invention relates to a novel method for evaluating the corrosion resistance of Zr alloy welded parts, and the present invention relates to a method for evaluating the corrosion resistance of Zr alloy welded parts. In particular, it relates to a corrosion test method suitable for evaluating white general corrosion susceptibility for material selection.

〔従来の技術〕[Conventional technology]

Z r −N b系合金は高強度高耐食性と非常に小さ
い中性子吸収面積を有することから、原子カプラントの
燃料構造部材に大きく適用されはじめている。これらの
構造物は原子炉内で長時間中性子の照射を受け、同時に
高温高圧の水及び蒸気にさらされるため、腐食が進むと
その部材表面にノジュラ腐食とよばれるノジュル状の灰
白色の局部酸化あるいはポーラスな白色の全面酸化が生
じることがある。これらの酸化は腐食反応の進行につれ
厚膜化し、剥離が生じることもある。Zr−Nb系合金
において、Nb含有量が0 、5 w t%越える部材
の腐食はポーラスな白色の全面酸化が生じる(以下白色
腐食と呼ぶ)。特にこの腐食現象は溶接部に顕著である
Since Zr-Nb alloys have high strength, high corrosion resistance, and a very small neutron absorption area, they are beginning to be widely applied to fuel structural members of atomic couplants. These structures are exposed to neutron irradiation for a long period of time in a nuclear reactor, and are also exposed to high-temperature, high-pressure water and steam, so as corrosion progresses, nodular-like grayish-white local oxidation or Porous white general oxidation may occur. These oxidized films become thicker as the corrosion reaction progresses, and peeling may occur. In Zr--Nb alloys, corrosion of members with an Nb content exceeding 0.5 wt% results in porous white oxidation (hereinafter referred to as white corrosion). This corrosion phenomenon is particularly noticeable in welded parts.

今後、原子力発電の効率向上の観点から大幅高燃焼度を
行う場合、これら部材には炉内でより長期品滞在するこ
とから、高強度を有しかつ白色腐食の生じ難い材料を選
定する必要がある。
In the future, when significantly high burn-up is performed from the perspective of improving the efficiency of nuclear power generation, these components will remain in the reactor for a longer period of time, so it will be necessary to select materials that have high strength and are resistant to white corrosion. be.

前記のような観点から、この白色腐食と呼ばれる剥離性
の腐食を防止する方法が検討され、かつその材料の耐食
性を炉外で判別する方法が重要課題となっている。ノジ
ュラ腐食感受性評価法としては特開昭58−95247
などがある。しかし、これら評価法はZr−Nb系合金
特有の白色腐食に対しては考慮していない。また従来か
ら実施されているASTM規格の400℃、72h、あ
るいは500℃、24h蒸気中腐食試験法で良く知られ
ているが、これについても十分な評価となっていない。
From the above-mentioned viewpoints, methods for preventing this flaking corrosion called white corrosion have been studied, and methods for determining the corrosion resistance of materials outside the furnace have become an important issue. As a nodular corrosion susceptibility evaluation method, Japanese Patent Application Laid-Open No. 58-95247
and so on. However, these evaluation methods do not take into consideration the white corrosion peculiar to Zr--Nb alloys. Furthermore, although the ASTM standard 400°C, 72h or 500°C, 24h steam corrosion test method is well known, this method has not been sufficiently evaluated.

即ち上述の蒸気中腐食試験結果ではZr−Nb系合金溶
接部などの特異な腐食は認められないが、BWR実炉環
境下によっては剥離性の腐食が生じたケースがみられた
。このようにZr−Nb系合金の腐食に対する炉外での
評価は現在のところ十分なものがない状況にある。
That is, in the above-mentioned steam corrosion test results, no peculiar corrosion of Zr--Nb alloy welds was observed, but there were cases where exfoliative corrosion occurred depending on the actual BWR furnace environment. As described above, there is currently no sufficient evaluation of corrosion of Zr--Nb alloys outside the furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

でき難い状況にあった。このことから部材の白色腐食感
受性を炉外で確実に判定できる方法が強く望まれている
I was in a difficult situation. For this reason, there is a strong desire for a method that can reliably determine the white corrosion susceptibility of members outside the furnace.

本発明の目的は原子炉環境下における高温高圧水及び蒸
気中での白色腐食感受性を判定する方法を提供すること
にある。
An object of the present invention is to provide a method for determining white corrosion susceptibility in high temperature, high pressure water and steam in a nuclear reactor environment.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は特に、Z r −N b系合金製燃料構造材
の溶接部もしくはその母材をα+β及びβ温度より急冷
した部材を酸素室富化した高温高圧水なる環境に所定時
間浸漬し白色腐食感受性を評価することにより、達成で
きる。
In particular, the above purpose is to immerse a welded part of a Zr-Nb alloy fuel structure material or its base material rapidly cooled from α+β and β temperatures in an environment of high-temperature, high-pressure water enriched with oxygen chambers for a predetermined period of time to eliminate white corrosion. This can be achieved by assessing sensitivity.

〔作用〕[Effect]

原子力用Zr−2,5Nb 合金溶接継手材をエアバブ
リングによって酸素富化した高温高圧水中に浸漬すると
、その表面にポーラス状の白色腐食が生じ、特に溶接金
属部及びその熱影響部で著しいことを見い出した。この
白色腐食は炉内の低照射域で生じた剥離性の腐食形態と
同質とみられる。
When a Zr-2,5Nb alloy welded joint material for nuclear power is immersed in high-temperature, high-pressure water enriched with oxygen by air bubbling, porous white corrosion occurs on its surface, which is particularly noticeable in the weld metal and its heat-affected zone. I found it. This white corrosion appears to be of the same type as the flaking corrosion that occurs in the low irradiation area inside the furnace.

そこで本発明者らは、Zr−Nb系合金溶接部の白色腐
食を炉外試験で明確に再現すべく、Nb含有量の異なる
Zr−Nb合金について、溶接熱影響の熱サイクルを考
慮して650〜1ooo℃急熱し焼入した試料を作製し
、前述した高温高圧水中の浸漬試験(288℃、85k
g/a#、300h)を行った。
Therefore, in order to clearly reproduce the white corrosion of Zr-Nb alloy welds in an out-of-furnace test, the present inventors investigated 650% of Zr-Nb alloys with different Nb contents, taking into account the thermal cycle affected by welding heat. A sample was prepared by rapidly heating and quenching at ~100°C, and was subjected to the above-mentioned immersion test in high-temperature, high-pressure water (288°C, 85k
g/a#, 300h).

その結果、第1図に示すように、この腐食試験による結
果は830℃の焼入で、かつ高Nb含有材はど白色腐食
が著しく高く示される。さらにこの試験法によれば高N
b含有材はど焼入温度が低くとも腐食発生を明確に績出
できることがわかった。
As a result, as shown in FIG. 1, the results of this corrosion test showed that the material was quenched at 830° C. and that the material containing high Nb had a significantly high degree of white corrosion. Furthermore, according to this test method, high N
It was found that the b-containing material can clearly show the occurrence of corrosion even if the hardening temperature is low.

この腐食の大小は材料固有の耐食性を現わしているもの
と考えられる。すなわち、腐食が著しく生じた材料(約
830℃の焼入材)の組織はα相とβ相との2相組織で
あり、次に腐食が大きかった700〜b 組織となっている。一方、650℃程度の焼入ではα相
であり大きな組織変化は識別できないが、β−Nbの析
出がかなり生じている。この腐食は、高温度(約900
℃以上)再加熱で生成する針状のβ−Zr相は金属平衡
状態図からみると非平衡相であり、Nbを固溶している
ため発生したとみられ、また高温域α+β温度(約83
0℃)でのβ相はNbの固溶量が小さいα相が生成する
ことから、β相のNb固溶量が増加するため著しく生じ
たと考える。また時効処理材はNbがβ−Nbとし析出
しているため、白色腐食が生じ難い。このように白色腐
食はNbの固溶量に大きく依存し。
The magnitude of this corrosion is considered to reflect the material's inherent corrosion resistance. That is, the structure of the material in which the corrosion was severe (quenched material at about 830° C.) was a two-phase structure consisting of an α phase and a β phase, and the 700-b structure was the second most corroded. On the other hand, when quenched at about 650° C., the steel is in the α phase and no major structural change can be discerned, but a considerable amount of β-Nb is precipitated. This corrosion occurs at high temperatures (approximately 900
The acicular β-Zr phase generated by reheating (more than
It is considered that the β phase at 0° C. is significantly generated due to the increase in the amount of Nb solid solution in the β phase, since the α phase with a small amount of Nb solid solution is formed. In addition, since Nb is precipitated as β-Nb in the aged material, white corrosion is less likely to occur. In this way, white corrosion largely depends on the amount of solid solution of Nb.

組織と密接な関係にあることを明らかにした。He revealed that he has a close relationship with the organization.

以上のことから酸素富化した高温高圧水浸漬試験はZr
−Nb合金の組織変化に伴う耐食性の差異を適確に検出
できることが判った。
Based on the above, the immersion test in oxygen-enriched high temperature and high pressure water
It was found that differences in corrosion resistance due to structural changes in -Nb alloys can be accurately detected.

高温高圧水の環境条件並びに試料前処理について述べる
This section describes the environmental conditions of high-temperature, high-pressure water and sample pretreatment.

温度及び圧力は臨界蒸気圧と温度の関係において高温水
なる条件下で行う必要があり、これは高温水中での酸化
反応を加速するためである。したがって加速試験として
はより高い温度と圧力が望ましいが、臨界蒸気圧条件近
傍では蒸気となる可能性をもっこからこれより10%程
度高温水側に5−設定すべきである。最適条件は実炉の
温度及び圧1、力に近い値にすると、耐食性の評価にお
いて好都メ・。
The temperature and pressure must be carried out under conditions of high temperature water based on the relationship between critical vapor pressure and temperature, and this is to accelerate the oxidation reaction in high temperature water. Therefore, higher temperatures and pressures are desirable for accelerated tests, but in order to increase the possibility of steam formation near the critical vapor pressure condition, the temperature should be set to about 10% higher than the critical vapor pressure condition. The optimum conditions are temperature, pressure, and force values close to those of an actual furnace, which is advantageous in evaluating corrosion resistance.

合となる。It will be the same.

高温水中への酸素富化は腐食反応を加速するに重要な条
件であり、水質調整によって4〜10ppm保つ必要が
ある。4PP■以下でも試験可能であるが、試験時間が
長くなること並びに炉水中のクラッド付着の影響ができ
ることから望ましくない。なお薬液注入によって腐食を
加速することも可能であり、H2,02なども効果的で
ある。特に、溶存酸素濃度は6〜110PPが好ましい
Oxygen enrichment in high-temperature water is an important condition for accelerating corrosion reactions, and it is necessary to maintain the oxygen content at 4 to 10 ppm by adjusting the water quality. Although it is possible to test with 4PP■ or less, it is not desirable because the test time becomes long and the influence of crud adhesion in the reactor water occurs. Note that it is also possible to accelerate corrosion by injecting a chemical solution, and H2,02, etc. are also effective. In particular, the dissolved oxygen concentration is preferably 6 to 110 PP.

次に腐食試験に先立つ供試材の前処理について述べる。Next, we will discuss the pretreatment of the specimen material prior to the corrosion test.

前述したように白色腐食は溶接部で生じやすく、かつα
+β相の2相組織でその腐食感性が高まる。そこで供試
材の前処理は750〜850℃のα十β高温域からの焼
入が最適である。さらに合金の腐食感受性の大小を詳細
に判定する場合は、730〜1.000℃の広範囲の温
度でそれぞれ前処理した供試で評価することができる。
As mentioned above, white corrosion tends to occur in welded parts, and α
The two-phase structure of +β phase increases its corrosion sensitivity. Therefore, it is best to pre-treat the sample material by quenching at a high temperature range of 750 to 850°C. Furthermore, when determining in detail the magnitude of corrosion susceptibility of an alloy, evaluation can be performed using samples pretreated at a wide range of temperatures from 730 to 1.000°C.

また別の方法としては加熱温度をβ領域からα+βの低
温域までステップ状に冷却し、最終加熱からは一風冷す
る前処理も有効である。
Another effective method is a pretreatment in which the heating temperature is cooled in steps from the β region to the low temperature region of α+β, and after the final heating, the material is cooled in one blow.

シ 〔実施例〕 Z r −N b系合金の白色腐食感受性を評価するた
め、Z r −2、5w t%N b 、 Z r −
1、5w t%Nb及びZ r −1,、Ow t%5
n−0,4wt%Mo材について、高温高圧水浸漬試験
を行った。
[Example] In order to evaluate the white corrosion susceptibility of Zr-Nb-based alloys, Zr-2, 5wt%Nb, Zr-
1,5w t%Nb and Z r -1,, Ow t%5
A high temperature and high pressure water immersion test was conducted on the n-0,4wt% Mo material.

第1表は本発明の腐食評価結果と比較試験法としてAS
TM規格の蒸気中腐食評価結果とを示す。
Table 1 shows the corrosion evaluation results of the present invention and AS as a comparative test method.
TM standard steam corrosion evaluation results are shown.

供試材は各合金共通に溶接熱影響劣化を考慮し830℃
、1h加熱、その後水焼入した溶接模擬材とTjg溶接
を行った実溶接継手材である。
The test material was heated to 830°C in consideration of welding heat-induced deterioration for all alloys.
, a simulated welding material which was heated for 1 hour and then water quenched, and an actual welded joint material which was subjected to Tjg welding.

本発明の高温高圧水浸漬試験は288℃、85kg/a
J高温水(Do :溶存酸素6〜8ppm ) 300
h保持した。
The high temperature and high pressure water immersion test of the present invention was conducted at 288°C and 85 kg/a.
J high temperature water (Do: dissolved oxygen 6-8 ppm) 300
h was maintained.

その結果、Z r −2、5w t%Nb 及びZr−
1、、5w t%Nb  ともにすべての供試材で白色
腐食が検出され、実溶接継手材では溶接熱影響部で著し
いことがわかった。なお、Z r −2、5w t%N
b合金はBWRプラントの試験結果で剥離性の腐食発生
が知られている。このように高温高圧水浸漬試験結果は
実炉環境下での腐食に近いことが判定でき、実炉腐食を
模擬する試験法として好適と判断できる。
As a result, Zr-2, 5wt%Nb and Zr-
White corrosion was detected in all test materials for both 1 and 5 wt%Nb, and it was found that in the actual welded joint materials, it was significant in the weld heat affected zone. In addition, Z r −2, 5w t%N
B-alloy is known to cause exfoliative corrosion based on test results from BWR plants. In this way, it can be determined that the high-temperature, high-pressure water immersion test results are close to corrosion in an actual furnace environment, and can be judged to be suitable as a test method to simulate corrosion in an actual furnace.

またZ r −1、5W t%Nb  −1,0wt%
Sn−0、4w t%Mo 合金では溶接模擬材のみが
白色腐食が検出されている。このことは本発明の溶接熱
影響劣化を考慮した前処理条件が好適であることを示唆
するものである。いずれにしろこの合金の耐食性は高い
と判定される。
Also, Z r -1,5W t%Nb -1,0wt%
In the Sn-0, 4wt%Mo alloy, white corrosion was detected only in the welding simulant material. This suggests that the pretreatment conditions of the present invention that take into account deterioration due to welding heat are suitable. In any case, this alloy is judged to have high corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によればZ r −N b系合金の耐食性を適確
に評価できるので、高経済性燃料集合体の信頼性向上が
期待できる。
According to the present invention, it is possible to accurately evaluate the corrosion resistance of Zr-Nb alloys, so it is expected that the reliability of highly economical fuel assemblies will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入処理温度と腐食増量とNb含有量との関係
を示す線図である。
FIG. 1 is a diagram showing the relationship between quenching temperature, corrosion weight increase, and Nb content.

Claims (1)

【特許請求の範囲】 1、Zr基合金をα+βもしくはβ領域 の温度から10℃/sec以上の速度で冷却した溶接熱
影響模擬材を酸素富化した高温高圧水中に浸漬して、白
色腐食の有無を調らべることを特徴とするZr合金の耐
食性評価法。
[Claims] 1. A welding heat effect simulating material made of a Zr-based alloy cooled from a temperature in the α+β or β region at a rate of 10°C/sec or more was immersed in oxygen-enriched high-temperature, high-pressure water to prevent white corrosion. A method for evaluating corrosion resistance of Zr alloy, which is characterized by examining the presence or absence of corrosion.
JP12796286A 1986-06-04 1986-06-04 Method for evaluating corrosion resistance of zr alloy Pending JPS62287058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12796286A JPS62287058A (en) 1986-06-04 1986-06-04 Method for evaluating corrosion resistance of zr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12796286A JPS62287058A (en) 1986-06-04 1986-06-04 Method for evaluating corrosion resistance of zr alloy

Publications (1)

Publication Number Publication Date
JPS62287058A true JPS62287058A (en) 1987-12-12

Family

ID=14972974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12796286A Pending JPS62287058A (en) 1986-06-04 1986-06-04 Method for evaluating corrosion resistance of zr alloy

Country Status (1)

Country Link
JP (1) JPS62287058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950912A (en) * 2016-06-30 2016-09-21 西部超导材料科技股份有限公司 Preparation method for medical Zr-2.5 Nb alloy ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105950912A (en) * 2016-06-30 2016-09-21 西部超导材料科技股份有限公司 Preparation method for medical Zr-2.5 Nb alloy ingot

Similar Documents

Publication Publication Date Title
Blat et al. Detrimental role of hydrogen on the corrosion rate of zirconium alloys
Fang et al. Effects of the valence of sulfur on passivation of alloys 600, 690, and 800 at 25 C and 95 C
Hojná Irradiation-assisted stress corrosion cracking and impact on life extension
Natesan et al. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors
Jacobs et al. Low-temperature annealing: a process to mitigate irradiation-assisted stress corrosion cracking
JPS62287058A (en) Method for evaluating corrosion resistance of zr alloy
Hauser et al. Effects of ferrite content in austenitic stainless steel welds
Takemoto et al. External stress corrosion cracking (ESCC) of austenitic stainless steel
Bali et al. Effect of low-temperature sensitization on intergranular stress corrosion cracking behavior of austenitic stainless steels in simulated boiling water reactor environment
Kilian et al. Characterization of sensitization and stress corrosion cracking behavior of stabilized stainless steels under BWR conditions
Koike et al. Change of mechanical properties by irradiation and evaluation of the heat-treated Zr-2.5 Nb pressure tube
Corbett et al. Comparative corrosion resistance of some high-nickel, chromium-molybdenum alloys
Semeniuk et al. Properties of TZM and nuclear behavior of TZM brazements
US3427210A (en) Method of producing alloys of zirconium with iron,vanadium and chromium for use in nuclear reactors cooled with an organic coolant
JPH03505127A (en) A method for predicting relative hydrogenation in a group of zirconium alloys under nuclear radiation irradiation
Shoji et al. Deterministic prediction of stress corrosion crack growth rates in high temperature water by combination of interface oxidation kinetics and crack tip asymptotic field
Nanstad et al. Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials
Bruemmer et al. Evaluating the Intergranular SCC Resistance of Sensitized Type 304 Stainless Steel in Low-Temperature Water Environments
Magnani Stress corrosion cracking of uranium alloys
Brinkman Creep-fatigue effects in structural materials used in advanced nuclear power generating systems
Leeser Radiation Effects on Welds and Notches in Plain Carbon Steels, Stainless Steels, and Non-Ferrous Alloys
Jones et al. Thermal fatigue of stainless steel
Castano et al. Effect of yield strength on stress corrosion crack propagation under PWR and BWR environments of hardened stainless steels
Jenssen et al. Crack propagation in stainless steels and nickel base alloys in a commercial operating BWR
Saunders A simple technique for spot welding molybdenum