JPS62282692A - Activated sludge treatment of waste water - Google Patents

Activated sludge treatment of waste water

Info

Publication number
JPS62282692A
JPS62282692A JP61125786A JP12578686A JPS62282692A JP S62282692 A JPS62282692 A JP S62282692A JP 61125786 A JP61125786 A JP 61125786A JP 12578686 A JP12578686 A JP 12578686A JP S62282692 A JPS62282692 A JP S62282692A
Authority
JP
Japan
Prior art keywords
activated sludge
waste water
wastewater
metal
biochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125786A
Other languages
Japanese (ja)
Inventor
Masahiro Fujii
正博 藤井
Nobuo Okamura
岡村 宣夫
Atsushi Shoji
敦 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61125786A priority Critical patent/JPS62282692A/en
Publication of JPS62282692A publication Critical patent/JPS62282692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To remove phosphorus compds. and sulfides simultaneously by immersing and disposing plural different metals connected by a conductive material to a control vessel and/or reaction vessel of a biochemical treatment device for waste water and making the biochemical treatment of the waste water. CONSTITUTION:The plural different metals connected by the conductive material are immersed and disposed in the control vessel and/or reaction vessel of the biochemical treatment device for the waste water and the waste water is biochemically treated. The different metals are preferably composed of >=2 kinds among iron, zinc and copper. The treatment of the waste water by conducting DC between the different metals from the outside is preferably as a large amt. of the metallic ions can be eluted and the rate of elution can be easily controlled. The control of the oxidation-reduction potential of the biochemical reaction vessel is further preferable as the metals can be efficiently eluted. As a result, the pollutant, phosphorus compds., cyan compds., sulfides which are expressed by BOD and are contained in industrial waste water, etc., are simultaneously removed.

Description

【発明の詳細な説明】 & 発明の詳細な説明 (産業上の利用分野) 本発明は電気化学的方法と生物化学的方法とを組合せて
、都市下水、団地下水、産業排水などの排水中に含まれ
ているBOD (生物化学的酸素要求量)によって表示
される汚濁物質、リン化合物、シアン化合物、硫化物な
どを同時に除去する方法に一関するものである。
[Detailed Description of the Invention] & Detailed Description of the Invention (Industrial Application Field) The present invention combines an electrochemical method and a biochemical method to produce a It relates to a method for simultaneously removing pollutants, phosphorus compounds, cyanide compounds, sulfides, etc., which are indicated by the BOD (biochemical oxygen demand) contained therein.

(従来の技術) 都市下水、団地下水、産業排水等に含まれているBOD
、IJン化合物、シアン化合物、硫化物などの汚濁物を
生物化学的方法によシ除去する方法は、多くの文献など
によって知られている。
(Conventional technology) BOD contained in urban sewage, underground water, industrial wastewater, etc.
, IJ compounds, cyanide compounds, sulfides, and other contaminants using biochemical methods are known from many documents.

産業排水中のBOD及び又はC01)によって表示され
る汚濁物質の除去については、例えば特開昭54−15
2351号公報、特開昭55−64896号公報及び特
開昭50−61059号公報などによって、活性汚泥処
理の曝気槽の酸化還元電位(ORP)を管理すると効果
があることが明らかにされている。
Regarding the removal of pollutants expressed by BOD and/or C01) in industrial wastewater, for example, Japanese Patent Application Laid-Open No. 54-15
No. 2351, JP-A-55-64896, JP-A-50-61059, etc. have revealed that it is effective to control the oxidation-reduction potential (ORP) of the aeration tank for activated sludge treatment. .

また、ガス廃液などの産業排水中のシアン化合物、硫化
物の除去に硫酸第一鉄、塩化鉄などの水溶性鉄塩を添加
すると有効なことが特開昭58−23414号公報及び
特開昭50−114046号公報や他の文献(例えば、
環境研究C221) p47〜57 (1978))な
どによって知られている。これらの公知の方法は、いず
れも水溶性の鉄塩、例えば硫酸第一鉄、塩化第一鉄など
の工業薬品を添加し、シアン化合物を不溶性のシアン−
鉄錯塩に、また硫化物を不溶性の硫化鉄にして沈澱させ
、除去する方法である。
In addition, Japanese Patent Laid-Open No. 58-23414 and Japanese Patent Laid-Open Publication No. 58-23414 show that it is effective to add water-soluble iron salts such as ferrous sulfate and iron chloride to remove cyanide compounds and sulfides from industrial wastewater such as gas waste liquid. 50-114046 and other documents (e.g.
Environmental Research C221) p47-57 (1978)). In all of these known methods, a water-soluble iron salt, such as ferrous sulfate or ferrous chloride, is added to convert the cyanide into an insoluble cyanogen compound.
This is a method of precipitating and removing iron complex salts and sulfides as insoluble iron sulfides.

次に排水中のリン化合物の除去方法は、生物化学的に処
理して除去する方法と、カルシウム塩及び水溶性の鉄塩
、アルミニウム塩などの工業薬品を添加してリン化合物
を不溶性のカルシウム塩、鉄塩、アルミニウム塩に変え
て除去する方法とが知られている。
Next, there are two methods for removing phosphorus compounds from wastewater: one is to remove them by biochemical treatment, and the other is to add industrial chemicals such as calcium salts and water-soluble iron salts and aluminum salts to remove phosphorus compounds from insoluble calcium salts. , a method of removing it by replacing it with iron salt or aluminum salt is known.

生物化学的にリン化合物を除去する方法は、除去機構が
十分に解明されていないが、一般に次のように云われて
いる。活性汚泥を好気的環境と嫌気的環境に交互に置く
と活性汚泥にストレスが生じ、活性汚泥は好気的環境に
おいて排水中のリン酸を細胞内に取り込み、ポIJ リ
ン酸の形態で貯蔵する。次に、嫌気的環境に置かれると
、活性汚泥は細胞内に貯蔵したポ1,11,1ン酸を放
出する。このような条件を交互に繰シ返すと、活性汚泥
は好気的環境において細胞内にリン化合物を過剰に取り
込むので、その活性汚泥を余剰汚泥として抜取ることに
より排水のリン化合物を除去することができる。
Although the removal mechanism of biochemical methods for removing phosphorus compounds has not been fully elucidated, it is generally said to be as follows. When activated sludge is placed in an aerobic environment and an anaerobic environment alternately, stress is generated in the activated sludge, and activated sludge takes up phosphoric acid from wastewater into cells in an aerobic environment and stores it in the form of poIJ phosphoric acid. do. Next, when placed in an anaerobic environment, the activated sludge releases the poly-1,11,1-phosphate stored within the cells. When these conditions are repeated alternately, activated sludge takes in excessive phosphorus compounds into cells in an aerobic environment, so phosphorus compounds in wastewater can be removed by extracting the activated sludge as surplus sludge. Can be done.

(発明が解決しようとする問題点) 先に述べた排水中のリン化合物、シアン化合物、硫化物
を除去する方法には多くの問題点がある。
(Problems to be Solved by the Invention) The method for removing phosphorus compounds, cyanide compounds, and sulfides from wastewater described above has many problems.

例えば、排水中のシアン化合物、硫化物は、水溶性の鉄
塩を加えると不溶性の鉄−シアン錯塩、硫化鉄を形成す
るので沈澱除去することができるが、この場合、水溶性
の鉄塩としては主に硫酸第一鉄、塩化第一鉄などの薬品
を使用するため、排水処理のコストを高める原因になっ
ている。同様のことが排水中に水溶性のカルシウム塩、
鉄塩、アルミニウム塩を添加してリン化合物を除去する
方法にりいても云える。
For example, cyanide compounds and sulfides in wastewater can be precipitated and removed by adding water-soluble iron salts to form insoluble iron-cyanide complexes and iron sulfides. This mainly uses chemicals such as ferrous sulfate and ferrous chloride, which increases the cost of wastewater treatment. The same goes for water-soluble calcium salts in wastewater,
The same can be said of the method of removing phosphorus compounds by adding iron salts or aluminum salts.

また、排水中のリン化合物を生物化学的に除去する方法
では、例えば下水の場合、下水のEOD濃度、組成、水
量(流入量)などの変動及び活性汚泥の活性度の低下な
どによってリン化合物の除去率が変動する。このため、
リンの排出規制値が1nl/を以下と厳しく規制されて
いる所では、生物化学的方法のみでは規制値を常に遵守
することは困難である。
In addition, in the biochemical method of removing phosphorus compounds from wastewater, for example, in the case of sewage, phosphorus compounds are Removal rate fluctuates. For this reason,
In places where the phosphorus emission regulation value is strictly regulated to 1 nl/or less, it is difficult to always comply with the regulation value using only biochemical methods.

(問題点を解決するための手段) 本発明は、排水の生物化学的処理装置の調整槽および/
または反応槽に導電性物質により接続した複数の異種金
属を浸漬配置して排水を生物化学的に処理することを浸
漬配置する排水の活性汚泥処理方法である。この際、異
種金属は鉄、亜鉛、銅のうち2種以上からなるものとす
ることが好ましい。
(Means for Solving the Problems) The present invention provides a regulating tank and/or a wastewater biochemical treatment device.
Alternatively, there is an activated sludge treatment method for wastewater in which a plurality of dissimilar metals connected by conductive substances are placed in a reaction tank to biochemically treat the wastewater. At this time, it is preferable that the dissimilar metals be made of two or more of iron, zinc, and copper.

また、異種金属間に外部から直流電流を通電して処理す
ると、金属イオンを大量に溶出させるこ“とができ、溶
出量も容易に調節することができるので好ましい。
Furthermore, it is preferable to conduct the treatment by passing a direct current between different metals from the outside, since it is possible to elute a large amount of metal ions, and the amount of elution can be easily adjusted.

さらに、生物化学的反応槽の酸化還元屯位を制御すると
、効率良く金属を溶出させることが可能となり、好まし
い。
Furthermore, it is preferable to control the redox level of the biochemical reaction tank, since this makes it possible to efficiently elute metals.

(作 用) 以下、本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

都市下水、産業廃水中のリン化合物、硫化物、シアン化
合物は、先に述べたように水溶性の金属化合物と反応し
て不溶性の金属塩を形成するので、これを沈澱除去する
ことができる。
As mentioned above, phosphorus compounds, sulfides, and cyanide compounds in urban sewage and industrial wastewater react with water-soluble metal compounds to form insoluble metal salts, which can be removed by precipitation.

本発明は、この原理を利用して金属よυ金属イオンを電
気化学的方法により排水中に溶出させて、この溶出した
金属イオンとリン化合物、硫化物、シアン化合物とを反
応させて不慮性の金属化合物を形成させる。この不溶性
の金属化合物を汚泥沈降槽などにおいて沈降させて固液
分離を行ない、都市下水、産業排水などの排水から除去
する。
The present invention utilizes this principle to elute metal ions into wastewater using an electrochemical method, and reacts the eluted metal ions with phosphorus compounds, sulfides, and cyanide compounds to eliminate unexpected substances. Form a metal compound. These insoluble metal compounds are sedimented in a sludge settling tank or the like to perform solid-liquid separation and are removed from wastewater such as urban sewage and industrial wastewater.

電気化学的方法により金属から金属イオンを溶出させる
方法としては二道シキある。まず、第一の方法は、水中
に設置、あるいは土壌中に埋設されている鉄鋼製品の電
気防食の一種として用いられる流電陽極方式である。こ
の方法は、排水中に第1図に示すように被覆銅線4によ
り異種の金属1と2の板を接続したものを浸漬すると両
金属板の間に電位差が生じ、電流が流れることを利用す
る。この場合、電気化学的に責な金植1は陰極になり、
卑な金属2は陰極になり、陽極から陰極に1[流が流れ
、陽極の電気化学的に卑な金属2が溶解して金属イオン
M! が排水中に溶出する。例えば、鉄を陽極にして鉄
イオンを溶出させたい場合は、陰極に鉄より責な金属で
ある銅、銅合金を用いて両者を被覆銅線4などの導電性
物質によって接続すれば良い。一方、生物に対して毒性
の少ないアルミニウム、亜鉛々どを溶出させる場合は、
陰1傘としてアルミニウム、亜鉛よシ貴な金属である鉄
、ステンレス、銅、銅合金、鉛などを用いて接続すれば
良い。
There are two methods for eluting metal ions from metals using electrochemical methods. The first method is a galvanic anode method, which is used as a type of cathodic protection for steel products installed in water or buried in soil. This method utilizes the fact that when a plate of different metals 1 and 2 connected by a coated copper wire 4 is immersed in drainage water as shown in FIG. 1, a potential difference is created between the two metal plates and a current flows. In this case, the electrochemically responsible metal plant 1 becomes a cathode,
The base metal 2 becomes the cathode, a current flows from the anode to the cathode, and the electrochemically base metal 2 at the anode dissolves and the metal ion M! is leached into the wastewater. For example, if it is desired to elute iron ions using iron as an anode, copper or a copper alloy, which is a metal more dangerous than iron, may be used as the cathode, and the two may be connected by a conductive material such as the coated copper wire 4. On the other hand, when eluting aluminum, zinc, etc., which are less toxic to living things,
For the shade 1, metals such as iron, stainless steel, copper, copper alloy, lead, etc., which are nobler than aluminum or zinc, may be used for connection.

また、第2図に示すように、例えば銅、銅合金、鉛など
を電気化学的に貴な金属1にして、その両側に亜鉛、鉄
、アルミニウムなど銅より電位的に卑の金属板を陽極と
し、て接続すると、亜鉛、鉄、アルミニウムなど複数の
金属をイオンとして溶出させることができる。例えば、
銅板を電気化学的に責な金属1として中央にして、その
両側に亜鉛板を電気化学的に卑な金属2とし、鉄板を電
気化学的に卑な金属3として接続すると亜鉛イオンM2
と鉄イオンM3とが排水中に溶出する。このように複数
のイオンを溶出させるとシアンイオンなどを除くのに好
都合である。排水中のシアンイオンは鉄とシアンの錯イ
オンを形成して無害化されるが、これに亜鉛イオンが共
存すると鉄・亜鉛とシアンとの不溶性の錯塩を形成する
ので、シアンイオンの除去が容易となる。
In addition, as shown in Figure 2, for example, copper, copper alloy, lead, etc. can be used as an electrochemically noble metal 1, and metal plates with a potential less noble than copper, such as zinc, iron, or aluminum, can be placed on both sides of the anode. When connected as , multiple metals such as zinc, iron, and aluminum can be eluted as ions. for example,
When a copper plate is placed in the center as an electrochemically responsible metal 1, a zinc plate is placed on both sides as an electrochemically base metal 2, and an iron plate is connected as an electrochemically base metal 3, zinc ions M2 are formed.
and iron ion M3 are eluted into the waste water. Elution of a plurality of ions in this manner is convenient for removing cyanide ions and the like. Cyanide ions in wastewater form complex ions of iron and cyanide and become harmless, but when zinc ions coexist with this, they form an insoluble complex salt of iron, zinc, and cyanide, making it easy to remove cyanide ions. becomes.

次に、電気化学的方法により金属から金属イオンを溶出
させる第2の方法について説明する。排水中のリン化合
物、硫化物、シアン化合物の濃度が高い場合、或いは排
水量が多い場合には、これらの化合物と反応させる金属
イオンを大量に溶出させる必要がある。しかし、前述の
流電陽極方式では溶出する金属イオン量が不足すること
がある。
Next, a second method of eluting metal ions from metal using an electrochemical method will be described. When the concentration of phosphorus compounds, sulfides, and cyanide compounds in wastewater is high, or when the amount of wastewater is large, it is necessary to elute a large amount of metal ions to react with these compounds. However, in the galvanic anode method described above, the amount of metal ions eluted may be insufficient.

このような場合には、第3図に示すように異種の金属を
導電性物質により接続しておいて、これらの金属間に外
部よシ直流電流を流すことKよって金属イオンの溶出量
を多くすることができる。
In such cases, as shown in Figure 3, dissimilar metals are connected with a conductive substance and an external DC current is passed between these metals to increase the amount of metal ions eluted. can do.

第3図は、異種金属板として電気化学的に貴か金属1お
よび電気化学的に卑な金属2を直流電源6を介して被覆
銅線4により接続したセルを活性汚泥処理装置の曝気槽
5に浸漬した例を示す。鳩は、直流電源6の陽極側に接
続した金属板である電気化学的に卑な金属2から曝気槽
5に溶出する金属イオンを示す。なお、7は直流電圧計
、8は電流計である。
FIG. 3 shows a cell in which an electrochemically noble metal 1 and an electrochemically base metal 2 as dissimilar metal plates are connected by a coated copper wire 4 via a DC power source 6 in an aeration tank 5 of an activated sludge treatment equipment. An example of immersion is shown below. The dove indicates metal ions eluted from the electrochemically base metal 2, which is a metal plate connected to the anode side of the DC power source 6, into the aeration tank 5. Note that 7 is a DC voltmeter and 8 is an ammeter.

この第3図に示す例では、金属イオンの溶出量は通電す
る電気量によって容易に調節することができる。
In the example shown in FIG. 3, the amount of metal ions eluted can be easily adjusted by adjusting the amount of electricity applied.

どの直流電源6としては、商業用の交流電気を整流器に
よシ直流に変換して使用しても良く、この他に太陽電池
、燃料1!池などを用いても良い。
Any DC power source 6 may be commercial AC electricity converted to DC using a rectifier, and also solar cells, fuel 1! A pond or the like may also be used.

さらに、下水の処理水を放流する際に小形の発電用ター
♂ンに旭m*冬道λ1−イ益雷式と どh−を電源とし
て用いても良い。
Furthermore, when discharging treated sewage water, the Asahi M*Fuyudou λ1-i Mukurai type and Doh- may be used as a power source for a small power generation turbine.

また、以上述べた方法による金属イオンの溶出に加えて
、金属イオンの溶出性は異種金属を組合せたセルを浸漬
した反応槽、例えば活性汚泥処理のエアレイジョンタン
クの酸化還元電位(ORP)の影響を著しく受ける。即
ち、ORP が酸化側にある程陽極の金属の溶出性が太
きなる傾向があるので、異種金属を組合せたセルを浸漬
した反応槽のORP を管理、制御することにより、さ
らに効率良く金属を溶出させることができる。
In addition to the elution of metal ions by the method described above, the elution of metal ions can also be determined by the oxidation-reduction potential (ORP) of a reaction tank in which cells containing a combination of different metals are immersed, such as an aeration tank for activated sludge treatment. Significantly affected. In other words, the closer the ORP is to the oxidation side, the greater the elution of metal from the anode tends to be. Therefore, by managing and controlling the ORP of a reaction tank in which cells containing different metals are immersed, metals can be extracted more efficiently. It can be eluted.

このORP の管理制御は、異種金属を組合せたセルを
浸漬した反応槽にORP  センサーを浸漬し、このO
RPセンサーをORP制御装置に接続して、反応槽のO
RPが設定値よシはずれたらORP制御装置の指示によ
シ酸化剤または還元剤のポンプおよび/′−!たけ送風
用ブロアーを稼動させてORPを設定値に回復させるこ
とによシ行う。
Management and control of this ORP is carried out by immersing an ORP sensor in a reaction tank in which cells made of a combination of different metals are immersed.
Connect the RP sensor to the ORP controller to control the O of the reaction tank.
If RP deviates from the set value, the ORP controller will direct the oxidizer or reductant pump and /'-! This is done by operating the bamboo blower to restore the ORP to the set value.

次に、本発明を都市下水、産業廃水の処理に適用する場
合について説明する。
Next, a case where the present invention is applied to the treatment of urban sewage and industrial wastewater will be described.

まず、排水中に含まれている無機性のリン化合物、硫化
物、シアン化合物を除去する場合、異種金属を組合せた
セルを反応槽内に浸漬配置し、溶出した金属イオンと無
機性のリン化合物、シアン化合物、硫化物とを反応させ
て、これらを不溶性の金属化合物に変換し、固液分離に
より排水から除去する。
First, when removing inorganic phosphorus compounds, sulfides, and cyanide compounds contained in wastewater, a cell combining different metals is immersed in a reaction tank, and the eluted metal ions and inorganic phosphorus compounds are removed. , cyanide, and sulfide to convert them into insoluble metal compounds, which are removed from wastewater by solid-liquid separation.

特に、産業排水を活性汚泥法により処理する場合、硫化
物、シアン化合物が存在すると活性汚泥の機能を阻害し
、活性汚泥処理の性能を低下させて処理水質の悪化を招
きやすい。このため、活性汚泥処理を行なう前に、硫化
物、シアン化合物を含む排水に異種金属を組合せたセル
を設置した反応槽にこれらの排水を通水し、ここで予め
排水中の硫化物、シアン化合物を不活性の金属化合物に
、或いはシアン化合物は活性汚泥に対する毒性が著しく
低いシアン−金属の錯化合物に変換した後、活性汚泥処
理を行なうと特に処理が順調に行なわれ、良好な処理水
が得られる。
In particular, when industrial wastewater is treated by the activated sludge method, the presence of sulfides and cyanide compounds inhibits the function of activated sludge, reduces the performance of activated sludge treatment, and tends to deteriorate the quality of treated water. For this reason, before activated sludge treatment, wastewater containing sulfides and cyanide is passed through a reaction tank equipped with cells that combine different metals. If the activated sludge treatment is carried out after the compound is converted into an inert metal compound or the cyanide compound is converted into a cyanide-metal complex compound which has extremely low toxicity to activated sludge, the treatment will proceed smoothly and good quality treated water will be produced. can get.

次に、都市下水、産業排水の活性汚泥処理水のリン化合
物の除去方法について祝用する。
Next, we will discuss methods for removing phosphorus compounds from activated sludge treated water from urban sewage and industrial wastewater.

活性汚泥処理は、活性汚泥の栄養源としてリン化合物の
添加が必要である。しかし、このリン化合物は活性汚泥
によって全て利用されるのではなく、処理水にかなり流
出する。この処理水からリン化合物を除去する場合にも
本発明の方法が有効である。即ち、活性汚泥処理設備の
エアレイジョンタンクの後半部に異種金属を組合せたセ
ルを設置すると、陽極の金属板から金属イオンが溶出し
、リン化合物と反応して不溶性の金、寓−リン化合物を
形成する。この不溶性のリン化合物は沈降槽において活
性汚泥と共沈し、余剰汚泥として抜き取られるので、処
理水からリン化合物を除去することができる。
Activated sludge treatment requires the addition of phosphorus compounds as a nutrient source for activated sludge. However, this phosphorus compound is not fully utilized by the activated sludge, but is rather leached into the treated water. The method of the present invention is also effective in removing phosphorus compounds from this treated water. That is, when a cell combining different metals is installed in the latter half of the air lag tank of activated sludge treatment equipment, metal ions are eluted from the metal plate of the anode, react with phosphorus compounds, and form insoluble gold and phosphorus compounds. form. This insoluble phosphorus compound co-precipitates with the activated sludge in the settling tank and is extracted as surplus sludge, making it possible to remove the phosphorus compound from the treated water.

また、都市下水、団地下水などの下水を標準活性汚泥法
により連続処理している場合、これらの下水に含まれて
いるリン化合物を本発明の方法により除去するKは、前
述の産業排水の場合と陣]様に、禽気櫂の後半部に異種
金属を組合せたセルを設置し、リン化合物を不溶性のリ
ン−金属化合物に変換して汚泥沈降槽から余剰汚泥とし
て抜き取れば、下水のリン化合物を容易に除去すること
ができる。
In addition, when sewage such as urban sewage and underground water is continuously treated by the standard activated sludge method, K to remove phosphorus compounds contained in these sewage by the method of the present invention is as follows: Tojin], if a cell combining different metals is installed in the rear half of the sewage paddle, and the phosphorus compound is converted into an insoluble phosphorus-metal compound, which is extracted as surplus sludge from the sludge settling tank, sewage phosphorus can be reduced. Compounds can be easily removed.

更に1団地下水、或いは小規模の産業排水の処理に回分
式活性汚泥法を適用している場合の処理方法として、生
物反応槽の活性汚泥に好気、嫌気の環境を交互にあたえ
ると、嫌気的環境においてリンを放出し、好気的環境に
おいてリンを過剰摂取する性状を示し、このリンを過剰
摂取した活性汚泥を余剰汚泥として抜き取ると回分式活
性汚泥法によりリンを除去することができることを本発
明者等は、特願昭60−178586号において明らか
にした。
Furthermore, when the batch activated sludge method is applied to the treatment of groundwater or small-scale industrial wastewater, if the activated sludge in the biological reaction tank is alternately exposed to aerobic and anaerobic environments, anaerobic It has been shown that phosphorus is released in an aerobic environment and excessive phosphorus is taken up in an aerobic environment, and that if activated sludge that has taken in too much phosphorus is extracted as surplus sludge, phosphorus can be removed by a batch activated sludge method. The present inventors disclosed this in Japanese Patent Application No. 178586/1986.

しかし、この生物化学的方法によりリンを除去する方法
は、供給下水の生物化学的酸素要求量(BOD)、全有
機性炭素(TOC)によって表示される有機化合物の濃
度、或いは嫌気状態における硝酸イオン及び亜硝酸イオ
ンの濃度によってリンの除去比能が異なるため、安定な
処理を行う点では必ずしも十分とはいえない。
However, this biochemical method of removing phosphorus is limited by the biochemical oxygen demand (BOD) of the feed sewage, the concentration of organic compounds as indicated by total organic carbon (TOC), or the concentration of nitrate ions in anaerobic conditions. Since the specific ability to remove phosphorus differs depending on the concentration of nitrite ions and nitrite ions, it is not necessarily sufficient to perform stable treatment.

しかし、この回分式活性汚泥法に本発明を適用すると、
リン化合物を安定して、しかも効率良く除去することが
できる。即ち、回分式活性汚泥処理装置の生物化学反応
槽内に異種金属を組合せたセルを浸漬する。そうすると
、先に説明したように陽極側金属より金属イオンが溶出
し、リン化合物と反応して不溶性のリン−金属化合物を
形成し、余剰汚泥を抜き取る時−緒に除去される。この
場合、回分式活性汚泥処理装置の生物化学的反応槽の酸
化還元電位(ORP)の制御を同時て行々うと、金属イ
オンの溶出量をよシ好ましくコントロールすることがで
きる。
However, when the present invention is applied to this batch activated sludge method,
Phosphorus compounds can be removed stably and efficiently. That is, a cell in which different metals are combined is immersed in a biochemical reaction tank of a batch activated sludge treatment device. Then, as explained above, metal ions are eluted from the metal on the anode side and react with the phosphorus compound to form an insoluble phosphorus-metal compound, which is removed when excess sludge is extracted. In this case, if the oxidation-reduction potential (ORP) of the biochemical reaction tank of the batch-type activated sludge treatment apparatus is controlled at the same time, the amount of metal ions eluted can be better controlled.

即ち、鉄、亜鉛等の金属は、pHが一定でもORP が
高くなると腐食が進行し、金属の溶解が促進される。し
たがって、異種金属を相合せたセルを浸漬した回分式あ
るl/−4は標準活性汚泥処理法における生物化学的反
応槽、活性汚泥処理装置の曝気借のORP を管理制御
することは金属の効率的溶解に効果があシ、その結果、
下水、産業廃水のリン化合物及び又はこれらの活性汚泥
処理水のリン化合物を効率的に除去することができる。
That is, even if the pH is constant, corrosion of metals such as iron and zinc progresses as the ORP increases, and metal dissolution is promoted. Therefore, a batch type l/-4 cell immersed with different metals is a biochemical reaction tank in a standard activated sludge treatment method, and controlling the ORP of the aeration of the activated sludge treatment equipment is important for metal efficiency. As a result,
Phosphorus compounds in sewage, industrial wastewater, and/or activated sludge treated water can be efficiently removed.

なお、以上の説明は活性汚泥処理を行う前の調整槽、ま
たは活性汚泥処理装置の反応槽内に異種金属のセルを配
置する例について述べたが、調整槽と、反応槽の両方に
セルを配置して処理しても良い。
The above explanation has been about an example in which cells of different metals are placed in the adjustment tank before activated sludge treatment or in the reaction tank of activated sludge treatment equipment, but it is also possible to place cells in both the adjustment tank and the reaction tank. It may be placed and processed.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

〔実施例1〕 製鉄所のコークス炉から発生する安水(ガス廃液とも云
う)をタール除去、アンモニアストリッピング処理した
後、この安水をpH7〜8に調整した。次に、陽極が鉄
板、陰極が銅板よりなる第3図に示すセルを設置した生
物化学的処理装置の調整槽に通水した。この時、この調
整槽のセルに陽極電位が水素電極を基準にして−200
〜+200 mVになるように直流を通電し、陽極より
鉄を第1鉄イオンとして溶解させ、安水に含まれている
非錯イオン性のシアン化合物及び可溶性の硫化物と反応
させた。
[Example 1] Ammonium water (also referred to as gas waste liquid) generated from a coke oven in a steel mill was subjected to tar removal and ammonia stripping treatment, and then the pH of the ammonium water was adjusted to 7 to 8. Next, water was passed through a regulating tank of a biochemical treatment apparatus equipped with a cell shown in FIG. 3, in which the anode was made of an iron plate and the cathode was made of a copper plate. At this time, the anode potential of the cell of this adjustment tank is -200 with respect to the hydrogen electrode.
Direct current was applied to the solution at a voltage of ~+200 mV to dissolve iron from the anode as ferrous ions, which reacted with non-complex ionic cyanide and soluble sulfide contained in the aqueous solution.

その結果、前記セルを設置した生物化学的処理装置の調
整槽を通る前の安水の非錯イオン性のシアン化合物の濃
度はシアンイオンとして20.2岬/lあったものが、
通過後には3.2岬/lになっていた。一方、安水の可
溶性硫化物の濃度は、前記調整槽を通る前がs、3my
/lであったのに対して調整槽を通過後には1■/を以
下になった。
As a result, the concentration of non-complex ionic cyanide in ammonium water before passing through the adjustment tank of the biochemical treatment equipment in which the cell was installed was 20.2 cape/l as cyanide ions, but
After passing, it was 3.2 cape/l. On the other hand, the concentration of soluble sulfides in ammonium water is s, 3 my before passing through the adjustment tank.
/l, but after passing through the adjustment tank, it became less than 1 /l.

このように、本発明の方法により、安水活性汚泥の機能
を阻害する非錯イオン性シアン化合物、可溶性の硫化物
を容易に、しかも安価に除去することができ、活性汚泥
に対する毒性が著しく低減した結果、活性汚泥処理の異
常現象(処理不調)の発生の抑制に顕著な効果があった
As described above, by the method of the present invention, non-complex ionic cyanide compounds and soluble sulfides that inhibit the function of ammonium water activated sludge can be easily and inexpensively removed, and the toxicity to activated sludge is significantly reduced. As a result, there was a remarkable effect in suppressing the occurrence of abnormal phenomena (process failures) in activated sludge treatment.

〔実施例2〕 都市下水の流入順路に従って嫌気槽、無酸素槽、好気槽
及び汚泥沈降槽よりなる下水の連続活性汚泥処理装置に
おいて、嫌気槽、無酸素槽及び好気槽にそれぞれ銅−亜
鉛よシなる第2図に示すようなセルを設置した。これと
同時に1各槽の酸化還元電位を嫌気槽が−100〜−2
00mVに、無酸素槽が−280〜−300mVに、好
気槽が+100〜+120mVになるように各々制御し
た。その結果の一例を第1表に示す。
[Example 2] In a continuous activated sludge treatment system for sewage consisting of an anaerobic tank, an anoxic tank, an aerobic tank, and a sludge settling tank according to the inflow route of urban sewage, copper was added to each of the anaerobic tank, anoxic tank, and aerobic tank. A cell made of zinc as shown in Figure 2 was installed. At the same time, the oxidation-reduction potential of each tank is set to -100 to -2 for the anaerobic tank.
00 mV, the anaerobic tank was controlled to -280 to -300 mV, and the aerobic tank was controlled to +100 to +120 mV. An example of the results is shown in Table 1.

第1表 第1表に示したように、本発明の方法は、異種金属から
なるセルを設置しない従来法に比べてBOD、窒素化合
物の除去性能はほとんど変らないが、リン化合物及び浮
遊物質の除去性能は優れていた。
Table 1 As shown in Table 1, the method of the present invention has almost no difference in the removal performance of BOD and nitrogen compounds compared to the conventional method that does not install cells made of different metals, but the removal performance of phosphorus compounds and suspended solids is almost the same. Removal performance was excellent.

処理水のリン化合物が常に安定して1xq/を以下に除
去できるのは、生物化学的脱リン法と本発明の方法との
相乗効果によるもので、第2図のセルよシ溶出した亜鉛
がリンと反応して不溶性のリン−亜鉛化合物を形成する
ためと思われる。特に、前述の各生物化学的反応槽のO
RPを管理制御することによシセルより亜鉛が効率的に
溶出し、リン化合物の除去に効果があシ、また、浮遊物
質を凝集して沈降させる作用があシ、このため処理水の
浮遊物質濃度が従来法よυ低下する。
The reason why phosphorus compounds in treated water can be consistently and stably removed to below 1xq/ is due to the synergistic effect of the biochemical dephosphorization method and the method of the present invention. This is thought to be because it reacts with phosphorus to form an insoluble phosphorus-zinc compound. In particular, the O of each of the aforementioned biochemical reactors
By managing and controlling RP, zinc is efficiently eluted from Sissel, which is effective in removing phosphorus compounds, and also has the effect of flocculating and settling suspended solids, thus reducing suspended solids in treated water. The concentration is reduced by υ compared to the conventional method.

なお、このような連続活性汚泥処理の場合、第2図に示
した異種金属を組合せたセルを好気槽の後半部分のみに
設置しても第1表に示した結果とほぼ同じ性能が得られ
た。
In addition, in the case of such continuous activated sludge treatment, almost the same performance as shown in Table 1 can be obtained even if a cell combining different metals shown in Figure 2 is installed only in the latter half of the aerobic tank. It was done.

〔実施例3〕 回分式活性汚泥法により、小規模団地の下水から1日3
サイクルでリン化合物、窒素化合物及びBODを同時に
除去する方法について実験を行なった。なお、このサイ
クルは1サイクルが8時間で、下水を注入する工程(嫌
気1)、BOD の分解、硝化反応及びリン化合物を活
性汚泥に吸着させる工程(好気1)、硝化反応によって
生成した窒素化合物を分解する工程(嫌気2)、嫌気2
において発生した微細な窒素ガスを活性汚泥より脱離さ
せる工程(好気2)、活性汚泥を沈降させる工程(静置
)及び処理水(上澄水)を放流する工程より成立ってい
る。
[Example 3] Using the batch activated sludge method, sewage from a small housing complex was collected three times a day.
Experiments were conducted on a method for simultaneously removing phosphorus compounds, nitrogen compounds, and BOD in a cycle. This cycle lasts 8 hours, and includes the step of injecting sewage (anaerobic 1), decomposition of BOD, nitrification reaction, and adsorption of phosphorus compounds into activated sludge (aerobic 1), and the nitrogen generated by the nitrification reaction. Process of decomposing compounds (anaerobic 2), anaerobic 2
The process consists of a step of desorbing the fine nitrogen gas generated in the activated sludge (aerobic 2), a step of settling the activated sludge (standing), and a step of discharging treated water (supernatant water).

この工程の内、嫌気1、好気1、嫌気2及び好気2は、
ORP管理制御を行なった。
Of this process, anaerobic 1, aerobic 1, anaerobic 2 and aerobic 2 are:
Performed ORP management control.

このような回分式の生物化学的反応槽内に第1図に示す
ような銅板と鉄板よυなるセルを設置して団地下水の処
理を行った。その結果を第2表に示す。
A cell made of copper plates and iron plates as shown in Figure 1 was installed in such a batch-type biochemical reaction tank to treat underground water. The results are shown in Table 2.

第  2  表 本発明の方法は、第2表に示したように処理水のリン化
合物が常に1 txi/ L以下であり、安定した処理
ができることが明らかになった。
Table 2 As shown in Table 2, in the method of the present invention, the phosphorus compounds in the treated water were always below 1 txi/L, making it clear that stable treatment was possible.

(発明の効果) 活性汚泥に対して有害なシアン化合物、硫化物を含む産
業廃水を活性汚泥処理する場合でも、本発明法により金
属を溶解させると、この溶解した金属とシアン化合物、
硫化物とが反応して、活性汚泥に対して著しく毒性の少
ないシアン−金属の錯化合物または不溶性の金属硫化物
を形成する。
(Effect of the invention) Even when industrial wastewater containing cyanide and sulfide, which are harmful to activated sludge, is treated with activated sludge, when metals are dissolved by the method of the present invention, the dissolved metal and cyanide,
The reaction with the sulfide forms a cyanide-metal complex or an insoluble metal sulfide that is significantly less toxic to activated sludge.

この処理により、産業排水の活性汚泥に対する毒性が著
しく低減するため、この後の活性汚泥処理において処理
不調(異常現象)が発生しにくく、安定した処理が可能
となる。
Through this treatment, the toxicity of industrial wastewater to activated sludge is significantly reduced, so that processing malfunctions (abnormal phenomena) are less likely to occur in subsequent activated sludge treatment, and stable treatment is possible.

また、都市下水、団地下水、産業廃水などの活性汚泥処
理に本発明を適用すると金属が溶出し、廃水中のリン化
合物と反応して不溶性のリン−金属化合物を形成するの
で、活性汚泥処理水のリン濃度を1M9/を以下にする
ことが可能となる。
Furthermore, when the present invention is applied to activated sludge treatment of urban sewage, underground water, industrial wastewater, etc., metals are eluted and react with phosphorus compounds in the wastewater to form insoluble phosphorus-metal compounds. It becomes possible to reduce the phosphorus concentration of 1M9/ or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2種の異種金属を導電性物質によシ接続したセ
ルを活性汚泥処理装置の曝気槽に浸漬配置した例を示す
図、 笛2図は3種の異種金属を導電性物質によシ接続したセ
ルを活性汚泥処理装置の曝気槽に浸漬配置した例を示す
図、 第3図は2種の異種金属を導電性物質によシ接続したセ
ルを活性汚泥処理装置の曝気槽に浸漬配置するとともに
異種金属間に外部電流を通電する例を示す図である。 1 11.9片 侑 イk グ乏 ^hFf!−ブト 
仝 1品r’x−2,3・・・ 1T 七九什 学的に
卑な金属、4・・・被覆銅線、5・・・曝気槽、6−・
直流電源、7・・・直流電圧計、8・・・電流計。 代理人 弁理士 秋 沢 政 光 他1名 閣 Φ 聾1 α) 女
Figure 1 shows an example of a cell in which two types of dissimilar metals are connected with a conductive substance and is placed immersed in an aeration tank of an activated sludge treatment equipment. Figure 3 shows an example of a cell in which two types of dissimilar metals are connected by a conductive substance and placed in an aeration tank of an activated sludge treatment equipment. FIG. 3 is a diagram showing an example in which an external current is applied between dissimilar metals while being immersed. 1 11.9 piece Yuu Ik Gusho ^hFf! -Buto
1 item r'x-2, 3... 1T 79 chemically base metal, 4... coated copper wire, 5... aeration tank, 6-...
DC power supply, 7...DC voltmeter, 8...Ammeter. Agent Patent Attorney Masaaki Akizawa Hikaru and 1 other famous person Φ Deaf 1 α) Female

Claims (6)

【特許請求の範囲】[Claims] (1)排水の生物化学的処理装置の調整槽および/また
は反応槽に導電性物質により接続した複数の異種金属を
浸漬配置して排水を生物化学的に処理することを特徴と
する排水の活性汚泥処理方法。
(1) Activation of wastewater characterized by biochemically treating wastewater by immersing and arranging a plurality of dissimilar metals connected by conductive substances in the adjustment tank and/or reaction tank of a biochemical wastewater treatment device. Sludge treatment method.
(2)鉄、亜鉛、銅のうち2種以上からなる異種金属を
浸漬配置する特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein dissimilar metals made of two or more of iron, zinc, and copper are placed by immersion.
(3)異種金属間に直流電流を通電して処理を行う特許
請求の範囲第1項または第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the treatment is carried out by passing a direct current between dissimilar metals.
(4)生物化学的反応槽の酸化還元電位を制御する特許
請求の範囲第1項、第2項または第3項記載の方法。
(4) The method according to claim 1, 2 or 3, which controls the redox potential of a biochemical reaction tank.
(5)排水を連続的に処理する特許請求の範囲第4項記
載の方法。
(5) The method according to claim 4, which continuously treats wastewater.
(6)排水を回分式方法によつて処理する特許請求の範
囲第4項記載の方法。
(6) The method according to claim 4, wherein wastewater is treated by a batch method.
JP61125786A 1986-06-02 1986-06-02 Activated sludge treatment of waste water Pending JPS62282692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125786A JPS62282692A (en) 1986-06-02 1986-06-02 Activated sludge treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125786A JPS62282692A (en) 1986-06-02 1986-06-02 Activated sludge treatment of waste water

Publications (1)

Publication Number Publication Date
JPS62282692A true JPS62282692A (en) 1987-12-08

Family

ID=14918823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125786A Pending JPS62282692A (en) 1986-06-02 1986-06-02 Activated sludge treatment of waste water

Country Status (1)

Country Link
JP (1) JPS62282692A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222795A (en) * 1989-02-22 1990-09-05 Nippon Steel Corp Method for removing phosphorus compound from sewage with empty can
JPH03207496A (en) * 1989-12-29 1991-09-10 Nippon Steel Corp Method for simultaneously removing bod, nitrogen compound and phosphorus compound in waste water
JPH06254584A (en) * 1993-03-03 1994-09-13 Nishihara Environ Sanit Res Corp Method and device for removing phosphorus in waste water
WO1994027915A1 (en) * 1993-06-01 1994-12-08 Phostrip-Abwasser-Technik Gmbh Electrochemical treatment process and device for calcium- and/or magnesium-containing water or waste water
JP2006102591A (en) * 2004-10-01 2006-04-20 Dowa Mining Co Ltd Soil or ground water purifying method
JP2010149122A (en) * 2010-03-04 2010-07-08 Dowa Holdings Co Ltd Method for cleaning contaminated soil or contaminated groundwater
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056376A (en) * 1973-09-20 1975-05-17
JPS5069852A (en) * 1974-05-16 1975-06-10
JPS53125370A (en) * 1977-04-07 1978-11-01 Shigeyoshi Tashiro Method of treating organic drainage with electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056376A (en) * 1973-09-20 1975-05-17
JPS5069852A (en) * 1974-05-16 1975-06-10
JPS53125370A (en) * 1977-04-07 1978-11-01 Shigeyoshi Tashiro Method of treating organic drainage with electrolysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222795A (en) * 1989-02-22 1990-09-05 Nippon Steel Corp Method for removing phosphorus compound from sewage with empty can
JPH03207496A (en) * 1989-12-29 1991-09-10 Nippon Steel Corp Method for simultaneously removing bod, nitrogen compound and phosphorus compound in waste water
JPH06254584A (en) * 1993-03-03 1994-09-13 Nishihara Environ Sanit Res Corp Method and device for removing phosphorus in waste water
WO1994027915A1 (en) * 1993-06-01 1994-12-08 Phostrip-Abwasser-Technik Gmbh Electrochemical treatment process and device for calcium- and/or magnesium-containing water or waste water
JP2006102591A (en) * 2004-10-01 2006-04-20 Dowa Mining Co Ltd Soil or ground water purifying method
JP2010149122A (en) * 2010-03-04 2010-07-08 Dowa Holdings Co Ltd Method for cleaning contaminated soil or contaminated groundwater
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment

Similar Documents

Publication Publication Date Title
US6645366B2 (en) Waste water treatment device
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
US7018543B2 (en) Waste water treating method and waste water treating apparatus
US11986838B2 (en) Composition and method for treating and remediating aqueous waste streams
US5169532A (en) Method for biological removal of cyanides, thiocyanate and toxic heavy metals from highly alkaline environments
WO2006112521A1 (en) Method of electrolyzing wastewater containing ammonia nitrogen and apparatus therefor
US7300591B2 (en) Wastewater treating method and wastewater treating apparatus
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
JPS62282692A (en) Activated sludge treatment of waste water
CA2372730A1 (en) Electrolytic phosphate chemical treatment method
CA3043664A1 (en) Method and apparatus for the nitrification of high-strength aqueous ammonia solutions
Keating et al. The recovery of soluble copper from an industrial chemical waste
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
Motos Bioelectrochemical metal recovery with microbial fuel cells
JP3118794B2 (en) Dissolution method of heavy metals from sludge
JPH08323391A (en) Treatment of selenium-containing water
KR100928790B1 (en) Wastewater treatment method using electrolysis of iron
JP3998530B2 (en) Waste water treatment method and waste water treatment equipment
WO2009012584A1 (en) Electrochemical removal of dissociable cyanides
JP3631191B2 (en) Waste water treatment apparatus and waste water treatment method
JP2005193129A (en) Method and apparatus for removing arsenic by electrochemical treatment
Nakajima et al. Reduction of coagulant amount added to activated sludge for phosphorus removal
Shao et al. Removal of phosphate from wastewater by Fe-C micro-electrolysis: application of a novel integrated Fe/C aggregate
Reinsel et al. Anoxic biotreatment cell (ABC) for removal of nitrate and selenium from mining effluent waters
Shelp et al. A demonstration of the feasibility of treating acid mine drainage by an in situ electrochemical method