JPS62285352A - X-ray generation device - Google Patents

X-ray generation device

Info

Publication number
JPS62285352A
JPS62285352A JP12789986A JP12789986A JPS62285352A JP S62285352 A JPS62285352 A JP S62285352A JP 12789986 A JP12789986 A JP 12789986A JP 12789986 A JP12789986 A JP 12789986A JP S62285352 A JPS62285352 A JP S62285352A
Authority
JP
Japan
Prior art keywords
window
plate
pressure
light source
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12789986A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
渡辺 良男
Tadashi Narisei
成清 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12789986A priority Critical patent/JPS62285352A/en
Publication of JPS62285352A publication Critical patent/JPS62285352A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To increase the strength of a window plate and decrease the thickness of a window material in improving the efficiency of utilization of X-rays, by using a beryllium plate formed in a convex surface, and facing the convex surface towards the direction applied with intermittent pressure. CONSTITUTION:A spherical thin plate window 1 is provided as an X-ray takeout window. A vertical support and seal end 2 for fixing and supporting the window 1 is provided. The concave surface of the X-ray takeout window faces to a light source side to which high-pressure pulse load is applied. The convex surface of the window faces to emission side which is lower-pressure side. In an X-ray generation device employing heavy-current discharge, it is unavoidable that the pressure difference which acts to the window plate 1 serving as a partition wall fluctuates, regardless of the magnitude thereof. The window plate 1 receives a high pressure pulse load from the light source side during the discharge, and it receives a static reverse pressure during the stop period of discharge. In order to take the maximum transmissivity of the window plate under such circumstance, it is necessary that the thickness of the window plate 1 is minimized and the strength thereof is stabilized.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はX線発生装置に係り、特にX線取り出し部に使
用するベリリウム薄板の形状、支持法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an X-ray generator, and more particularly to the shape and support method of a thin beryllium plate used in an X-ray extraction section.

〔従来の技術〕[Conventional technology]

大電流放電を用いるX線発生装置は、特開昭59−35
345号に記載のように、低気圧空間中にある電極間に
パルス状の大電流を流し、その際生ずる高温高密度プラ
ズマにより軟X線を発生する6発生したX線を気圧の異
なる放電管外部に取りだすためにX線透過率の高いベリ
リウム薄板を窓材として使用する。4Å以上の長波長X
線はベリリウムを窓材に用いても窓材による吸収が無視
できない。このため強度が許す限り薄い板を用いること
が重要になる。また大電流放電を用いたXig発生装置
にあっては放電の瞬間高密度プラズマがジェット状に噴
出するため、xH取りだし窓の窓材は衝撃波圧力に対し
ても十分な強度を持つようlこ設計されていなければな
らない。
An X-ray generator using large current discharge was published in Japanese Patent Application Laid-Open No. 59-35.
As described in No. 345, a large pulsed current is passed between electrodes in a low-pressure space, and the resulting high-temperature, high-density plasma generates soft X-rays.6 The generated X-rays are transferred to discharge tubes with different atmospheric pressures. A beryllium thin plate with high X-ray transmittance is used as the window material to take it outside. Long wavelength X of 4 Å or more
Even if beryllium is used as the window material for wires, absorption by the window material cannot be ignored. For this reason, it is important to use a plate as thin as its strength allows. In addition, in Xig generators that use large current discharge, high-density plasma is ejected in the form of a jet at the moment of discharge, so the window material for the xH extraction window is designed to have sufficient strength against shock wave pressure. must have been done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は圧力差のある空間を隔てろための、とり
わけパルス状圧力がかかるベリワウ11窓板の薄膜化に
ついて配慮されていなかった。
The above-mentioned conventional technology does not take into account the thinning of the Beriwau 11 window plate, which is used to separate a space with a pressure difference, and which is particularly subjected to pulse-like pressure.

本発明の目的はX線取り出し窓の窓材の形状ならびに支
持補強方法を提供することで、圧力差(間欠的な圧力を
も含む)がある場合にも窓材を薄くすることを可能にし
、よって窓材によるX線の吸収を低下させることを目的
にしている。
The object of the present invention is to provide a shape of the window material of an X-ray extraction window and a method for supporting and reinforcing it, thereby making it possible to make the window material thinner even when there is a pressure difference (including intermittent pressure). Therefore, the purpose is to reduce the absorption of X-rays by the window material.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は凸面に成形したベリリウム板を用い、間欠的
な圧力の加わる方向に凸面をあわせることにより達成さ
れる。また間欠的圧力の加わる反対面に適当な断面形状
を持つ補強リムを接着させ、より強度を高めることもで
きる。
The above object is achieved by using a beryllium plate formed into a convex surface and aligning the convex surface with the direction in which intermittent pressure is applied. It is also possible to further increase the strength by bonding a reinforcing rim with an appropriate cross-sectional shape to the opposite side to which intermittent pressure is applied.

〔作用〕[Effect]

隔壁で圧力差のある空間を仕切る場合、平板より放物線
断面の円錐板の方がより薄い板厚ですむ。
When partitioning a space with a pressure difference using a bulkhead, a conical plate with a parabolic cross section requires a thinner plate than a flat plate.

板厚が厚い場合(圧縮力に対して強い場合)には凸面を
一般に高圧側に向け、薄い場合(引張り強度が強い場合
)には凸面を一般に低圧側に向ける。
When the plate is thick (strong against compressive force), the convex surface generally faces toward the high pressure side, and when the plate is thin (when the tensile strength is strong), the convex surface generally faces toward the low pressure side.

大電流放電を用いたX線発生装置では、放電していない
常時は放電管内は低気圧であるが、放電の瞬間にはパル
ス状高圧が放電管内に発生する。
In an X-ray generator using a large current discharge, the pressure inside the discharge tube is low when no discharge is occurring, but a pulse-like high pressure is generated within the discharge tube at the moment of discharge.

よって放電側と反対面に凸面を向けることで、最も強度
的に問題になるパルス状高圧印加に対して効果を有する
Therefore, by orienting the convex surface to the opposite side to the discharge side, it is effective against pulsed high voltage application, which is the most serious problem.

また薄板の強度補強として適当な補強リムを薄板に恋着
させる。補強りl〜を用いる場合の問題点はリムにより
X線が遮光されリムの影が投影されることである。この
方法もり11の形状により上記問題点を逃げることがで
きる、 〔実施例〕 本発明の一実施例を第1図に従来技術の一例を第2図に
示す。第1図は球面薄板1を窓板とした縦断面図である
。X線取り出し窓として球面薄板窓1を、又これを固定
支持するための垂直支持端兼シール端2を有し、高圧パ
ルス負荷のかかる光源側に凹面を又低圧側となる放出側
を凸面に配してX線取り出し窓を構成したものである。
In addition, a suitable reinforcing rim is attached to the thin plate to strengthen the thin plate. The problem when using reinforcement l~ is that the rim blocks X-rays and casts a shadow of the rim. [Embodiment] An embodiment of the present invention is shown in FIG. 1, and an example of the prior art is shown in FIG. 2. FIG. 1 is a longitudinal sectional view of the spherical thin plate 1 as a window plate. It has a spherical thin plate window 1 as an X-ray extraction window, and a vertical supporting end/sealing end 2 for fixedly supporting it, with a concave surface on the light source side where high voltage pulse load is applied, and a convex surface on the emission side, which is the low pressure side. The X-ray extraction window is constructed by placing the

又第2図は従来の円形平面薄板窓3の縦断面図である。FIG. 2 is a longitudinal sectional view of a conventional circular flat thin plate window 3. As shown in FIG.

本発明にかかわる大電流放電を用いたX線発生装置にお
いては隔壁となる窓仮にかかる圧力差は大小にかかわら
ず変動はさけがたい。即ち、放電中においては高圧パル
ス負荷を光源側より受け、放電停止状態ではスタティッ
クに逆圧を受けろことになる。この様な状況下で窓板と
して透過率を最大限に得る役割りをはたすためには、窓
板の厚さを最小限にとどめ、かつ強度的にも安定したも
のでなければならない。ちなみに第2図に示す従来の円
形平面薄板窓3と本発明による第1図の球面薄板窓1の
強度を単純計算で比較すると下記の様になる。σpは窓
板にかかる最大応力である。
In the X-ray generator using large current discharge according to the present invention, the pressure difference applied to the window serving as the partition wall is unavoidable to fluctuate regardless of its size. That is, during discharge, a high voltage pulse load is applied from the light source side, and when discharge is stopped, a static reverse pressure is applied. In order to maximize the transmittance as a window plate under such circumstances, the window plate must have a minimum thickness and be stable in terms of strength. Incidentally, a simple calculation of the strength of the conventional circular plane thin plate window 3 shown in FIG. 2 and the spherical thin plate window 1 according to the present invention shown in FIG. 1 is compared as follows. σp is the maximum stress applied to the window plate.

30 mm 、圧力=P一定、定厚板厚一定とする)・
・・(1)となる。
30 mm, pressure = constant P, constant plate thickness)・
...(1).

又、球面に外圧がかかった座屈強度からも両者を比較す
ると次式座屈限界応力 g=を一定)              ・・・・(
2)となる。即ち(2)式によれば円形平面薄板窓3の
場合は球半径Rが無限大となり、わずかな圧力差によっ
て逆圧を受けた場合でも座屈を起すことになる。以上の
点からも本発明の高圧パルス負荷のかかる光源側に(1
)式であきらかなように凹面を配し1強度的に優位にし
、放電停止状態における。スタティックな逆圧(大気圧
又は)IeGas圧)に対する座屈現象には(2)式よ
り、可能な限りRを小さく  (R>a)することによ
り、J3!、屈限界応力σcr&!−高めることによっ
て対処するものである。又光源側に凹面を配することに
付随して第9図a)、b)で明らかな様に直経1mm@
後の光源11から放射したX線を光源11より窓板1ま
での距離L2に球面薄板窓1の曲率半径Rを等しくして
おくことによりX線透過は全て垂直入射することになり
、窓板で吸収されるロスは均一に板厚tのみできまる6
円形率面薄板窓3では中心軸より遠ざかるほどl / 
t cos θで0の関数として板厚が増加することに
なり透過X線照度が周辺部はど低下する。従って、本実
施例構造により、窓板の強度増化と共に透過X線照度の
均一化がはかれる。
Also, when comparing the two from the buckling strength when external pressure is applied to the spherical surface, the following formula buckling limit stress g= is constant)...
2). That is, according to equation (2), in the case of the circular plane thin plate window 3, the spherical radius R is infinite, and buckling will occur even if it is subjected to reverse pressure due to a slight pressure difference. From the above points, the light source side (1
) As is clear from the formula, the concave surface is arranged to give it an advantage in terms of strength, and when the discharge is stopped. According to equation (2), by making R as small as possible (R>a), J3! , bending limit stress σcr&! -It is dealt with by increasing Additionally, along with the concave surface on the light source side, the direct diameter is 1 mm @ as is clear from Figure 9 a) and b).
By making the radius of curvature R of the spherical thin plate window 1 equal to the distance L2 from the light source 11 to the window plate 1, all X-rays transmitted from the rear light source 11 will be incident vertically, and the The loss absorbed by is uniformly determined only by the plate thickness t6
In the circular ratio thin plate window 3, the further away from the central axis the l/
As the plate thickness increases as a function of 0 at t cos θ, the transmitted X-ray illuminance decreases at the periphery. Therefore, with the structure of this embodiment, it is possible to increase the strength of the window plate and to make the transmitted X-ray illuminance uniform.

第3図、第4図は本発明の球面薄板窓1を傾斜支持した
実施例の縦断面図、第5図は従来の円形平面薄板窓3に
負荷圧力がかかった時点での傾斜角にみあった傾斜角支
持をした場合の縦断面図である。本実施例は第3図、第
4図に示すごとく球面薄板窓1の支持に対して、支持端
部を球面曲率にみあった(接線方向)傾斜角で傾斜固定
支持とする。これにより光源側の高圧パルス負荷に対し
て、第1図、第2図の様にせん新路力成分のかかる垂直
支持端2にせず、引張応力成分のかかる様な傾斜固定支
持リング5をもって傾斜支持端とするものである。許容
応力に関係する縦弾性係数Eと横弾性係数Gの関係が2
G  Eより、又これに付随して、光源側の放電停止状
態におけるスタティックな逆圧に対しても、圧縮成分の
かかる支持となり強度的に優位となる。第4図は支持方
法は上記第3図と同様な目的とし、同図(b)の如く、
シール部を溶接シール4として分離させたものである。
3 and 4 are longitudinal cross-sectional views of an embodiment in which the spherical thin plate window 1 of the present invention is supported at an angle, and FIG. 5 shows the inclination angle at the time when load pressure is applied to the conventional circular plane thin plate window 3. FIG. 6 is a vertical cross-sectional view when supporting at a certain inclination angle. In this embodiment, as shown in FIGS. 3 and 4, with respect to the support of the spherical thin plate window 1, the supporting end portion is fixedly supported at an angle of inclination (in the tangential direction) corresponding to the spherical curvature. As a result, in response to the high-voltage pulse load on the light source side, instead of using the vertical support end 2 to which the new road force component is applied as shown in Figures 1 and 2, the tilted fixed support ring 5 is tilted so that the tensile stress component is applied. This is the supporting end. The relationship between the longitudinal elastic modulus E and the transverse elastic modulus G, which is related to the allowable stress, is 2.
Because of G E, and in association with this, the support is supported by a compressive component and is advantageous in terms of strength even against the static counter pressure in the state where the discharge is stopped on the light source side. In Fig. 4, the supporting method has the same purpose as in Fig. 3 above, as shown in Fig. 4 (b).
The seal portion is separated into a welded seal 4.

第5図は円形平面薄板窓3をあらかじめ負荷圧力がかか
った場合の傾斜角θになる様に傾斜固定支持リング5を
もって傾斜角支持固定しておくことにより高圧パルス負
荷に対して支持端に加わるせん断路力成分を減少させ、
引張応力成分のみにするものである。
FIG. 5 shows a circular plane thin plate window 3 that is supported and fixed at an inclination angle by a support ring 5 so that the inclination angle is θ when a load pressure is applied in advance, so that high pressure pulse loads are applied to the support end. Reduces shear road force components,
Only the tensile stress component is included.

以下能の実施例を第6図、第7図、第8図、第9図によ
って説明する。第6図は円形平面薄板窓3にリムを十字
に導入して補強した窓板の縦断面図、及び平面図、第7
図は球面薄板窓1にリムを十字に導入して補強した窓板
の縦断面歯、第8図a)〜f)は各種リム導入パターン
図である。
The following embodiments will be described with reference to FIGS. 6, 7, 8, and 9. Fig. 6 is a longitudinal sectional view and a plan view of a window plate reinforced by introducing rims in a cross shape into a circular planar thin plate window 3;
The figure shows the teeth in the longitudinal section of a window plate reinforced by introducing rims in a cross pattern into a spherical thin plate window 1, and Figures 8a) to 8f) show various rim introduction patterns.

第9図a)はX線光源ポイント11と取り出し窓板とX
線を使用する露光面12との位置関係図。
Figure 9a) shows the X-ray source point 11, the extraction window plate, and the
FIG. 3 is a positional relationship diagram with an exposure surface 12 using lines.

b)は円形平面薄板窓3に補強用りts 6を設けた場
合のリムの寸法と光源の傾斜角θとの関係図、C)は球
面薄板glに補強用りis 6を設けた場合のリムの寸
法と光源の傾斜角θとの関係図である。
b) is a diagram of the relationship between the rim dimensions and the inclination angle θ of the light source when the reinforcing ts 6 is provided on the circular plane thin plate window 3, and C) is the relationship diagram when the reinforcing is 6 is provided on the spherical thin plate GL. FIG. 4 is a diagram showing the relationship between the dimensions of the rim and the inclination angle θ of the light source.

一般に強度な板厚tの二乗で増加する。よって厚さhの
リムで補強することにより該部分は(h+t ) 1 
/ t Zだけ強化される。リムの幅Δbとり11の間
隔の比が小さくなると全体の強度比は減少し1に近ずく
が、す11の材質をベリリウ11より引張りに対して強
い材質(例えばニッケル)とすれば。
In general, the strength increases as the square of the plate thickness t. Therefore, by reinforcing the rim with thickness h, the area becomes (h+t) 1
/ t Only Z is strengthened. As the ratio of the width Δb of the rim to the spacing between the rims 11 becomes smaller, the overall strength ratio decreases and approaches 1, but if the material of the rims 11 is made of a material (for example, nickel) that is stronger against tension than the beryllium 11.

リム間隔がΔbに比べ大であっても補強の効果は十分に
得られる。この場合リムはベリリウム板の衝撃圧がかか
る反対側に接着させることが好適である。
Even if the rim spacing is larger than Δb, a sufficient reinforcing effect can be obtained. In this case, the rim is preferably bonded to the opposite side of the beryllium plate to which the impact pressure is applied.

光源寸法が点に近い場合、ベリリウム板をリムで補強す
るとリムにより遮光され影が生じ、透過光に11うが生
ずる。X線露光では露光面上でパターンを転写する際の
半影ボケを十分小さくするために露光面上で光源を見込
む立体角を小さくとるのが通常である6実際間屈として
光源の大きさは有限であるから光源と露光面の間隔を十
分大にとる。このような構成ではベリリウム板の設置位
置と補強リムの寸法を適当に選べば、リムによる露光面
上の照度ムラは実用上差しつかえない程度とすることが
できる。
When the size of the light source is close to a point, if the beryllium plate is reinforced with a rim, the rim blocks light and creates a shadow, causing a 11-shape in the transmitted light. In X-ray exposure, the solid angle at which the light source is viewed on the exposure surface is usually made small in order to sufficiently reduce the penumbra blur when transferring the pattern on the exposure surface.6 The size of the light source is Since the distance between the light source and the exposure surface is finite, the distance between the light source and the exposure surface must be sufficiently large. In such a configuration, if the installation position of the beryllium plate and the dimensions of the reinforcing rim are appropriately selected, the unevenness of illuminance on the exposed surface due to the rim can be made to a level that is practically acceptable.

この関係を第9図を用いて説明する。リムがない場合の
露光面上の照度に対し、実効的な遮光幅ΔSを持つリム
により露光面上で最も照度が低下する位置での照度比は
次式で与えられる。
This relationship will be explained using FIG. 9. The illuminance ratio at the position on the exposure surface where the illuminance is lowest due to the rim having the effective shielding width ΔS with respect to the illuminance on the exposure surface when there is no rim is given by the following equation.

照度比= (π−(π−20t+5in2θt))/π
ここでcos01=L−ΔS/(2・r−Ll)、r:
光源の直径。
Illuminance ratio = (π-(π-20t+5in2θt))/π
Here, cos01=L-ΔS/(2・r-Ll), r:
Diameter of the light source.

例えばリムの影による照度低下を5%以内とするにはθ
x <1.5315(rad)であればよく、光源と露
光面との間隔りを300m+、ベリリウム板と露光面の
間隔Llを200nvn、光源直径を1mmとするとき
、ΔSく52μmであればよい。またΔSとリムの高さ
hと幅Δbの間には(b)図よりΔS=Δb+htan
θの関係がある。tan Oは通常tanO<20/3
00Fa度に選ばれる。tan O=20/300とし
Δb=20μmとすれば前述の例ではh=480μmと
なる。ベリリウム板厚を25μmとすれば強度はりり部
分で(480+25)”/ (25)!=408倍とな
る。リムの間隔を10mmとした場合、リムを接着する
ことによりリム材質が同一の場合で、す11の長手方向
にはリム無しに比べ93倍、直角方向には約4倍の強度
向上が得られる。
For example, to keep the illuminance reduction due to the shadow of the rim within 5%, θ
It is sufficient if x < 1.5315 (rad), and when the distance between the light source and the exposed surface is 300 m+, the distance Ll between the beryllium plate and the exposed surface is 200 nvn, and the light source diameter is 1 mm, it is sufficient that ΔS is 52 μm. . Also, between ΔS and the height h and width Δb of the rim, ΔS = Δb + htan from figure (b).
There is a relationship of θ. tanO is usually tanO<20/3
Selected as 00Fa degree. If tan O=20/300 and Δb=20 μm, h=480 μm in the above example. If the thickness of the beryllium plate is 25 μm, the strength will be increased by (480 + 25)” / (25)! = 408 times. If the rim spacing is 10 mm, by gluing the rims together, the strength will be increased even if the rim material is the same. , 11 can be improved in strength by 93 times compared to the case without a rim in the longitudinal direction, and by about 4 times in the perpendicular direction.

このように細いリムを接着させることにより露光面上の
照度ムラを5%以内に保ったまま強度を約1桁向上する
ことが可能になる。
By adhering such a thin rim, it is possible to improve the strength by about one order of magnitude while keeping the illuminance unevenness on the exposed surface within 5%.

〔発明の効果〕〔Effect of the invention〕

上述した如く、本発明によれば、窓板強度を従来に比し
て飛躍的に高めることができ、窓材の厚さを薄くしてX
線の利用効率を高めることができ、また、適宜のリムを
設けることにより、上記強度を一層高めることができる
As described above, according to the present invention, the strength of the window panel can be dramatically increased compared to the conventional one, and the thickness of the window material can be reduced to
The wire utilization efficiency can be increased, and by providing an appropriate rim, the above-mentioned strength can be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の球面薄板を窓板としたX線
発生装置の窓部縦断面図、第2図は従来の円形平面薄板
を窓板とした窓部縦断面図、第3図は球面薄板窓板を傾
斜支持した例を示す縦断面図、第4図は第3図の支持及
びシールを個別に構成した例を示す縦断面図、第5図は
円形平面薄板窓を傾斜角支持した例を示す縦断面図、第
6図は円形平面薄板窓にリムを十字に導入して補強した
窓板の縦断面図及び平面図、f57図は球面薄板窓にリ
ムを十字に導入した窓板の縦断面図、第8図は各種リム
のパターン図、第9図(a)はX線光源と取り出し窓板
と露光面との位置関係図(b)(c)はリムの寸法と光
源の傾斜角0との関係図である。 1・・・球面薄板窓、2・・・垂直支持端兼シール端、
3・・・円形平面薄板窓、4・・・溶接シール、5・・
・傾斜固定支持リング、6・・・各種リム、7・・・表
面保薄膜、10・・・ガス導入、排気口、11・・・光
源ポイント、12・・・露光面、13・・・ベース。 第1図         第21 第30       案43 1妹面拳仮S 2皇itえ竹編 劣5図 ¥Δl       第、3 (−一)            (−6−)(リ  
       (d″) 案 q口
FIG. 1 is a longitudinal sectional view of the window of an X-ray generator using a spherical thin plate as a window plate according to an embodiment of the present invention, and FIG. Fig. 3 is a longitudinal cross-sectional view showing an example in which a spherical thin plate window plate is supported at an angle, Fig. 4 is a longitudinal cross-sectional view showing an example in which the support and seal of Fig. 3 are configured separately, and Fig. 5 is a longitudinal cross-sectional view showing an example in which the support and seal of Fig. 3 are individually configured. A vertical cross-sectional view showing an example of support at an inclined angle. Figure 6 is a vertical cross-sectional view and a plan view of a window plate reinforced by introducing a rim in a cross shape into a circular flat thin plate window. Figure f57 is a cross-sectional view showing a spherical thin plate window with a rim in a cross shape. A vertical cross-sectional view of the introduced window plate, Fig. 8 is a pattern diagram of various rims, and Fig. 9 (a) is a diagram of the positional relationship between the X-ray light source, the extraction window plate, and the exposure surface (b) and (c) are diagrams of the rim. FIG. 3 is a diagram showing the relationship between dimensions and an inclination angle of 0 of the light source. 1... Spherical thin plate window, 2... Vertical support end and seal end,
3... Circular plane thin plate window, 4... Welding seal, 5...
・Slanted fixed support ring, 6...Various rims, 7...Surface thin film, 10...Gas introduction, exhaust port, 11...Light source point, 12...Exposure surface, 13...Base . Figure 1 Figure 21 30th Plan 43 1 Imouten Kenkari S 2 Koite Bamboo Edition 5 figure ¥Δl No. 3 (-1) (-6-) (Li
(d″) Plan q mouth

Claims (1)

【特許請求の範囲】 1、X線を発生する光源と、X線を取り出す窓板を有し
、窓板を境に光源側と放出側に圧力差の有るX線発生装
置において、均一な厚みの取り出し窓板を、あらかじめ
主たる高圧側(光源側)に凹面、低圧側(放出側)に凸
面をむけて取付けてなるX線発生装置。 2、X線取り出し窓板面に補強用リムを設けた第1項記
載のX線発生装置。
[Scope of Claims] 1. In an X-ray generator that has a light source that generates X-rays and a window plate that extracts the X-rays, and that has a pressure difference between the light source side and the emission side with the window plate as a border, the X-ray generator has a uniform thickness. An X-ray generator in which an extraction window plate is installed in advance with the main high-pressure side (light source side) concave and the low-pressure side (emission side) convex. 2. The X-ray generator according to item 1, wherein a reinforcing rim is provided on the X-ray extraction window plate surface.
JP12789986A 1986-06-04 1986-06-04 X-ray generation device Pending JPS62285352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12789986A JPS62285352A (en) 1986-06-04 1986-06-04 X-ray generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12789986A JPS62285352A (en) 1986-06-04 1986-06-04 X-ray generation device

Publications (1)

Publication Number Publication Date
JPS62285352A true JPS62285352A (en) 1987-12-11

Family

ID=14971414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12789986A Pending JPS62285352A (en) 1986-06-04 1986-06-04 X-ray generation device

Country Status (1)

Country Link
JP (1) JPS62285352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797830A1 (en) * 1994-12-15 1997-10-01 Grumman Aerospace Corporation Exit window for x-ray lithography beamline
JP2011238549A (en) * 2010-05-13 2011-11-24 Hitachi Medical Corp Rotary anode x-ray tube and x-ray tube device equipped with it
JP2013182869A (en) * 2012-03-05 2013-09-12 Futaba Corp X-ray tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797830A1 (en) * 1994-12-15 1997-10-01 Grumman Aerospace Corporation Exit window for x-ray lithography beamline
EP0797830A4 (en) * 1994-12-15 1997-11-19 Grumman Aerospace Corp Exit window for x-ray lithography beamline
JP2011238549A (en) * 2010-05-13 2011-11-24 Hitachi Medical Corp Rotary anode x-ray tube and x-ray tube device equipped with it
JP2013182869A (en) * 2012-03-05 2013-09-12 Futaba Corp X-ray tube

Similar Documents

Publication Publication Date Title
US20240053603A1 (en) Mirror unit
JPS62285352A (en) X-ray generation device
JPH01243361A (en) Plane-shaped fluorescent lamp
US6459194B1 (en) Cathode ray tube
KR940002605B1 (en) Flat crt
JPH1010325A (en) Back light device
RU2099754C1 (en) Deformable mirror based on multilayer active bimorphous structure
JP2003100235A (en) Cathode-ray tube and glass bulb therefor
EP0471206B1 (en) X-ray image intensifier and method of manufacturing the same
KR20030072934A (en) A Funnel Structure of The Cathode-Ray-Tube
KR20040054701A (en) Glass funnel for cathode ray tube and cathode ray tube
JPH04190545A (en) Thin display tube
JP2000156180A (en) Cathode-ray tube
JPH0745215A (en) Cathode-ray tube
EP1294010A2 (en) Funnel structure of cathode-ray tube
US6371627B1 (en) Cold cathode tube having visible light reflecting layer and a light emission portion
EP0484185A1 (en) Flat display vacuum tube
KR101028084B1 (en) Cathode Ray Tube
KR100413498B1 (en) Funnel for Cathode Ray Tube
KR100705817B1 (en) Howling Reductive Apparatus in Plane Cathod Ray Tube
JPH06196114A (en) Vacuum vessel using beryllium foil
KR100470339B1 (en) Color cathode ray tube
JPH04212237A (en) Vacuum container for flat display
JPH0765754A (en) Flat display
KR100722267B1 (en) Panel for slim type cathode ray tube