JPS6228524A - Cam damper - Google Patents

Cam damper

Info

Publication number
JPS6228524A
JPS6228524A JP16739585A JP16739585A JPS6228524A JP S6228524 A JPS6228524 A JP S6228524A JP 16739585 A JP16739585 A JP 16739585A JP 16739585 A JP16739585 A JP 16739585A JP S6228524 A JPS6228524 A JP S6228524A
Authority
JP
Japan
Prior art keywords
cam
fixed
spring
disc spring
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16739585A
Other languages
Japanese (ja)
Inventor
Makoto Kamiya
神谷 良
Tadashi Iiyama
忠司 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP16739585A priority Critical patent/JPS6228524A/en
Publication of JPS6228524A publication Critical patent/JPS6228524A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/04Rotary-to-translation conversion

Landscapes

  • Gears, Cams (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

PURPOSE:To enable an effective damper effect to be obtained irrespective of the magnitude of torque, by a method wherein, in a cam damper, using a coned disc spring absorbing a fluctuation in torque of an engine, the coned disc spring is so formed as to provide non-linear spring characteristics. CONSTITUTION:A fixed cam projected in the axial direction is formed on the surface of a boss 23 of a gear 21. Meanwhile, a slide cam 25, integrally rotatable and slidable in the axial direction is pivotally supported on a shaft 22, and a fixed cam 24 is positioned facing on the interior of an U-shaped cam surface 26 formed in the end surface of the slide cam. A spring assembly 27 resiliently mounted to the back of the slide cam 25 is formed through series combination of a first coned disc spring train 28 on the free end side, having different spring constant, with a second coned disc spring train 29 on the fixed end side. A stopper member 32, positioned facing the base end on the fixed side of the first coned disc spring train 28 with a slight gap therebetween, and controlling movement to the fixed side of the base end only by a distance of the gap, is provide.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、回転変動をスラスト方向に変換してダンパ
効果を得るようにしたカムダンパに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cam damper that converts rotational fluctuations into a thrust direction to obtain a damper effect.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

自@2輪車などのエンジン駆動系には、系内に組込まれ
たギアの噛合い騒音や、シャフトのねじり共振を防ぐた
め、エンジンのトルク変動を吸収するダンパ機構を備え
ることが多い。この場合、皿ばねを弾装したカムダンパ
を使用すると、コンパクトで人容吊のダンパ性能が得ら
れる。その−例を第4図に示す。クランク軸1とカウン
タ軸3との間に中間軸2を並設し、中間軸2に回転自在
に軸支したドリブンギア5とクランク1袖1に固定した
ドライブギア4とを噛合わせる。このドリブンギア5の
ボス5aに、第5図に示すように、軸方向へ突出する突
起6を形成する。一方ドリブンギア5に隣接して回転一
体で軸方向摺動自在なスライドカム7が中間軸2に軸支
される。スライドカム7のドリブンギア5に対向する端
面には、軸方向にU字状に凹んだカム面8が形成され、
上記突起6の先端が接する。スライドカム7の背面には
、皿ばね列9が弾装され、カム面8と突起6を圧接する
。中間@2端にはプライマリドライブギア10が固定さ
れ、カウンタ軸3に遊支したプライマリドリブンギア1
1と噛合う。このプライマリドリブン−1!ア11とカ
ウンタ軸3とは摩凛クラッチ12を介して結合し、カウ
ンタ軸3と出ツノ軸13との間は一部省略して示したミ
ッションギア列1115が噛合わされ、減速比を選択さ
れて回転を与える。
Engine drive systems such as motorcycles are often equipped with a damper mechanism that absorbs engine torque fluctuations in order to prevent meshing noise of the gears built into the system and torsional resonance of the shaft. In this case, if a cam damper loaded with a disc spring is used, a compact damper performance capable of lifting a person can be obtained. An example of this is shown in FIG. An intermediate shaft 2 is arranged in parallel between a crankshaft 1 and a countershaft 3, and a driven gear 5 rotatably supported by the intermediate shaft 2 and a drive gear 4 fixed to a sleeve 1 of the crank 1 are meshed with each other. As shown in FIG. 5, a projection 6 is formed on the boss 5a of the driven gear 5 so as to project in the axial direction. On the other hand, adjacent to the driven gear 5, a slide cam 7 that rotates integrally with the slide cam 7 and is slidable in the axial direction is pivotally supported by the intermediate shaft 2. A cam surface 8 recessed in a U-shape in the axial direction is formed on the end surface of the slide cam 7 facing the driven gear 5.
The tips of the projections 6 are in contact with each other. A disc spring array 9 is elastically loaded on the back surface of the slide cam 7 and presses the cam surface 8 and the projection 6. A primary drive gear 10 is fixed to the intermediate @2 end, and a primary driven gear 1 is freely supported on the counter shaft 3.
It meshes with 1. This primary driven-1! A 11 and the counter shaft 3 are connected via a Marin clutch 12, and a mission gear train 1115 (partially omitted) is engaged between the counter shaft 3 and the output horn shaft 13, and a reduction ratio is selected. to give rotation.

以、Lの構成により、クランク@1に発生したトルクは
、中間軸2上のカムダンパを介してプライ7リドライブ
ギア10以下の伝導系に伝えられる。
Hereinafter, due to the configuration of L, the torque generated in the crank @1 is transmitted to the transmission system below the ply 7 redrive gear 10 via the cam damper on the intermediate shaft 2.

カムダンパでの伝達トルクは、カム面8によって軸方向
分力を生み、皿ばね列9と釣合う。クランク軸1にトル
ク変動が住しると、突起6とカム面8との間に回転変動
を生じながらスライドカム7が軸方向に変動することに
よって大きなダンパ効果を得る。
The torque transmitted by the cam damper produces an axial component force by the cam surface 8, which is balanced by the disc spring array 9. When torque fluctuations occur on the crankshaft 1, the slide cam 7 moves in the axial direction while causing rotational fluctuations between the protrusion 6 and the cam surface 8, thereby obtaining a large damper effect.

しかし、このカムダンパはコンパクトであることが特徴
で、高速回転時の高トルクに対応するため皿ばね列9の
ばね常数が大きく設定される。このためアイドリング運
転のような低負荷、低トルク時には、摩擦力などに吸収
されて回転変動が起りにくく、ダンパ効果が小さい。従
ってアイドリング時のギア騒音が大きいという欠点があ
る。同時に単一の皿ばね列には特定の共振点があり、エ
ンジンの特定回転数において共振し、異音の発生という
問題があった。
However, this cam damper is characterized by its compact size, and the spring constant of the disc spring array 9 is set to be large in order to cope with high torque during high-speed rotation. Therefore, during low load and low torque such as idling, rotational fluctuations are less likely to occur due to absorption by frictional force, and the damper effect is small. Therefore, there is a drawback that the gear noise during idling is large. At the same time, a single disc spring array has a specific resonance point and resonates at a specific rotation speed of the engine, causing the problem of generating abnormal noise.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の問題点に鑑み、アイドリンク時など
の低1−ルクに対してもダンパ効果がある非線形のばね
特性を持ち、かつ共振を防ぐようにしたカムダンパを1
稈ることを目的とする。
In view of the above-mentioned problems, the present invention has developed a cam damper that has a non-linear spring characteristic that has a damping effect even at low 1-lux such as during idling, and is designed to prevent resonance.
The purpose is to produce culms.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、この発明のカムダンパは、
伝導系の途中を相対的に回転可能な同一軸心上の2つの
回転部Hに切離して備え、その一方の回転部材に固定し
た軸方向不動の固定カムと、他方の回転部材に軸支した
回転一体で軸方向摺動自在なスライドカムとを、周方向
に向って軸方向に傾斜するカム面によってスライド可能
に接触するようにし、スライドカム背面に弾装したスプ
リングによってスライドカムを固定カムに押圧するよう
にしたカムダンパにおいて、上記スライドカムに、ばね
常数の異る自由端測用111rlばね列と固定端測用2
mばね列とを直列に組合わけたスプリング組立体を弾装
して固定カムに押圧Jると共に、第1冊ばね列の固定側
基端に、少しの隙間をあけて対向し、その基端の固定側
への移動を隙間分だけに規制づるス1〜ツバ部材を設置
して構成したことを特徴とするものである。
In order to achieve the above object, the cam damper of this invention has the following features:
The transmission system is separated into two rotating parts H on the same axis that are relatively rotatable in the middle, and a fixed cam that is fixed in the axial direction is fixed to one rotating member, and a fixed cam that is pivotally supported to the other rotating member. The slide cam, which rotates integrally and is freely slidable in the axial direction, is brought into sliding contact with the cam surface that slopes in the axial direction in the circumferential direction, and the slide cam is made into a fixed cam by a spring loaded on the back of the slide cam. In the cam damper configured to press, the slide cam is provided with a free end spring array 111rl and a fixed end spring array 2 with different spring constants.
A spring assembly consisting of the m spring rows combined in series is elastically loaded and pressed against the fixed cam, and the spring assembly is opposed to the fixed side base end of the first spring row with a slight gap, and its base end is pressed against the fixed cam. The device is characterized in that a lever member 1 to a collar member are installed to restrict the movement of the device toward the fixed side only by the gap.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例を示す図に就いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings showing embodiments of the present invention will be explained below.

第1図は、ギア21を軸22上に回転自在に軸支し、ギ
ア21をドライブ側、軸22をドリブン側として、両者
間にカムダンパを介装したものである。すなわちギア2
1のボス23表面に軸方向へ突出する固定カム24が形
成され、一方、1伯22には回転一体で軸方向摺動自在
なスライドカム25が軸支され、その端面に設けたU字
状のカム面26内に上記固定カム24が臨む。スライド
カム25の背面にはスプリング組立体27が弾装され、
固定カム24とカム面26を圧接する。ギア21に急激
なトルク変動が生じると、その力をカム面26の傾斜に
よって軸方向に変換し、スプリング組立体27が作用し
て緩衝する。
In FIG. 1, a gear 21 is rotatably supported on a shaft 22, with the gear 21 on the drive side and the shaft 22 on the driven side, with a cam damper interposed between the two. i.e. gear 2
A fixed cam 24 that protrudes in the axial direction is formed on the surface of the boss 23 of No. 1, while a slide cam 25 that rotates integrally and is slidable in the axial direction is pivotally supported on the boss 22 of No. 1. The fixed cam 24 faces inside the cam surface 26 of. A spring assembly 27 is loaded on the back side of the slide cam 25.
The fixed cam 24 and the cam surface 26 are brought into pressure contact. When a sudden torque fluctuation occurs in the gear 21, the force is converted in the axial direction by the inclination of the cam surface 26, and the spring assembly 27 acts to buffer it.

上記スプリング組立体27は、自由端側に第1皿ばね列
28、固定端側に第2皿ばね列29を直列に配したもの
で、両皿ばね列28.29のばね常数は互いに異なるよ
う設定されている。30は両皿ばね列28.29間に介
在させたワッシャである。このワッシ1730の背後に
は、第2皿ばね列29の固定側を受ける受は座31から
延設されたストッパリング32の先端が少しの1!3i
間δを設けて対向する。
The spring assembly 27 has a first disc spring row 28 on the free end side and a second disc spring row 29 on the fixed end side arranged in series, and the spring constants of both disc spring rows 28 and 29 are different from each other. It is set. 30 is a washer interposed between both disc spring rows 28 and 29. Behind this washer 1730, a stopper ring 32 extending from the seat 31 has a support that receives the fixed side of the second disc spring row 29.
They face each other with a gap δ between them.

ギア21のトルクが作用J゛ると、スライドカム25は
スプリング組立体27の圧縮応力と均衡するまで後退し
てl5J22にトルクを伝える。このときギア21と2
2との間には比較的大きな回転方向の変位が生じる。ス
プリング組立体27が縮むと、ワッシャ30も少し後退
する。そしてギア21のトルクが増大するとワッシャ3
0は隙間δ分を後退してストッパリング32に接し、そ
れ以上の伝達トルクが増大するとぎは、スライドカム2
5の後退に対して、第1皿ばね列28のみの圧縮応力が
均衡を受は持つ。
When the torque of gear 21 is applied, slide cam 25 moves back until it balances the compressive stress of spring assembly 27, transmitting the torque to l5J22. At this time gears 21 and 2
2, a relatively large displacement in the rotational direction occurs. When the spring assembly 27 contracts, the washer 30 also moves back a little. When the torque of gear 21 increases, washer 3
0 moves back through the gap δ and comes into contact with the stopper ring 32, and when the transmission torque increases further, the slide cam 2
5, the compressive stress of only the first disk spring row 28 is balanced.

第1皿ばね列28のばね常数をKa1第2皿ばね列29
のばね常数をKbとすると、スプリングられ、K<Ka
、Kbとなる。従って当初、スプリング組立体27が全
体で作用するトルクの小さいとぎは、小さなばね常数K
によってそれなりのダンパ効果を発揮し、例えばエンジ
ン伝導系においては、アイドリング運転時などのトルク
変動を干渉し、ギア騒音などを有効°に防ぐ。高速回転
になってトルクが増大すれば、単一の第1皿ばね列28
の大きなばね常数1(aがダンパ効果を上げる。。
The spring constant of the first disc spring row 28 is Ka1.
Let Kb be the spring constant of the spring, K<Ka
, Kb. Therefore, initially, a small torque acting on the spring assembly 27 as a whole means a small spring constant K.
It exerts a certain damping effect, and in the engine transmission system, for example, it interferes with torque fluctuations during idling, effectively preventing gear noise. When the rotation becomes high speed and the torque increases, the single first disk spring row 28
A large spring constant of 1 (a increases the damper effect.

寸なわら、エンジンの全回転域に追随してダンパ性能を
高めることができる。
However, it is possible to improve damper performance by following the entire engine rotation range.

上記作用を、第2図の図表に示す。線Aはこの発明にな
るスプリング組立体27の応力特性を示し、IBは第1
皿ばね列28単独の応力特性である。また点Cはワッシ
ty 30が隙間δを越えてストッパリング32に接し
たときを表わず。
The above action is shown in the diagram of FIG. Line A shows the stress characteristics of the spring assembly 27 according to the invention, and IB shows the stress characteristics of the spring assembly 27 according to the invention.
This is the stress characteristic of the disk spring row 28 alone. Further, point C does not represent the time when the washer ty 30 crosses the gap δ and contacts the stopper ring 32.

またワッシャ30がストッパリング32に接して第1皿
ばね列28単独で作用している場合には、この固有振動
数とi〜シルク動の周波数が共振するようなことがある
と、現象としては、第1皿ばね列28がおどり、荷重が
なくなったときと同じ状態になるので、直ちに第2皿ば
ね列29の蓄力が作用して共振を減衰させる。すなわち
このスプリング組立体27には共振防止機能が具備され
ているものである。
In addition, when the washer 30 is in contact with the stopper ring 32 and the first plate spring row 28 is acting alone, if this natural frequency and the frequency of the i~silk motion resonate, this phenomenon will occur. , the first disc spring array 28 swings and becomes the same state as when the load is removed, so the stored force of the second disc spring array 29 acts immediately to damp the resonance. That is, this spring assembly 27 is equipped with a resonance prevention function.

第1図は他の実施例を示し、スプリング組立体27aと
して面ばね列28aとゴムダンパ33を直列に組合わせ
る。ストッパリング32、H1mδaの設置、設定など
は同様で、作用も同様である。
FIG. 1 shows another embodiment, in which a spring assembly 27a is formed by combining a plane spring row 28a and a rubber damper 33 in series. The installation, setting, etc. of the stopper ring 32 and H1mδa are the same, and their functions are also the same.

ゴムダンパ33は強い荷重が加わるとリジット化し、破
損のおそれがあるが、ストッパの設置により、必要以上
に高い荷重はカットされる。
When a strong load is applied to the rubber damper 33, it becomes rigid and there is a risk of damage, but by installing a stopper, an unnecessarily high load can be cut off.

C発明の効果〕 以上の通りこの発明に係るカムダンパは、傾斜面によっ
てトルクを軸方向の荷重に変換してスプリングで受ける
ようにしたカムダンパにおいて、ばね常数の異なる2つ
の冊ばねを直列に組合ね才だスプリング組立体を用い、
初期荷重に対しては総合的な小さなばね常数を作用させ
、荷重が増大したときは一方の皿ばねの動ぎをストッパ
で規制することによって単独の皿ばねの大きなばね常数
が作用するようにしたもので、応力特性が非線形になり
、トルクの大小に拘らず有効なダンパ効果が得られる。
C Effects of the Invention As described above, the cam damper according to the present invention is a cam damper in which torque is converted into an axial load by an inclined surface and is received by a spring, in which two leaf springs having different spring constants are combined in series. Using a clever spring assembly,
A small overall spring constant is applied to the initial load, and when the load increases, the movement of one disc spring is restricted with a stopper, so that the large spring constant of a single disc spring is applied. As a result, the stress characteristics become non-linear, and an effective damping effect can be obtained regardless of the magnitude of torque.

エンジン伝導系に用いれば、アイドリングから高速回転
域までエンジントルクの変動に起因するギアWARやシ
レフトのねじり共振を一様に防ぐことができる。また互
いに異なるばね常数によって共振を防ぎ、この種のダン
パの共振時に起るギアなどの異音発生現像を抑える。ス
プリング組立体の中間点の動きを規制するスl〜ツバを
追加するだtノの簡単な構造で、コンパクト、大容量な
ダンパ性能を有するカムダンパの機能をざらに倍加し、
エンジン伝導系などの耐久性を向上し、シセフト径など
の削減による軽量化を実現できる効果がある。
If used in an engine transmission system, it is possible to uniformly prevent gear WAR and shaft torsional resonance caused by fluctuations in engine torque from idling to high-speed rotation range. In addition, different spring constants prevent resonance and suppress the occurrence of abnormal noises caused by gears, etc., that occur when this type of damper resonates. With the simple structure of adding a flange that restricts the movement of the midpoint of the spring assembly, it roughly doubles the functionality of the cam damper, which has a compact and large-capacity damper performance.
This has the effect of improving the durability of the engine transmission system and reducing weight by reducing the shaft diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すカムダンパの縦断面図
、第2図は同上カムダンパの作用を示す図表、第1図は
この発明の仙の実施例を示ずカムダンパの縦断面図、第
4図は従来のカムダンパを例示するエンジン伝導系の縦
断面図、第5図は同上カムダンパの拡大した一部横断平
面図である。 21・・・ギア、22・・・軸、23・・・ボス、24
・・・固定カム、25・・・スライドカム、26・・・
カム面、27・・・スプリング組立体、28・・・第1
冊ぽね列、29・・・第2皿ばね列、30・・・ワッシ
p、32・・・ストッパリング。 出願人代理人   波 多 野   久$ / 図 第 2 図 $ 3 回 $ 5 図 第4 図
FIG. 1 is a longitudinal sectional view of a cam damper showing an embodiment of the present invention, FIG. 2 is a diagram showing the action of the same cam damper, FIG. FIG. 4 is a longitudinal sectional view of an engine transmission system illustrating a conventional cam damper, and FIG. 5 is an enlarged partial cross-sectional plan view of the same cam damper. 21...Gear, 22...Shaft, 23...Boss, 24
...Fixed cam, 25...Slide cam, 26...
Cam surface, 27... Spring assembly, 28... First
Book pone row, 29...Second disc spring row, 30...Wash p, 32...Stopper ring. Applicant's agent Hisashi Hatano $ / Figure 2 Figure 3 3 times $ 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 伝導系の途中を相対的に回転可能な同一軸心上の2つの
回転部材に切離して備え、その一方の回転部材に固定し
た軸方向不動の固定カムと、他方の回転部材に軸支した
回転一体で軸方向摺動自在なスライドカムとを、周方向
に向って軸方向に傾斜するカム面によってスライド可能
に接触するようにし、スライドカム背面に弾装したスプ
リングによってスライドカムを固定カムに押圧するよう
にしたカムダンパにおいて、上記スライドカムに、ばね
常数の異る自由端側第1皿ばね列と固定端側第2皿ばね
列とを直列に組合わせたスプリング組立体を弾装して固
定カムに押圧すると共に、第1皿ばね列の固定側基端に
、少しの隙間をあけて対向し、その基端の固定側への移
動を隙間分だけに規制するストッパ部材を設置してなる
ことを特徴とするカムダンパ。
The transmission system is separated into two rotating members on the same axis that are rotatable relative to each other, with a fixed cam that is fixed to one rotating member and not moving in the axial direction, and a rotating member that is pivoted to the other rotating member. The slide cam, which is integrated and can freely slide in the axial direction, is slidably in contact with the cam surface that slopes in the axial direction in the circumferential direction, and the slide cam is pressed against the fixed cam by a spring loaded on the back of the slide cam. In the cam damper, the slide cam is elastically loaded with a spring assembly in which a first disc spring array on the free end side and a second disc spring array on the fixed end side, which have different spring constants, are combined in series. A stopper member is installed that presses against the cam, faces the base end of the fixed side of the first disc spring row with a slight gap, and restricts movement of the base end toward the fixed side by the amount of the gap. A cam damper characterized by:
JP16739585A 1985-07-31 1985-07-31 Cam damper Pending JPS6228524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16739585A JPS6228524A (en) 1985-07-31 1985-07-31 Cam damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16739585A JPS6228524A (en) 1985-07-31 1985-07-31 Cam damper

Publications (1)

Publication Number Publication Date
JPS6228524A true JPS6228524A (en) 1987-02-06

Family

ID=15848902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16739585A Pending JPS6228524A (en) 1985-07-31 1985-07-31 Cam damper

Country Status (1)

Country Link
JP (1) JPS6228524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197878A (en) * 2008-02-20 2009-09-03 Honda Motor Co Ltd Power device with torque damper
WO2011077823A1 (en) * 2009-12-24 2011-06-30 ヤマハ発動機株式会社 Vehicle and method for controlling same
JP2013053673A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Cam type torque damper
WO2020252288A1 (en) * 2019-06-13 2020-12-17 Composite Technology Concepts, Llc Shock isolators utilizing multiple disc springs
US12049938B2 (en) 2023-01-20 2024-07-30 Composite Technology Concepts, Llc Shock isolators utilizing multiple disc springs

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197878A (en) * 2008-02-20 2009-09-03 Honda Motor Co Ltd Power device with torque damper
WO2011077823A1 (en) * 2009-12-24 2011-06-30 ヤマハ発動機株式会社 Vehicle and method for controlling same
US8753248B2 (en) 2009-12-24 2014-06-17 Yamaha Hatsudoki Kabushiki Kaisha Vehicle and method for controlling the same
JP5685200B2 (en) * 2009-12-24 2015-03-18 ヤマハ発動機株式会社 Vehicle and control method thereof
JP2013053673A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Cam type torque damper
WO2020252288A1 (en) * 2019-06-13 2020-12-17 Composite Technology Concepts, Llc Shock isolators utilizing multiple disc springs
US11603898B2 (en) 2019-06-13 2023-03-14 Composite Technology Concepts, Llc Shock isolators utilizing multiple disc springs
US12049938B2 (en) 2023-01-20 2024-07-30 Composite Technology Concepts, Llc Shock isolators utilizing multiple disc springs

Similar Documents

Publication Publication Date Title
US7942749B2 (en) Damper mechanism
RU2151332C1 (en) Double flywheel (versions)
JP2575638B2 (en) Crutch disk
US4950205A (en) Flywheel with a torsional damper
GB2284039A (en) Twin mass flywheel
JPH02300543A (en) Torque fluctuation absorbing device
JPS6388345A (en) Flywheel builtup body
US6050383A (en) Damper disk assembly
JPH079252B2 (en) Torque fluctuation absorber
JPS63259244A (en) Flywheel assembly
JPH1068446A (en) Flywheel assembly
JPH1078045A (en) Torsional vibration damping device
JPS6228524A (en) Cam damper
KR20020043925A (en) Triple mass vibration damping flywheel for vehicles
US20060254875A1 (en) Flywheel assembly
WO2005028914A1 (en) Double-mass flywheel
JP2598472Y2 (en) Power transmission device
JPH0235080Y2 (en)
JPH0334509Y2 (en)
JP3023034B2 (en) Torsional vibration damper for drive shaft of transmission
JPH0620915Y2 (en) Flywheel with optional damper
JPH04316745A (en) Fly wheel
JPS61157851A (en) Damper structure
USRE34146E (en) Flywheels with vibration damping means
JPH026285Y2 (en)