JPS62282016A - Highly stereoregular acrylic fiber - Google Patents

Highly stereoregular acrylic fiber

Info

Publication number
JPS62282016A
JPS62282016A JP61120242A JP12024286A JPS62282016A JP S62282016 A JPS62282016 A JP S62282016A JP 61120242 A JP61120242 A JP 61120242A JP 12024286 A JP12024286 A JP 12024286A JP S62282016 A JPS62282016 A JP S62282016A
Authority
JP
Japan
Prior art keywords
fibers
modulus
young
pan
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61120242A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamazaki
斉 山崎
Kenji Kamiide
上出 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61120242A priority Critical patent/JPS62282016A/en
Publication of JPS62282016A publication Critical patent/JPS62282016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:Acrylic fibers, obtained from an acrylic polymer having a high and specific value or above of isotactic fraction and specific value or above of Young's modulus as well as improved dissolution characteristics and having high Young's modulus and melting point as well as improved mechanical properties. CONSTITUTION:A blend prepared by adding a chain transfer agent, e.g. mercaptan, etc., to a canal complex of urea with acrylonitrile is subjected to radiation- induced polymerization and fibers are produced from the resultant blend by a conventional method for producing fibers. Thereby acrylic fibers having >=50% isotactic fraction specified by <13>C-NMR and >=100g/d Young's modulus are obtained. The molar ratio of the acrylonitrile to the urea is preferably 1:1-1:3 and the amount of added chain transfer agent is preferably 0.01-3.0 (molar ratio).

Description

【発明の詳細な説明】 3、発明の詳細な説明      、  7〔産業上の
利用分野〕          一本発、811は、ア
イソタクチック分率・が俸めて高く、しかもヤング率の
高いポリアクリロニトリル牽、繊維に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention, 7 [Industrial Application Fields] Ippo 811 is a polyacrylonitrile driver with a high isotactic fraction and a high Young's modulus. , concerning fibers.

〔従来の技術〕−,、 アクリル系繊維(以後、PAN繊維と略、記する)は、
一般に、耐候性や、耐薬品性に優れ、羊毛に類似した柔
らかい、嵩高の暖かみのある感触を与、える点で、従来
より広く衣料用権維として利用されている。しかしなが
ら、これらの優れた特性にもかかわらず、織物用途や産
業資材分針での利用度は極めて低い。この理由は、織物
にした場合、腰がなく、反発性に乏しい欠点に加えて、
アイロンをかける際に”熱へた。ルーと呼ばれる致命的
機械特性の、低下をきたす欠点を有しているからである
。また、温熱状lあるいは高温乾熱状態での、強度、ヤ
ング率、寸法安定性の低さが、従来のPAN繊維の産業
資材分野への展開を規制、しているのである。これらの
致命的、欠点は、現在利用されているPAN繊細の原料
ポリマーの本質的な構造の欠陥に根ざしている。即、ち
、従来のポリ・ア、クリタ系ポリマー(以後、PANと
略記する)は、レドックス系触媒−を諌用して重合され
るため、アクリロ場、) IJ /L/ (以後、A、
Nと略記する。)モノマニの3つの連なシの態様で規定
されるトリアット分率のうちアイツタ・り、チック分率
の低さが1つの大きな要因となっている。PANはモノ
マ一連鎖がメソ(以後、mと略記する)又は、ラセモ(
以後、rと略記する)配置でつながって分子が構成され
る為、高度に立体規則性の高い重合体を得ることが原理
的に可能であシ、最終製品の繊維的特性を飛躍的に向上
させることが期待されている。立体規則性の改良でその
機械的%性の向上に成功した例としては、ポリノロ上0
レンがよく知られている。
[Prior art] Acrylic fiber (hereinafter abbreviated as PAN fiber) is
In general, it has been widely used as a textile for clothing because it has excellent weather resistance and chemical resistance, and gives a soft, bulky, and warm feel similar to wool. However, despite these excellent properties, its utilization in textile applications and industrial material minutes needles is extremely low. The reason for this is that in addition to the disadvantages of woven fabrics, which lack elasticity and poor resilience,
This is because ironing has the disadvantage of causing a fatal decrease in mechanical properties called roux.Also, in hot or dry heat conditions, strength, Young's modulus, Low dimensional stability restricts the development of conventional PAN fibers in the industrial material field. It is rooted in structural defects.In other words, because conventional poly-acrylic polymers (hereinafter abbreviated as PAN) are polymerized using a redox catalyst, the acrylic field (IJ) /L/ (Hereafter, A,
It is abbreviated as N. ) One of the major factors is the low tick fraction among the triat fractions defined by the three consecutive aspects of the monomani. In PAN, one monomer chain is meso (hereinafter abbreviated as m) or racemo (
Since the molecules are composed of molecules connected in the configuration (hereinafter abbreviated as r), it is theoretically possible to obtain polymers with highly stereoregularity, which dramatically improves the fibrous properties of the final product. It is expected that An example of successful improvement of mechanical properties by improving stereoregularity is Polynoro U0
Ren is well known.

前述したように、PANをレドックス系触媒で重合する
とmで連なる確率とrで連なる確率が格絡等しくなシ、
アイソタクチック分率は理論的にも25〜28優位にし
かならない。アイソタクチック分率が50%以上のPA
N重合体は、尿素とAN・のカナルコンブレックスを極
低温で放射線重合することによって得られる。一般的に
、アイソタクチック分率が高くなると、溶媒に対する溶
解度は極度に低下する。しかも、この重合体は、分子量
も高く、これt溶解して成形用ドープにすることが甚だ
困難なために、現在に到るまで機械的特性、の優れた繊
維に成形できなかった。
As mentioned above, when PAN is polymerized with a redox catalyst, the probability that it will be connected at m and the probability that it will be connected at r are equal to each other.
Theoretically, the isotactic fraction is only 25 to 28 predominant. PA with an isotactic fraction of 50% or more
The N polymer is obtained by radiation polymerization of a canal complex of urea and AN. at extremely low temperatures. Generally, as the isotactic fraction increases, solubility in solvents decreases extremely. Moreover, this polymer has a high molecular weight, and it is extremely difficult to dissolve it into a molding dope, so that until now it has not been possible to mold it into fibers with excellent mechanical properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、かかる従来技術の欠点を考慮して鋭意検
討した結果、本発明に到達したものである。即ち、本発
明の目的は、溶解特性の改良された上記のアイソタクチ
ック分率の高いPAN系重合体から得られる、高ヤング
率、高融点を持つことを特徴とするPAN系繊細繊維供
することにある。
The present inventors have arrived at the present invention as a result of intensive studies taking into account the drawbacks of the prior art. That is, an object of the present invention is to provide a PAN-based delicate fiber characterized by a high Young's modulus and a high melting point, obtained from the above-mentioned PAN-based polymer with improved dissolution characteristics and a high isotactic fraction. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明のPAN繊維は、それを重水素化ジメチル
スルホ午シト(以下、DMSOd6と略記する)中に溶
解した溶液の C−NMRのシアンカーボンピーク強度
から算定されるアイソタクチック分率が50%以上であ
ムかつ、ヤング率が100 、!il/d以上のPAN
系繊細繊維び上記アイソタクチック分率が60%以上で
水存在下での融点が185℃以上を示す湿熱下での寸法
安定性の改良されたPAN繊維である。
That is, the PAN fiber of the present invention has an isotactic fraction calculated from the cyan carbon peak intensity of C-NMR of a solution of the PAN fiber dissolved in deuterated dimethyl sulfonate (hereinafter abbreviated as DMSOd6). It is 50% or more, and Young's modulus is 100! PAN greater than il/d
The PAN fiber has an isotactic fraction of 60% or more and a melting point of 185° C. or more in the presence of water, and has improved dimensional stability under moist heat.

本発明に規定するアイソタクチック分率とは3つのAN
モノマー残基連鎖がすべてm配置で連なった部分の分率
をさす。上記分率の具体的評価方法t−第1図および第
2図に従って説明する。第1図には本発明の繊維の例の
、そして第2図には従来のPAN繊維の”C−NMRス
ペクトル?示す。ピーク上の記号は上山らの方法(ポリ
マージャーナル、17巻、1291頁(1985))で
帰属したペンタッドタクチシチーに基ずくピーク同定で
ある。この全ピーク強度に対するm m In m r
 mm m r +rmmrの3つのピークの強度の合
計の割合がアイソタクチック分率である。
The isotactic fraction defined in the present invention is defined by three AN
It refers to the fraction of all monomer residue chains connected in the m configuration. A concrete evaluation method of the above-mentioned fraction will be explained according to FIGS. 1 and 2. Figure 1 shows the C-NMR spectrum of an example of the fiber of the present invention, and Figure 2 shows the C-NMR spectrum of a conventional PAN fiber. (1985)) is the peak identification based on the pentad tacticity.
The ratio of the sum of the intensities of the three peaks mm m r +r mmr is the isotactic fraction.

この測定に際しては、分解能を上げ、定量性をもたせる
ため、特にシアノカーがン領域(119〜121 pp
m : TMS基準)のみに着目し、そのピークを中心
に±500Hzi観測する。装置としては日本電子製フ
ーリエ変換NMR(FX−200)を使用し、溶媒とし
ては重水素化ツメチルスルホキシドを用い、試料濃度を
3〜20重量%に調整する。測定条件としては、温度8
0℃、観測周波数幅1000Hz、データーポイント1
6 K、A?にス幅6.5μ5(45°)、ノヤルス遅
延時間2.5μs、サンプリング時間8.1m、積算回
数64X10〜64X100に設定する。
In this measurement, in order to increase the resolution and provide quantitative performance, we especially focused on the cyanocarbon region (119 to 121 ppp
m: TMS standard) and observe at ±500 Hz around the peak. A Fourier transform NMR (FX-200) manufactured by JEOL Ltd. is used as an apparatus, deuterated trimethyl sulfoxide is used as a solvent, and the sample concentration is adjusted to 3 to 20% by weight. The measurement conditions were a temperature of 8
0℃, observation frequency width 1000Hz, data point 1
6 K, A? The width is set to 6.5 μ5 (45°), the Noyals delay time is 2.5 μs, the sampling time is 8.1 m, and the number of integrations is set to 64×10 to 64×100.

本発明のPAN繊維は、その高いアイソタクチック性の
ため、隣接ANモノマー残基中のシアノ基間で強い相互
作用を峙ち、しかも同時に分子間での相互作用にも規則
性を持つため、従来のPAN繊維に比べ著しく結晶化度
も高い。また、隣接モノマー間での相互作用は、分子鎖
に剛直性を与えるため、高いヤング率発現の基盤となっ
ている。従来のPANと同様の紡糸法によって得られた
本発明の繊維はヤング率が従来のPAN 繊維のそれよ
シ約2倍の高さを示す。従って、上記のアイソタクチッ
ク分率が高くなればなる程、更に改良された機械特性の
発現が期待できる。そして、その一つが、従来のPAN
繊細に比べ水存在下での高い融点に示される。また、本
発明者らが既に、ポリマージャーナル、18巻、277
頁(1985)で、明らかにしたように、とのような高
立体規則性PANの粉体に対して、成る種の金属はm連
鎖部の長い部分に特異的、かつ、選択的に配位すること
が知られているため、本発明の繊維はそのドーゾ製造過
程や紡糸過程、更に製糸後の過程で特定金属を配位せし
めて、新規な機能を付与させることも可能である。隣接
子ツマー間の強い相互作用は本発明のPAN繊維が炭素
繊維原料としても優秀な性能を発現することを暗示させ
る。
Due to its high isotactic property, the PAN fiber of the present invention faces strong interactions between cyano groups in adjacent AN monomer residues, and at the same time has regular interactions between molecules. It also has a significantly higher degree of crystallinity than conventional PAN fibers. In addition, the interaction between adjacent monomers provides rigidity to the molecular chain, which is the basis for the expression of a high Young's modulus. The fibers of the present invention obtained by the same spinning method as conventional PAN fibers exhibit a Young's modulus approximately twice as high as that of conventional PAN fibers. Therefore, the higher the above isotactic fraction, the more improved mechanical properties can be expected. One of them is the conventional PAN
It is indicated by a higher melting point in the presence of water than delicate. In addition, the present inventors have already reported Polymer Journal, Vol. 18, 277
(1985), for highly stereoregular PAN powders such as Therefore, it is possible to impart new functions to the fibers of the present invention by coordinating specific metals during the dosing process, spinning process, or even after spinning. The strong interaction between adjacent children suggests that the PAN fiber of the present invention exhibits excellent performance as a raw material for carbon fiber.

この様に^い機能を持つ本発明のPAN繊維の原料重合
体は、例えば、以下のようにして得られる。
The raw material polymer for the PAN fiber of the present invention having such excellent functions can be obtained, for example, as follows.

先に記述した尿素とANとのカナルコンプレックスを放
射線重合するに際して、連鎖移動剤の存在下に放射線重
合すれば、容易に本発明の繊維の原料を得ることができ
る。ここで言う連鎖移動剤とは、例えば、エチルメルカ
プタン、れ−ブチルメルカプタン、イソグロビルメルカ
ノタン等のメルカプタン類、エチルスルフィド、メチル
テトラスルフィド、ブチルスルフィド等のスルフィド類
、ハイドロキノン、ハイドロキノンノアセテート等のハ
イドロキノン類、トリエチルアミン、トリエチルアミン
等のアミン類、四塩化炭素、四臭化炭素などのハロダン
化炭素類、ビニルピリジン、アクリル酸メチル、メタア
クリル酸メチル等のビニル化合物などである。これらの
連鎖移動剤は得られる重合体の過度の分子量増加を制御
するとともに、場合によりてはアイソタクチック分率を
高めることもできる。使用量はANに対して0.01〜
5モルチ程度が好適である。よシ効果的な分子量低下と
アイソタクチック分率の向上といった観点から眺めると
メルカプタン類の使用がよシ好ましい。
When the canal complex of urea and AN described above is subjected to radiation polymerization in the presence of a chain transfer agent, the raw material for the fiber of the present invention can be easily obtained. The chain transfer agents mentioned here include, for example, mercaptans such as ethyl mercaptan, le-butyl mercaptan, and isoglobil mercanotan, sulfides such as ethyl sulfide, methyltetrasulfide, butyl sulfide, hydroquinone, hydroquinone noacetate, etc. These include hydroquinones, amines such as triethylamine and triethylamine, carbon halides such as carbon tetrachloride and carbon tetrabromide, and vinyl compounds such as vinylpyridine, methyl acrylate and methyl methacrylate. These chain transfer agents can control an excessive increase in the molecular weight of the resulting polymer and, in some cases, can also increase the isotactic fraction. Usage amount is 0.01~ for AN
Approximately 5 molti is suitable. From the viewpoint of effectively reducing the molecular weight and increasing the isotactic fraction, it is preferable to use mercaptans.

これら連鎖移動剤は、ANに溶解又は分散させて尿素と
の錯体を生成させる時に混入させることができる。AN
と尿素との比率は1:1〜1:3(モル比)が好適であ
シ、連鎖移動剤の添加量はANK対し0.01〜3.0
(モル比)が好ましい。
These chain transfer agents can be mixed into AN when it is dissolved or dispersed in AN to form a complex with urea. AN
The ratio of ANK to urea is preferably 1:1 to 1:3 (molar ratio), and the amount of chain transfer agent added is 0.01 to 3.0 to ANK.
(molar ratio) is preferred.

また、放射線源としては、エックス線、ガンマ線が用い
られ、特にガンマ線を用いy照射線量0.5×10〜8
×10 レントダンの範囲で照射するのが適尚である。
In addition, as a radiation source, X-rays and gamma rays are used, and in particular gamma rays are used, and the y irradiation dose is 0.5 × 10 to 8
It is appropriate to irradiate within the range of ×10 rents.

重合に際しては、先ずANと連鎖移動剤、尿素を混合し
、−50℃以下に冷却し、およそ5日間静置した後、低
温のまま、例えば、ガンマ線を照射する。
For polymerization, first, AN, a chain transfer agent, and urea are mixed, cooled to -50° C. or below, left to stand for about 5 days, and then irradiated with, for example, gamma rays while the temperature remains low.

このようにして作成したPAN重合体の繊維化は、従来
のPAN@鞄の形成と同様に、硝酸、塩化亜鉛、チオシ
アンナトリウム等の水溶液、ジメチルホル゛ムアミド、
ジメチルスルホキ7ド等に溶解して、湿式法で紡糸する
のが最も好適である。−例としで、硝酸水溶液を溶剤と
する場合、濃度60〜80%の硝酸水溶液100部に対
して重合体を10〜40部溶解し、紡糸原液とする。こ
の紡糸原液を紡口よシ40〜48チ硝酸水溶液よシなる
凝固浴中に押し出し、凝固させて繊維とする。この繊維
を水洗して、熱水中で10倍程度に延伸した後、乾燥す
る。乾燥した繊維はそのままでも使用できるが、必要に
応じて、再延伸や、湿潤状態や乾燥状態で熱処理を行う
ことも勿論可能である。
Fiberization of the PAN polymer created in this way is carried out using an aqueous solution of nitric acid, zinc chloride, sodium thiocyanate, etc., dimethylformamide,
Most preferably, it is dissolved in dimethyl sulfoxide or the like and spun by a wet method. - For example, when a nitric acid aqueous solution is used as a solvent, 10 to 40 parts of the polymer is dissolved in 100 parts of a nitric acid aqueous solution having a concentration of 60 to 80% to prepare a spinning dope. This spinning dope is extruded through the spinneret into a coagulation bath of 40-48% nitric acid aqueous solution and coagulated to form fibers. The fibers are washed with water, stretched approximately 10 times in hot water, and then dried. The dried fibers can be used as they are, but of course they can be re-stretched or heat-treated in a wet or dry state, if necessary.

上記の方法で作成した本発明のPAN繊維は、従来のP
AN繊維の弾性率40〜859/rlに比べて、2倍乃
至それ以上の100〜300 Vdk示す。
The PAN fiber of the present invention produced by the above method is different from conventional P
It exhibits an elastic modulus of 100 to 300 Vdk, which is twice or more than that of AN fiber, which is 40 to 859/rl.

また、引張強度も従来繊維の3.5〜5.09/dに対
し、本発明の繊維は5,0〜10.0Vdもしくはそれ
以上を示す。即ち、本発明の繊維は従来にない高弾性率
、高強度のPAN繊維である。また、水の存在下での融
点、たとえば示差走査型熱量針(D8C)で繊維に対し
78を同重量存在せしめた条件で融点(融解ピーク温度
)を測定すると、本発明の繊維の融点は185℃以上で
あシ、従来のPANの融点は185℃未満である。した
がって、本発明の繊維は水存在下における耐熱性が良く
、繊維や編物にした場合の「熱へたシ」も従来の繊維に
比べて少ない。
Furthermore, the tensile strength of the fibers of the present invention is 5.0 to 10.0 Vd or more, compared to 3.5 to 5.09 Vd for conventional fibers. That is, the fiber of the present invention is a PAN fiber with a high elastic modulus and high strength, which is unprecedented. Furthermore, when the melting point (melting peak temperature) is measured in the presence of water, for example, using a differential scanning calorimetry needle (D8C) under the condition that the same weight of 78 is present in the fiber, the melting point of the fiber of the present invention is 185. The melting point of conventional PAN is less than 185°C. Therefore, the fibers of the present invention have good heat resistance in the presence of water, and when made into fibers or knitted fabrics, they suffer from less "heat deterioration" than conventional fibers.

〔実施例〕〔Example〕

次に実施例t−あげて本発明を更に説明する。 Next, the present invention will be further explained with reference to Example t.

実施例I AN56IIに、表4に示した量の連鎖移動剤を加え、
ANと予めメタノール/水系で再結晶して精製した尿素
と七モル比で1:1.5の割合で2J容のジ為ア瓶に入
れ、混合し、密閉したものを各条件毎に10個用意し、
−78℃にドライアイスを用いて冷却しつつ6日間静置
した。次に、−78℃で10000キエーリーのガンマ
線を照射線量率1.6X10 レントゲン/時で170
分照射した。
Example I To AN56II was added the amount of chain transfer agent shown in Table 4,
AN and urea purified by recrystallization in a methanol/water system in advance at a 7 molar ratio of 1:1.5 were placed in a 2 J capacity jar, mixed, and sealed, 10 pieces for each condition. Prepare,
It was left standing for 6 days while being cooled to -78°C using dry ice. Next, 10,000 Chieri gamma rays were irradiated at -78°C at a dose rate of 1.6 x 10 roentgens/hour and 170
It was irradiated for 1 minute.

次いで、反応物ta水及びメタノールで洗浄し、尿素を
完全に除去した。得られたPAN重合体のアイソタクチ
ック分率及び重量平均分子量My f表1に並記した。
Next, the reaction product was washed with water and methanol to completely remove urea. The isotactic fraction and weight average molecular weight My f of the obtained PAN polymer are listed in Table 1.

得られたPAN i各々68重量%硝酸水溶液100g
に対し16gの割合で溶解し、紡糸原液とした。次いで
、45重量%硝酸水痔液上pなる凝固浴中に孔径0.3
so++、孔数100の紡口よシ吐出し、凝固させ、水
洗した後、90℃の熱水中で2.2倍の延坤を3回線シ
返し、単繊維の繊度が3dの繊維金得た。各繊維の引張
強度、ヤング率、水共存下の融点及び融解熱を表1に併
記した。表から明らかなように、本発明のPAN繊維は
、強度、ヤング率が高く、水共存下の融点が高いため熱
へたシも少なく、また結晶化度も高い。
100 g of 68% by weight nitric acid aqueous solution for each of the obtained PAN i
It was dissolved in a proportion of 16 g to obtain a spinning stock solution. Then, the pore size was 0.3 in a coagulation bath of 45 wt% nitric acid hydrohemorrhoid solution.
So++, discharged through a spinneret with 100 holes, coagulated, washed with water, rolled in 90℃ hot water 2.2 times and rolled 3 times to obtain a fiber with a single fiber fineness of 3d. Ta. The tensile strength, Young's modulus, melting point in the presence of water, and heat of fusion of each fiber are also listed in Table 1. As is clear from the table, the PAN fiber of the present invention has high strength and Young's modulus, has a high melting point in the coexistence of water, has little thermal deterioration, and has a high degree of crystallinity.

以下余白 なお表1に示したMw、引張強度、ヤング率、融点、融
解熱の測定は下記のように行なった。
The Mw, tensile strength, Young's modulus, melting point, and heat of fusion shown in Table 1 were measured as follows.

(My ) 光散乱法によるもので、装置はユニオン技研製LS60
1を使用し、特級ノメチルスルポキシドを溶媒とした。
(My) It is based on the light scattering method, and the device is Union Giken LS60.
1 was used, and special grade nomethyl sulfoxide was used as the solvent.

入射光は、He −N・レーデ−で波長は633 n1
m、温度25℃である。また示差屈折率arl//aO
の測定は、ユニオン技研製RM102型金使用した。
The incident light is He-N Radhe with a wavelength of 633 n1
m, and the temperature was 25°C. Also, the differential refractive index arl//aO
For the measurement, an RM102 mold made by Union Giken was used.

〔強度、ヤング率〕[Strength, Young's modulus]

東洋e −莞リイン社製テンシロンUTM−II屋を使
用し、試料長10aq、引張速度100%/min。
A Tensilon UTM-II machine manufactured by Toyo e-Guan Rein Co., Ltd. was used, the sample length was 10 aq, and the tensile speed was 100%/min.

20℃、65%RHで測定した。強度は破断時の強度、
ヤング率は伸度3%時の強伸度曲線の接線よシ求めた。
Measurement was performed at 20° C. and 65% RH. Strength is the strength at break;
Young's modulus was determined from the tangent to the strength and elongation curve at an elongation of 3%.

〔水共存下の融点、融解熱〕[Melting point, heat of fusion in the presence of water]

セイコー電子工業社製DsczOB1表差走査熱量針を
用い、試料10■、水1oダt−銀製密封セルに入れて
密封し、昇温速度57m1nで融解曲線を測定した。融
点は融解ピークi度とし、融解熱は融解開始温度と融解
開始温度における融解曲線上の点を直線で結び、融解ピ
ーク面積から算出した。
Using a DsczOB1 transverse scanning calorimetry needle manufactured by Seiko Electronics Co., Ltd., 10 ml of sample was placed in a T-silver sealed cell with 1 ml of water and sealed, and the melting curve was measured at a heating rate of 57 ml. The melting point was defined as i degrees of the melting peak, and the heat of fusion was calculated from the melting peak area by connecting the melting start temperature and the points on the melting curve at the melting start temperature with a straight line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はDMSO−d6に溶媒とした時の
PANのシアンカーボン領域における13C−NMRス
ペクトルであり、図中に立体規則性の帰属を示した。 第1図は本発明の繊維の1例の、そして第2図は従来の
PAN繊細の1例のスペクトルである。
Figures 1 and 2 are 13C-NMR spectra in the cyan carbon region of PAN when DMSO-d6 was used as a solvent, and stereoregularity assignments are shown in the figures. FIG. 1 is a spectrum of an example of a fiber of the present invention, and FIG. 2 is a spectrum of an example of a conventional PAN fiber.

Claims (1)

【特許請求の範囲】 1、^1^3C−NMRで規定されるアイソタクチック
分率が50%以上であり、かつ、ヤング率が100g/
d以上であることを特徴とするポリアクリロニトリル系
繊維。 2、^1^3C−NMRで規定されるアイソタクチック
分率が60%以上であり、かつ、水存在下での融点が1
85℃以上であることを特徴とする特許請求の範囲第1
項記載の繊維。
[Claims] 1. The isotactic fraction defined by ^1^3C-NMR is 50% or more, and the Young's modulus is 100 g/
d or more. 2. The isotactic fraction defined by ^1^3C-NMR is 60% or more, and the melting point in the presence of water is 1
Claim 1 characterized in that the temperature is 85°C or higher.
Fibers as described in Section.
JP61120242A 1986-05-27 1986-05-27 Highly stereoregular acrylic fiber Pending JPS62282016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120242A JPS62282016A (en) 1986-05-27 1986-05-27 Highly stereoregular acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120242A JPS62282016A (en) 1986-05-27 1986-05-27 Highly stereoregular acrylic fiber

Publications (1)

Publication Number Publication Date
JPS62282016A true JPS62282016A (en) 1987-12-07

Family

ID=14781358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120242A Pending JPS62282016A (en) 1986-05-27 1986-05-27 Highly stereoregular acrylic fiber

Country Status (1)

Country Link
JP (1) JPS62282016A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065434A1 (en) * 2003-01-23 2004-08-05 Teijin Limited Polymer for carbon fiber precursor
CN100415780C (en) * 2003-01-23 2008-09-03 帝人株式会社 Polymer for carbon fiber precursor
CN109810222A (en) * 2017-11-22 2019-05-28 财团法人工业技术研究院 The preparation method of carbon fiber precursor composition and carbon fiber predecessor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017106B1 (en) * 1970-12-16 1975-06-18
JPS6021905A (en) * 1983-07-15 1985-02-04 Toray Ind Inc Acrylic fiber having high strength and elastic modulus and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017106B1 (en) * 1970-12-16 1975-06-18
JPS6021905A (en) * 1983-07-15 1985-02-04 Toray Ind Inc Acrylic fiber having high strength and elastic modulus and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065434A1 (en) * 2003-01-23 2004-08-05 Teijin Limited Polymer for carbon fiber precursor
US7338997B2 (en) 2003-01-23 2008-03-04 Teijin Limited Polymer for carbon fiber precursor
CN100415780C (en) * 2003-01-23 2008-09-03 帝人株式会社 Polymer for carbon fiber precursor
CN109810222A (en) * 2017-11-22 2019-05-28 财团法人工业技术研究院 The preparation method of carbon fiber precursor composition and carbon fiber predecessor
CN109810222B (en) * 2017-11-22 2021-03-30 财团法人工业技术研究院 Carbon fiber precursor composition and preparation method of carbon fiber precursor

Similar Documents

Publication Publication Date Title
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JPS5837407B2 (en) Synthetic filaments and fibers with high moisture absorption and water retention capacity
JPS62282016A (en) Highly stereoregular acrylic fiber
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
US3846226A (en) High luster,antisoiling acrylic fibers
EP0397394B1 (en) Stereoregular acrylonitrile polymer and composition comprising same
JP2885474B2 (en) Stereoregular acrylonitrile polymer and composition for molding stereoregular acrylonitrile polymer
JPH0376823A (en) Production of acrylonitrile polymer-based carbon fiber
US3121606A (en) Method of manufacturing colored oriented articles from acrylonitrile polymers and copolymers
JPH08269814A (en) Flame retardant acrylic synthetic fiber excellent in weather resistance
JPH0284504A (en) Polyvinyl alcohol fiber suitable as reinforcing material
US3597501A (en) Acrylic synthetic fibers having novel structure
JPS6285012A (en) Production of acrylonitrile based synthetic fiber
JP2858925B2 (en) Method for producing hot water-resistant polyvinyl alcohol fiber
JPS62277413A (en) Highly stereo-regular acrylic polymer suitable for molding
JP2869137B2 (en) Method for producing polyvinyl alcohol fiber excellent in hot water resistance
JPS60199912A (en) Spinning of cellulose solution
KR910009697B1 (en) Manufacturing process of polyacrylonitrile fiber
US2511060A (en) Water-sensitive cellulose derivatives
JP2761097B2 (en) Method for producing flame-retardant acrylic fiber
JP2868612B2 (en) Glycoside fiber
JPH0441708A (en) Production of acrylic fiber having high water retention ratio
JPH08325832A (en) Hygroscopic antistatic acrylonitrile fiber
JPH07216640A (en) Acrylic synthetic yarn having excellent yellowing resistance