JPS62282819A - Electrode for electric discharge machining - Google Patents

Electrode for electric discharge machining

Info

Publication number
JPS62282819A
JPS62282819A JP12306986A JP12306986A JPS62282819A JP S62282819 A JPS62282819 A JP S62282819A JP 12306986 A JP12306986 A JP 12306986A JP 12306986 A JP12306986 A JP 12306986A JP S62282819 A JPS62282819 A JP S62282819A
Authority
JP
Japan
Prior art keywords
electrode
discharge machining
metal
electric discharge
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12306986A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP12306986A priority Critical patent/JPS62282819A/en
Publication of JPS62282819A publication Critical patent/JPS62282819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To make consumption of an electrode smaller as well as to perform stable electric discharge machining, by constituting the electrode in a way of charging an evaporable metal interposingly in a clearance between electrode materials, and cooling the electrode with heat of evaporation to be absorbed by the evaporable metal and a dielectric fluid at their evaporation. CONSTITUTION:An electric discharge machining electrode is formed in the following process that powder of an evaporable metal 2 is mixed with an electrode material 1 of particle powder consisting of copper or copper-zinc or ferrous graphite and sintered, or after sintering and molding the electrode material 1, the evaporable metal is impregnated an interposed in a clearance. This electrode is opposed to a workpiece 3, thus electric discharge machining takes place. The evaporable metal 2 is oozed to a surface of the electrode material 1 by discharge heat, cooling the electrode. Therefore, in combination with a spouted dielectric fluid, cooling action is performable, thus electrode service life is prolongable.

Description

【発明の詳細な説明】 発明の詳細な説明 朦1−!」L艮九V 本発明は易蒸発金属を電極材間の隙間に介設含有して成
る放電力ロエ用電極に関する。
[Detailed Description of the Invention] Detailed Description of the Invention 1-! The present invention relates to an electrode for discharging power Roe comprising an easily vaporizable metal interposed in a gap between electrode materials.

筬本Ω」y 先に本出願人は、*公器55−27810号として易蒸
発金属粉末Y711]工液中に添加混合して放電の熱に
エリ蒸気化し、金属蒸気として加工液に分散介在するこ
とにエリ刀ロエ液の導電度乞むらなく高くして、きわめ
て安定な刀ロエが行われる放電加工方法について提案し
比。
The applicant previously proposed * Easily evaporable metal powder Y711 as Public Equipment No. 55-27810] to be added and mixed into the working fluid, vaporized by the heat of electric discharge, and dispersed in the working fluid as metal vapor. In particular, we proposed an electric discharge machining method that allows extremely stable cutting by increasing the conductivity of the cutting liquid.

uj決しニー?−(Σを竺!塵 しかして本出願人は更に研究を重ねケミ極材χ・粉末粒
子にして焼結したりして多孔質体を作って電極の核体と
してその中の電極材間の隙間に易蒸発金属つまり原子量
の小さい金属ケいれてみ之。
uj never knee? −(S)! Dust However, the present applicant conducted further research and made a porous body by sintering the chemical electrode material χ into powder particles and used it as the core of the electrode between the electrode materials. An easily evaporated metal, that is, a metal with a small atomic weight, is inserted into the gap.

従って放t7IO工時に発生する放電熱に:V電極が発
熱して易蒸発金属がとけて電極材料の表面VC滲み出て
その易蒸発金属が蒸発に際して吸収する蒸発熱で電極材
料を冷却することがわかつ之。
Therefore, due to the discharge heat generated during the t7IO process: the V electrode generates heat, the easily evaporable metal melts, VC oozes out from the surface of the electrode material, and the evaporation heat absorbed by the easily evaporable metal during evaporation cools the electrode material. Wakatsuno.

従来は那工液の噴出のみに:り電極材料の冷却tはかっ
てい比のである。 そこで本発明は易蒸発金属と那工液
とが蒸発に際して吸収する蒸発熱で電極を冷却する放電
加工用電極を提供することを目的とするものである。
In the past, only the liquid was ejected, and the cooling time of the electrode material was relatively small. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electrode for electric discharge machining that cools the electrode using the heat of evaporation absorbed during evaporation of an easily evaporable metal and a liquid.

かぐて本発明では電極材にグラ7アイ)、Cu。KAGUTE In the present invention, the electrode material is Gura 7 Eye), Cu.

Cu+C1120,Cu−Zn等或はFe系の粉末材料
を焼結して多孔質体の電極を形成するときに、原子量の
小さい易蒸発金属の粉末粒子ン混合して電極を形成する
造り方、又は電極材ン多孔質に焼結成形し次電極に易蒸
発金属の別熱溶融して浸漬含浸又は加圧含浸により電極
材の隙間に易蒸発金属?充填等含有させる造り万(を極
材の焼結温度と易蒸発金属の溶融温度とが大きく異なる
場合等)等に工って造り、放tm工するときの放電熱で
易蒸発金属が溶けて電極の外面に滲み出ろようにし、そ
の滲み出之易蒸発金属が蒸発に際して吸収する蒸発熱と
2770工液が蒸発するに際して吸収する蒸発熱の冷却
バランスとによって電極を冷却するようにしたものであ
る。 そしてこの易蒸発金属の含有量は電極の加工面又
は表面部分に於て重量比で0.1〜10%程度とするこ
とが望ましい。
When forming a porous electrode by sintering Cu+C1120, Cu-Zn, etc. or Fe-based powder materials, the electrode is formed by mixing powder particles of an easily vaporized metal with a small atomic weight, or The electrode material is sintered and formed into a porous material, and then an easily evaporable metal is separately heated and melted into the electrode, and the easily evaporated metal is added to the gap between the electrode materials by dipping or pressure impregnation. The material is made to contain filling etc. (for example, when the sintering temperature of the electrode material and the melting temperature of the easily evaporable metal are greatly different), and the easily evaporable metal is melted by the discharge heat during the release time process. The electrode is cooled by a cooling balance between the heat of evaporation absorbed by the easily evaporated metal and the heat of evaporation absorbed by the 2770 liquid when it evaporates. . The content of this easily vaporizable metal in the processed surface or surface portion of the electrode is preferably about 0.1 to 10% by weight.

惺艮 このようにすることにより、更に電極消耗の少い安定し
た加工が得られる改良した電極装置を提供することがで
き比。
By doing so, it is possible to provide an improved electrode device that can provide stable processing with even less electrode wear.

実施例 第1図、第2図は本発明の実施例である電極の概略と一
部先端の拡大図である。
Embodiment FIGS. 1 and 2 are schematic views of an electrode according to an embodiment of the present invention and an enlarged view of a portion of the tip thereof.

図で1は電極材で、c、1. Ou+C!J○、 cl
l−z H或はFe系グラファイト系の粒子粉末を焼結
し友もので多孔質の核体な作っている。  2は前記電
極材1を焼結する際に混合して共に焼結するか、電極材
1の焼結成形後に隙間に含浸介設させ几易蒸発金属で電
極材1中につめこみ埋めこまれて使われるもので放電万
ロエの際にその放電熱又は電極の温度によりとけて表面
に屓次滲みでるものでありIn T B 1 + P 
a + P p + S n + ” b + ” 1
 lSr+ B” + zn rMn、 8m+ E!
u、 Yb、 A3. Mf、 Y或いはこれらとCu
、At7al−混合し比もの、又希土類金R”f含ませ
比もの等である。 その他希土類との合金もしくは混合
金属においてCeu−Cee、 Cu−La、 AJC
e。
In the figure, 1 is an electrode material, c, 1. Ou+C! J○, cl
A porous core is made by sintering l-z H or Fe-based graphite particles. 2 is either mixed when the electrode material 1 is sintered and sintered together, or is impregnated into the gap after the electrode material 1 is sintered and formed, and is packed and embedded in the electrode material 1 with an easily evaporated metal. It is used and melts due to the heat of the discharge or the temperature of the electrode during discharge and oozes out onto the surface.In T B 1 + P
a + P p + S n + ” b + ” 1
lSr+ B” + zn rMn, 8m+ E!
u, Yb, A3. Mf, Y or these and Cu
, At7al-mixtures, and rare earth gold R''f-containing ones. Other alloys or mixed metals with rare earths include Ceu-Cee, Cu-La, AJC.
e.

AjLa、 A1. sb、 Bi Ce+ Bi−M
y、 5n−La。
AjLa, A1. sb, Bi Ce+ Bi-M
y, 5n-La.

Pb−La、 MIP−8b、 1 ’ft合金として
A ’ 2 Ce +A ’z La I Aj S 
b 1 B Is l Ce41 B”t MIs +
 Cnt Cet +S n L a ! l P b
 L a + M Ji’ + S b lSn 2 
Ce * Sn 4 Ca +Cu、La等が利用され
る。
Pb-La, MIP-8b, 1'ft as alloy A' 2 Ce + A'z La I Aj S
b 1 B Is l Ce41 B"t MIs +
Cnt Cet +S n La! l Pb
L a + M Ji' + S b lSn 2
Ce*Sn4Ca+Cu, La, etc. are used.

一般的には原子量の小さい金属?用いるものである。 
又電極tグラファイトとする場合、相関化合物はイオン
結合のLi、 Sr、 Ba、 Zn、 Mn+ Sm
+Ku、Yb等のドナー型とA s 1M p + S
 b 、Y等と共有結合0(OH)i用いることができ
る。
Metals with low atomic weight in general? It is used.
In addition, when the electrode is made of graphite, the correlated compounds are ionic bonds of Li, Sr, Ba, Zn, Mn+Sm
+ Donor type such as Ku, Yb etc. and A s 1M p + S
b, Y, etc. and a covalent bond 0(OH)i can be used.

又別にB 1 * I n +工a + P b + 
S n 、8 b−−−−−更にこれ等とcuap  
を混合したものま之希土類金属を含1せたものである。
Also, B 1 * I n + Eng a + P b +
S n , 8 b ----- Furthermore, these and cup
It is a mixture of rare earth metals.

次に本発明を実験例にエフ説明する。Next, the present invention will be explained using an experimental example.

放電加工の放電条件をrON中25μs、rOFF中1
0中日0μs中151とし、被加工体を8550鉄材、
7JO工液を5.0×10°4Ωcmの水とした。
The discharge conditions for electrical discharge machining are 25 μs during rON and 1 during rOFF.
The workpiece is 8550 iron material,
The 7JO working solution was made into water of 5.0×10°4Ωcm.

上記のm1条件に工れは電気鋼(Cu)を電極とすると
電極消耗比は約28チ であるが、0.8%Sb−残部
Cnt極によれば約6%、1%In−残部CU電極によ
れば約t5%、又4%La−残部C11電極によれば約
5%となった。
Under the above m1 conditions, if electrical steel (Cu) is used as an electrode, the electrode consumption ratio is about 28%, but with a 0.8% Sb-balance Cnt electrode, it is about 6%, and with a 1% In-balance CU electrode. According to the electrode, it was about 5%, and according to the 4% La-balance C11 electrode, it was about 5%.

父上記と同一のm1条件で50%CU−残部グラファイ
トから成るc、1−Gf電極を1約18%の電極消耗を
するが、1%工n−50%Cu−残部グラファイト電極
に工れは約2.8% となった。 又このCu−or電
極が約42% 消耗する刀ロエ条件に於て、1%B1−
50%CU−残部グラ7アイト電極によれば約3.8%
(!:なつ之。
Under the same m1 conditions as above, a c, 1-Gf electrode consisting of 50% CU with the remainder graphite consumed about 18% of the electrode, but a 1% CU-50% Cu with the remainder graphite electrode had no wear. It was approximately 2.8%. In addition, under the condition that this Cu-or electrode is consumed by about 42%, 1% B1-
50% CU - the remainder is approximately 3.8% according to the graphite electrode
(!: Natsuyuki.

放1を電圧を加えると、第2図の工うに放電熱により易
蒸発金JIi2は電極材1の表面に滲出して電極の冷却
にあ几るのである。 又噴出加工液とあわせて冷却作用
を行うこととなる。
When a voltage is applied to the electrode material 1, the easily evaporated gold JIi2 oozes out onto the surface of the electrode material 1 due to the discharge heat, as shown in FIG. 2, and helps to cool the electrode. In addition, the cooling effect is performed together with the jetted machining fluid.

発明の効果 このようにして本発明では金属或はグラファイトの電極
を粉末粒子を焼結しtりして多孔質体に構成しておき、
中に易蒸発金属を充填等介設させておくことにエリ電極
の温度が高くなることにより易蒸発金属は滲出しだして
電極面を被ってti表面各部の間歇放電の際に少しずつ
蒸発するようになり、蒸発に際して吸収する蒸発熱で加
工液とともに冷却作用を行い、電極の消耗を防ぐととも
に安定し次数電力U工を行うことができろ。
Effects of the Invention In this way, in the present invention, a metal or graphite electrode is formed into a porous body by sintering powder particles.
When the temperature of the electrode increases, the easily evaporable metal oozes out, covers the electrode surface, and evaporates little by little during intermittent discharge at various parts of the Ti surface. As a result, the heat of evaporation absorbed during evaporation acts as a cooling agent along with the machining fluid, thereby preventing wear on the electrodes and stably performing high-order power U machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の1実施例電極の概略図と一部
先端拡大図である。 図で1は電極材、2は易蒸発金属。 −二手 ・ ′、X 代 理 人   堀  江  秀  已 −瀾1片−一
′ 第1図 第2図
FIGS. 1 and 2 are a schematic diagram and a partially enlarged view of the tip of an electrode according to an embodiment of the present invention. In the figure, 1 is an electrode material and 2 is an easily vaporized metal. -Second hand・',

Claims (4)

【特許請求の範囲】[Claims] (1)電極材によつて構成された電極の前記電極材間の
隙間に易蒸発金属を充填等介設させて成り、この電極で
放電加工するときに発生する放電熱を、該放電熱で前記
易蒸発金属が蒸発するに際して吸収する蒸発熱と加工液
が蒸発するに際して吸収する蒸発熱とによつて電極を冷
却することを特徴とする放電加工用電極。
(1) The gap between the electrode materials of an electrode is filled with an easily evaporable metal, and the discharge heat generated during electrical discharge machining with this electrode is absorbed by the discharge heat. An electrode for electrical discharge machining, characterized in that the electrode is cooled by the heat of vaporization absorbed when the easily vaporizable metal evaporates and the heat of vaporization absorbed when the machining fluid evaporates.
(2)易蒸発金属が電極の温度上昇によつて電極の外面
に滲み出るようにした特許請求の範囲第1項記載の放電
加工用電極。
(2) The electrode for electric discharge machining according to claim 1, wherein the easily evaporated metal oozes out onto the outer surface of the electrode as the temperature of the electrode increases.
(3)電極材がグラファイトで原子量の小さい易蒸発金
属を0.1〜5%(重量%%)含ませた特許請求の範囲
第1項記載の放電加工用電極。
(3) The electrode for electric discharge machining according to claim 1, wherein the electrode material is graphite and contains 0.1 to 5% (wt%) of an easily vaporized metal with a small atomic weight.
(4)電極材がCu、Cu+Cu_2O、Cu−Zn等
或はFe系を焼結した多孔質体である特許請求の範囲第
1項記載の放電加工用電極。
(4) The electrode for electric discharge machining according to claim 1, wherein the electrode material is a porous body obtained by sintering Cu, Cu+Cu_2O, Cu-Zn, etc. or Fe-based material.
JP12306986A 1986-05-28 1986-05-28 Electrode for electric discharge machining Pending JPS62282819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12306986A JPS62282819A (en) 1986-05-28 1986-05-28 Electrode for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12306986A JPS62282819A (en) 1986-05-28 1986-05-28 Electrode for electric discharge machining

Publications (1)

Publication Number Publication Date
JPS62282819A true JPS62282819A (en) 1987-12-08

Family

ID=14851421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12306986A Pending JPS62282819A (en) 1986-05-28 1986-05-28 Electrode for electric discharge machining

Country Status (1)

Country Link
JP (1) JPS62282819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030818A (en) * 1989-08-28 1991-07-09 Dudas David J Composite wire electrode
JPH03184723A (en) * 1989-12-12 1991-08-12 Ibiden Co Ltd Electrode for electric discharge machining and manufacture thereof
RU2553749C2 (en) * 2013-01-09 2015-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Thermal erosion processing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030818A (en) * 1989-08-28 1991-07-09 Dudas David J Composite wire electrode
JPH03184723A (en) * 1989-12-12 1991-08-12 Ibiden Co Ltd Electrode for electric discharge machining and manufacture thereof
RU2553749C2 (en) * 2013-01-09 2015-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Thermal erosion processing process

Similar Documents

Publication Publication Date Title
US2909778A (en) Method and means for bare electrode welding
US2694764A (en) Electric arc welding
AU654227B2 (en) Arc hardfacing rod
US3020610A (en) Method of welding aluminum and other metals
Marya Theoretical and experimental assessment of chloride effects in the A-TIG welding of magnesium
EP0005152B1 (en) Filled tubular article for controlled insertion into molten metal
JP4641260B2 (en) Discharge surface treatment electrode and method for producing the same
JPS62282819A (en) Electrode for electric discharge machining
US2909642A (en) Means and method for deep flux arc welding
Yazawa Thermodynamic Studies of Liquid Au–Zn and Ag–Zn Systems
EP0806263B1 (en) Method of using copper based electrodes to spot-weld aluminium
Wilson et al. Capacitor discharge welding: Analysis through ultrahigh-speed photography
US4575606A (en) Method of electroslag welding and flux
US5762722A (en) Covering flux for smelting aluminum and a process for its preparation
GB646377A (en) Improvements in and relating to soldering and brazing
TW200427541A (en) Method and apparatus of surface discharge treatment
US3760146A (en) Phosphor bronze arc welding electrode for alternating current
US4389241A (en) Process for producing lithium-metal master alloy
Ogawa et al. Activity measurement of the constituents in molten Sn-Mg-Zn ternary lead free solder alloys by mass spectrometry
JP2912427B2 (en) Method for producing hydrogen storage alloy powder and cathode for Ni-hydrogen battery
US2968091A (en) Method of applying solder to a joint
US3430031A (en) Electrode and process for making same
JPS60243969A (en) Manufacture of anode active material for battery
JPH1150263A (en) Production of stabilized hydrogen storage alloy
SIS Welding flux cored electrodes in N2-CO2 and N2-Ar atmospheres