JPS62281460A - Organic thin-film resistance element - Google Patents

Organic thin-film resistance element

Info

Publication number
JPS62281460A
JPS62281460A JP61123531A JP12353186A JPS62281460A JP S62281460 A JPS62281460 A JP S62281460A JP 61123531 A JP61123531 A JP 61123531A JP 12353186 A JP12353186 A JP 12353186A JP S62281460 A JPS62281460 A JP S62281460A
Authority
JP
Japan
Prior art keywords
film
monomolecular
substrate
organic thin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61123531A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takimoto
瀧本 清
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61123531A priority Critical patent/JPS62281460A/en
Priority to US07/051,368 priority patent/US4780790A/en
Priority to GB8711810A priority patent/GB2190792B/en
Publication of JPS62281460A publication Critical patent/JPS62281460A/en
Priority to GB9006910A priority patent/GB2231201B/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an organic thin-film resistance element, both an insulating layer and a conductor layer of which consist of an organic substance and which is manufactured easily, by laminating a resistor containing the conductive monomolecular film of organic molecules having both a hydrophilic section and a hydrophobic section or deposit films thereof onto a substrate. CONSTITUTION:A resistor containing the conductive monomolecular film of organic molecules 18 having both hydrophilic sections 16 and hydrophobic sections 17 or deposit films thereof is laminated on a substrate 12. A substance such as bistetracyanoquinodimethane-docosyl piridium is used as the constituent molecule of the resistor, the substance is dissolved into the mixed solvent of acetonitrile and benzene, and developed onto a water phase 11, the solvent is evaporated and removed, and surface pressure is increased, thus forming a monomolecular film. The clean glass substrates 12 previously dipped in the water phase 11 is pulled up slowly in the direction crossing a water surface, and dipped gently, and the process is repeated, thus depositing the monomolecular films of predetermined layers. The monomolecular deposit films 7 are trimmed by employing an Ar laser, and notched 19, thus adjusting a resistance value, then acquiring an organic thin-film resistance element.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は、有機材料を用いて構成された抵抗素子に関す
るものであり、より詳〈は単分子膜累積法によって形成
された薄膜抵抗素fに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a resistive element constructed using an organic material, and more specifically relates to a resistive element formed by a monomolecular film accumulation method. Regarding the thin film resistor element f.

〔従来の技術〕[Conventional technology]

従来、回路素子の素材は、無機物の利用が極めて多く、
有機材の利用はわずかに絶縁体、誘電体に限られていた
。無機物を用いて、電子回路構成上必要な抵抗、コンデ
ンサー等の受動素子のうち、特に薄膜抵抗については従
来、金属、合金、金属窒化物、サーメットなどの材料と
して形成され、2次元的なトリミングによって抵抗値が
調整されている。
Traditionally, inorganic materials have been used extremely often as materials for circuit elements.
The use of organic materials has been limited to insulators and dielectrics. Among passive elements such as resistors and capacitors that are necessary for electronic circuit configurations using inorganic materials, thin film resistors in particular have traditionally been formed from materials such as metals, alloys, metal nitrides, and cermets, and are made by two-dimensional trimming. Resistance value is adjusted.

〔発明が解決しようとする問題点) しかしながら上記金属材料等の薄膜抵抗を作成するため
の手段である真空蒸着や反応性スパッタリング等は、必
ずしも簡単な方法ではなかった。
[Problems to be Solved by the Invention] However, methods such as vacuum evaporation and reactive sputtering, which are means for creating thin film resistors of the above-mentioned metal materials, are not necessarily simple methods.

また抵抗値の調節の範囲が限られていた。Furthermore, the range of adjustment of the resistance value was limited.

ところで近年、有機素材の研究が活発に行なわれ、単結
晶状態で金属伝導性を示すもの、更に極低温で超伝導を
示す物質が報告されている。また、半導体としての性質
を示す物質も報告されており、様々の電気的特性を有機
物質のみて具現することができる状況に至った。
Incidentally, in recent years, research on organic materials has been actively conducted, and materials that exhibit metallic conductivity in a single-crystal state and substances that exhibit superconductivity at extremely low temperatures have been reported. In addition, substances that exhibit properties as semiconductors have been reported, and a situation has come to pass where it is possible to realize various electrical properties using only organic substances.

具体的には近年、テトラシアノキノシメタン(T(:N
Q)を電子受容体とした有機金属化合物て、ビスーテト
ラシアノキノジメタンートコシルビリジニウム(CH3
+ CH2÷、b[TCNQ] 2 )のようにe 疎水性部位として長鎖アルキル基を持った両親媒性電荷
移動錯体が水面上て単分子膜を形成し、該単分子膜を一
層ずつ累積することにより単分子累積膜か作成できるこ
とか報告されている(絶縁材料、電子材料合同研究会資
料+985/I l/、、15、P29〜38)。該単
分子累積膜は膜面に平行な方向の電導度はO,IS/c
+nという大きな値であり、一方膜に垂直な方向の電導
度はIQ−” S/cm程度であり、絶縁体としてふる
まうことが観測されている。
Specifically, in recent years, tetracyanoquinosimethane (T(:N
An organometallic compound with Q) as an electron acceptor, bis-tetracyanoquinodimethane tocosylviridinium (CH3
+ CH2÷, b[TCNQ] 2) e An amphiphilic charge transfer complex with a long-chain alkyl group as a hydrophobic moiety forms a monomolecular film on the water surface, and the monomolecular film is accumulated layer by layer. It has been reported that a monomolecular cumulative film can be created by doing so (Insulating Materials and Electronic Materials Joint Study Group Material +985/Il/, 15, P29-38). The monomolecular cumulative film has an electrical conductivity of O, IS/c in the direction parallel to the film surface.
+n, which is a large value, and the conductivity in the direction perpendicular to the film is about IQ-''S/cm, and it has been observed that it behaves as an insulator.

上記の単分子累積膜はラングミュア−プロジェット法(
LB法:新実験化学講座第18章498頁〜507頁、
丸善刊)により得られる。この方法の原理は下記のごと
くである。
The above monomolecular cumulative film is produced using the Langmuir-Prodgett method (
LB method: New Experimental Chemistry Course, Chapter 18, pages 498-507,
Maruzen Publishing). The principle of this method is as follows.

すなわち、親水基と疎水基とを併有する分子は、水面上
に展開しその面密度を適宜増してゆくと、親水性と疎水
性のバランスか適当な場合には、水面上で親水基を下に
向け、疎水基を上に向けて単分子膜を形成するに至る。
In other words, when a molecule that has both hydrophilic and hydrophobic groups expands on the water surface and increases its areal density appropriately, if the balance between hydrophilicity and hydrophobicity is appropriate, the hydrophilic groups are lowered on the water surface. A monomolecular film is formed with the hydrophobic groups facing upward.

つまり、このような分子は二次元粒子系として振舞い、
分子の面密度が低い場合には、一分子当りの面積(分子
占有面積)と表面圧の間には二次元理想気体の状態方程
式が成り立つ”気体膜”であり、表面圧を上げ分子の面
密度を高くすると分子間の相互作用が強まり、二次元固
体の”凝縮膜(または固体膜)”となる。この状態は分
子の配列、配向かきれいにそろい、高度な秩序性及び均
一性を有している。
In other words, such molecules behave as a two-dimensional particle system,
When the areal density of molecules is low, a two-dimensional ideal gas equation of state holds true between the area per molecule (molecular occupied area) and surface pressure, resulting in a "gas film" that increases the surface pressure and Increasing the density strengthens the interactions between molecules, resulting in a two-dimensional solid "condensed film (or solid film)". In this state, the molecules are arranged and oriented neatly, and have a high degree of order and uniformity.

このようにして形成される凝縮膜はガラス等の基板に移
しとることができ、同一基板に重ねて複数回単分子膜を
移しとることによって、単分子累積膜か得られる。基板
への移しとつの方法としては垂直浸漬法、水平付着法、
回転ドラム法などが知られている。
The condensed film thus formed can be transferred to a substrate such as glass, and a monomolecular cumulative film can be obtained by transferring the monomolecular film multiple times onto the same substrate. The methods of transferring to the substrate include vertical dipping method, horizontal adhesion method,
A rotating drum method is known.

このようなLB法は常温常圧下での薄膜作成法であると
ともに、累積I摸の膜厚を累積回数によって制御できる
点に特徴がある。
The LB method is a thin film forming method under normal temperature and normal pressure, and is characterized in that the film thickness of cumulative I-printing can be controlled by the cumulative number of times.

上記LB法によって作成される導電性薄膜は、電荷移動
錯体等からなる親水性部位と、長鎖アルキル基等からな
る疎水性部位とを存する分子によって構成される。、凝
縮膜の状態では、親水性部位は親水性部位を構成する電
荷移動錯体の電子雪の重なりか大きいため、膜面に平行
な方向に導電性を示す。また疎水性部位は、長鎖アルキ
ル基が絶縁性であり絶縁体部を形成する。したがって上
記LB法によって基板上に得られた累積膜は導電部と絶
縁体部を交互に積層した構成となる。
The conductive thin film created by the above-mentioned LB method is composed of molecules having a hydrophilic part made of a charge transfer complex or the like and a hydrophobic part made of a long-chain alkyl group or the like. In the state of a condensed film, the hydrophilic sites show conductivity in the direction parallel to the film surface because the overlap of the electron snow of the charge transfer complex constituting the hydrophilic sites is large. Further, in the hydrophobic portion, the long chain alkyl group is insulating and forms an insulator portion. Therefore, the cumulative film obtained on the substrate by the LB method has a structure in which conductive parts and insulating parts are alternately laminated.

本発明は、上記のような経緯に鑑み成されたものであり
、絶縁層と導電層の両方が有機物質からなり、その作製
方法か簡単である有機薄膜抵抗素子を提供することにあ
る。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an organic thin film resistance element in which both the insulating layer and the conductive layer are made of an organic material, and the manufacturing method thereof is simple.

(問題点を解決するための手段〕 本発明の上記目的は、基板上に、親木性部位と疎水性部
位の両方をあわせ持つ有機分子の導電性単分子膜又はそ
の累積膜を含む抵抗体が積層されている有機薄膜抵抗素
子によって達成される。
(Means for Solving the Problems) The above object of the present invention is to provide a resistor comprising a conductive monomolecular film of an organic molecule having both a phyllophilic part and a hydrophobic part or a cumulative film thereof on a substrate. This is achieved by an organic thin film resistive element in which a number of layers are stacked.

本発明の、(T機薄IIQ抵抗素子は、抵抗体に切り欠
きを入れる(パターンニング)ことにより抵抗値を調節
される。
The resistance value of the (T machine thin IIQ resistance element) of the present invention is adjusted by making notches (patterning) in the resistor.

本発明の実Mi態様を第1しI (a) 、 (b> 
を用いて説明する。
The first actual Mi aspect of the present invention is I (a), (b>
Explain using.

第1図(a) 、 (b)に示す有機薄膜抵抗素子は、
下地処理された基板上に、親水性部位と疎水性部位の両
方をあわせ持つ有機分子の導電性単分子膜が親水性(導
電性)部位が疎水性(絶縁性)部位をはさむように折り
畳まれて構成する連続導電帯域からなる抵抗体が積層さ
れてなる。
The organic thin film resistance element shown in FIGS. 1(a) and 1(b) is
A conductive monolayer of organic molecules that has both hydrophilic and hydrophobic regions is folded onto a surface-treated substrate so that the hydrophilic (conductive) region sandwiches the hydrophobic (insulating) region. A resistor body consisting of continuous conductive bands is laminated.

図中において、1は導電層、2は絶縁層、3はガラス基
板、4.6は取り出し電極、5は下地処理層であり、こ
こでいう導電層1と絶縁層2は、1つの両親媒性有機分
子についての微視的な導電性の部分と絶縁性の部分をい
う。
In the figure, 1 is a conductive layer, 2 is an insulating layer, 3 is a glass substrate, 4.6 is an extraction electrode, and 5 is a base treatment layer. refers to the microscopically conductive and insulating parts of organic molecules.

この連続導電帯域は、両親媒性有機分子の単分子膜の6
層からなる。基板から1層目と2 PTj目の単分子膜
は導電性部位を内側にして合わされており、1番目の導
電層をなしている。同様に基板から3層目と4層目の単
分子膜、および5層目と6層目の単分子膜により、2番
目の導電層、3番目の導電層が形成されている。そして
1層目と4層目の単分子膜は端部において2層目3層目
の単分予成を越えて導電部位において連結され、同様に
3層目と6層口の単分子膜も導電部位において連結され
ているので、1番目と2番目と3番目の導電層がつなが
り連続導電帯域が構成される。
This continuous conductive band consists of 6
Consists of layers. The first and second PTj monomolecular films from the substrate are combined with the conductive portions facing inside, forming the first conductive layer. Similarly, the third and fourth monomolecular films and the fifth and sixth monomolecular films from the substrate form a second conductive layer and a third conductive layer. The monomolecular films of the 1st and 4th layers are connected at the conductive part beyond the single preformed layers of the 2nd and 3rd layers at the ends, and similarly the monomolecular films of the 3rd and 6th layers are also connected. Since they are connected at the conductive site, the first, second, and third conductive layers are connected to form a continuous conductive zone.

上記のように絶縁層と導電層が交互に累積された状態で
折り畳まれた単分子累積膜は、折り畳みによる上下のパ
ターンニングと従来公知の平面方向のパターンニングを
併用した3次元パターンニングにより、導電性部位の導
電経路としての幅、長さを広範囲に調節可能である。抵
抗値は導電経路の幅に反比例し、長さに比例するため、
本発明の有機薄膜抵抗素子は抵抗値を広範囲に調整でき
るものである。
The monomolecular stacked film, which is folded with insulating layers and conductive layers stacked alternately as described above, is produced by three-dimensional patterning that combines vertical patterning by folding and conventional patterning in the planar direction. The width and length of the conductive portion as a conductive path can be adjusted over a wide range. Since the resistance value is inversely proportional to the width of the conductive path and proportional to its length,
The organic thin film resistance element of the present invention allows the resistance value to be adjusted over a wide range.

本発明において、抵抗体として用いる親水性部位及び疎
水性部位の両方を有する両親媒性の有機物質は公知であ
り、例えば、特開昭60−246357に開示された有
機金属化合物が使用できる。
In the present invention, the amphiphilic organic substance having both a hydrophilic site and a hydrophobic site used as a resistor is known, and for example, an organometallic compound disclosed in JP-A No. 60-246357 can be used.

本発明の有機薄膜抵抗素子を作製するための装置を第4
図(a) 、 (b)に示す。
The fourth apparatus for producing the organic thin film resistance element of the present invention is
Shown in Figures (a) and (b).

図中において、8は表面圧計であり、表面制御装置9に
つないで移動障壁10の移動制御を行ない一定の表面圧
を保つものである。11は水相で純水あるいは金属イオ
ンを含む水である。I2は成膜基板、13は成膜基板ホ
ルダーで上下することができるようになっている。
In the figure, 8 is a surface pressure gauge, which is connected to a surface control device 9 to control the movement of the moving barrier 10 to maintain a constant surface pressure. 11 is an aqueous phase, which is pure water or water containing metal ions. I2 is a film forming substrate, and 13 is a film forming substrate holder which can be moved up and down.

上記のような装置は下記のように操作される。A device as described above is operated as follows.

まず液面を清浄にし、ベンゼン、クロロホルム、アンド
ントリル−ベンゼン(j対1)なとの溶媒に溶かした導
電性分子または誘電性分子の溶液を液面上に滴下し、気
体膜を形成させる。次いで移動障壁lOを除々に左に動
かし分子が展開している液面の領域を次第に縮めて面密
度を増し、固体膜を形成させる。この単分子膜の状態は
表面圧センサー15によって液面上に展開されているm
分子膜の表面圧を測定することによって検知される。前
記、移動障壁lOの左右の動きは、この表面圧センサー
の測定値に基づいて制御される。一般に成膜基板12へ
の移しとるのに好適な単分7′膜の表面圧は15〜30
dyn/c+nとされているが、例えば膜構成物質の化
学構造、温度条件によっては好適な表面圧の値か上記範
囲゛からはみ出ることもあるので上記範囲は一応の目安
である。
First, the liquid surface is cleaned, and a solution of conductive or dielectric molecules dissolved in a solvent such as benzene, chloroform, andandhryl-benzene (j to 1) is dropped onto the liquid surface to form a gas film. Next, the moving barrier lO is gradually moved to the left to gradually reduce the area of the liquid surface where the molecules are spread, thereby increasing the areal density and forming a solid film. The state of this monomolecular film is determined by the surface pressure sensor 15.
It is detected by measuring the surface pressure of the molecular membrane. The horizontal movement of the moving barrier IO is controlled based on the measured value of this surface pressure sensor. Generally, the surface pressure of a single 7' film suitable for transfer to the film forming substrate 12 is 15 to 30.
dyn/c+n, but the above range is only a rough guideline, as the value of the surface pressure may be outside the above range depending on, for example, the chemical structure of the membrane constituents and temperature conditions.

上記状態下で成膜基板10を上下させることによって基
板の表面に当該固体膜となった単分子膜を付着させて移
し取ることができる。更に同一の成膜基板12に複数回
単分子膜を重ねて移し取ることによって単分子累積膜を
得ることかできる。
By moving the film-forming substrate 10 up and down under the above conditions, the monomolecular film that has become a solid film can be attached to the surface of the substrate and transferred. Furthermore, a monomolecular cumulative film can be obtained by stacking and transferring a monomolecular film a plurality of times onto the same film-forming substrate 12.

上記成j摸基板12の上下移動は通常O1〜Icm/w
inの速度で行なわれる。
The vertical movement of the above-mentioned sample board 12 is usually O1 to Icm/w.
This is done at a speed of in.

成膜基板10か親水性の場合は、単分子膜は第5図(a
)〜(C)に示すように移し取られる。
When the film-forming substrate 10 is hydrophilic, the monomolecular film is formed as shown in FIG.
) to (C).

すなわち、第5図(a)に示されるように成膜基板12
を液面下より上昇させてくると単分子膜は、その膜構成
分子の親水性部位16を成膜基板12側にして基板12
に付着して移し取られる。次いで成膜基板12を下降さ
せると第5図(b) に示されるように第2層目の単分
子膜が、そのj膜構成分子の疎水性部位17を基板12
側にして7g1層目の単分子上に付着して移し取られる
。再び成膜基板12を上昇させると第5図(C) に示
されるように第3層目の単分子膜が移し取られ、以下同
様にして累積されることになる。
That is, as shown in FIG. 5(a), the film forming substrate 12
When the monomolecular film is raised from below the liquid surface, the monomolecular film is formed on the substrate 12 with the hydrophilic sites 16 of the film constituent molecules facing the film forming substrate 12.
It adheres to and is transferred. Next, when the film-forming substrate 12 is lowered, the second layer monomolecular film transfers the hydrophobic sites 17 of the film constituent molecules onto the substrate 12, as shown in FIG. 5(b).
7g is attached to the first layer of monomolecules and transferred. When the film-forming substrate 12 is raised again, the third layer of monomolecular film is transferred as shown in FIG. 5(C), and is subsequently accumulated in the same manner.

ところで、上述のように液面上の単分子膜を成膜基板1
2に移し取ってゆくと、成膜基板12に移し取られた量
に応じて液面上の分子の面密度は低下し、表面圧も低下
してくることになる。これを放置すると液面上のm分子
膜が固体膜の状態を維持できなくなって基板10への移
し取りが不能となることも生じる。そこて、基板12へ
の単分子膜の移し取り操作中も前記圧力サンサー15で
移動障壁10の左むの動きが制御され、液面上のm分子
膜の表面圧が所定の一定圧を保つことかできるようにな
っている。即ち移動障壁lOは圧力センサー15て測定
された表面圧の微小増減に応答して、それを打ち消す量
だけ左右に動かされるものである。
By the way, as mentioned above, the monomolecular film on the liquid surface is deposited on the film-forming substrate 1.
2, the surface density of molecules on the liquid surface decreases in accordance with the amount transferred to the film forming substrate 12, and the surface pressure also decreases. If this is left unattended, the m-molecule film on the liquid surface may no longer be able to maintain the state of a solid film, making it impossible to transfer it to the substrate 10. Therefore, even during the transfer operation of the monomolecular film onto the substrate 12, the movement of the left side of the transfer barrier 10 is controlled by the pressure sensor 15, and the surface pressure of the m-molecular film on the liquid surface is maintained at a predetermined constant pressure. I am now able to do some things. That is, the moving barrier lO is moved left and right in response to a minute increase or decrease in the surface pressure measured by the pressure sensor 15 by an amount that cancels out the slight increase or decrease in the surface pressure.

〔実施例〕〔Example〕

以下に本発明の具体的実施例を挙げる。 Specific examples of the present invention are listed below.

実施例1 第2図(a)〜(c)に平面模式図を示すような構成の
有機薄膜抵抗素子を第4図(a) 、 (b)に示−・
j−ような装置を使用して形成した。
Example 1 An organic thin film resistance element having the structure shown in schematic plan views in FIGS. 2(a) to (c) is shown in FIGS. 4(a) and (b).
It was formed using a device such as J-.

抵抗体の構成分子として、ビステトラシアツキベンゼン
の1対1混合溶媒にImglollの濃度で溶かした後
、にH(:03でpH6,8に調整されたCdCl24
度4X10″raol/l 、水温17℃の第3図(a
)の装置の水相上に展開した。
As a constituent molecule of the resistor, after dissolving it in a 1:1 mixed solvent of bis-tetracyazukibenzene at a concentration of Imgloll, it was added with CdCl24 adjusted to pH 6.8 with H (:03).
Figure 3 (a
) was developed on the aqueous phase of the apparatus.

溶媒のアセトニトリル、ベンゼンを蒸発除去した後、表
面圧を20dyn/cmまで高め、単分子膜を形成した
。表面圧を一定に保ちながら、あらかじめ水相中に浸漬
してあった清浄なガラス基板(10mmx 30mm)
を水面を横切る方向に速度5mm/n+inで静かに引
き上げ、続いて速度5mm/minで静かに浸漬する。
After the solvents acetonitrile and benzene were removed by evaporation, the surface pressure was increased to 20 dyn/cm to form a monomolecular film. A clean glass substrate (10 mm x 30 mm) was previously immersed in the water phase while keeping the surface pressure constant.
is gently pulled up across the water surface at a speed of 5 mm/n+in, and then gently immersed at a speed of 5 mm/min.

この工程を繰り返して11層の単分子膜を累積した。This process was repeated to accumulate 11 monolayer layers.

次にこの単分子累積膜に対してArレーザー(:lOm
W)を用いたトリミングを行ない、第2図(a)に示す
ような切り欠き19を入れることにより、電流経路7の
幅を3mmとして、本発明の有機薄膜抵抗素子を得た。
Next, Ar laser (:lOm
By performing trimming using W) and inserting a notch 19 as shown in FIG. 2(a), the width of the current path 7 was set to 3 mm, and an organic thin film resistance element of the present invention was obtained.

この有機薄膜抵抗素子に、導電ペーストを用いて外部電
極との接続を行ない、抵抗を測定したところ400にΩ
の値を得た。
This organic thin film resistance element was connected to an external electrode using conductive paste, and the resistance was measured to be 400Ω.
obtained the value of

さらに第2図(b)に示すように切り欠き19の数を増
したもの、第2図(C)に示すように電流経路7の幅を
変化させたものを作成し、抵抗を測定したところそれぞ
FLIMΩ、150にΩの値を得た。
Furthermore, we created one with an increased number of notches 19 as shown in Figure 2(b), and one with the width of the current path 7 changed as shown in Figure 2(C), and measured the resistance. FLIMΩ and 150Ω values were obtained, respectively.

実施例2 実施例1と同じ条件で30111[11X 30mmの
ガラス基板上にジメチル−トコシルピリジニウム単分子
膜を111層累積た後、第3図(a)に示すようにレー
ザートリミングにより基板1端から3木の平行な切り欠
き19を入れ、幅8mm、長さI Oa++nの電流経
路を4本作った。これにより200にΩ抵抗4木を含む
抵抗アレイ(本発明の有機薄膜抵抗素子)が作成できた
Example 2 After accumulating 111 layers of dimethyl-tocosylpyridinium monolayer on a 30111[11×30 mm glass substrate under the same conditions as in Example 1, one edge of the substrate was trimmed by laser trimming as shown in FIG. 3(a). Three parallel wooden notches 19 were made from the hole to create four current paths each having a width of 8 mm and a length of I Oa++n. As a result, a resistor array (organic thin film resistor of the present invention) including 200Ω resistors and 4 resistors was created.

更に切つ欠きを基板1端から対向する1端まで入れるこ
とにより、独立した4本の抵抗アレイが形成できた(第
3図(b))。
Furthermore, by making notches from one end of the substrate to the opposite end, four independent resistor arrays were formed (FIG. 3(b)).

実施例3 まず、アラキシン酸カドミウム単分子膜を3層累積し、
基板表面を疎水処理した。実施例1と同じ条件で、水相
上にビステトラシア、ノキノジメタンードコシルピリジ
ニウム単分子膜を形成し、速度5mm/[l1inで基
板を1浄かに20+nm程度浸漬させた(1層目形成)
。1度水面を0浄にし、基板を5■程度引き上げた後、
再び水相上にビステトラシアノキノジメタンードコシル
ピリジニウム単分子膜を形成し、速度5mm/min 
″r:基板を静かに引き上げる(2層目形成)。再び水
面を清浄にし、基板下端を水面下51ωまでit rl
Jし、水面上にビステトラシアノキノジメタンードコシ
ルビリジニウム単分子膜を形成し、基板を速度5mrn
/rninで静かに浸漬する(3層目形成)。第2層と
端が水面に達した時に浸漬を中正し次に水面を0浄にし
て水面と第1層の上端が一致するまで基板を浸漬した後
、水面」二にヒ゛ステトラシアノキノジメタンードコシ
ルビリジニウムm分′fIl!!を形成する。更に速度
5mm/minで基板を静かに引き北げ(4層目形成)
、第3層の下端が水面下3mm程度の位置に達した時に
、基板を速度5m+n/+ninで静かに浸漬する(5
層目形成)。′i54層上端か水面下5mII+程度ま
で没した時に浸漬を中止し、次いで基板を速度51II
111/lll1nで静かに引きあげる(6層目形成)
、、第3層下端が水面に達した時に引き上げを中止し、
水面を0浄にして基板を完全に引き上げる。このように
して第1a図に示すような、単分子膜2層からなる導電
層を3段に折り畳んだ層構成を形成し、本発明の有機薄
膜抵抗素子を得た。このときの電流経路は3cm幅であ
り抵抗を測定したところ600にΩであった。
Example 3 First, three layers of cadmium araxinate monolayer were accumulated,
The surface of the substrate was hydrophobically treated. Under the same conditions as in Example 1, a monomolecular film of bistetrasia and noquinodimethane docosylpyridinium was formed on the aqueous phase, and the substrate was immersed for about 20+ nm at a speed of 5 mm/[1 in] (first layer formation). )
. After cleaning the water surface to zero and lifting the board about 5cm,
A bis-tetracyanoquinodimethane docosylpyridinium monomolecular film was again formed on the aqueous phase at a speed of 5 mm/min.
″r: Gently pull up the substrate (forming the second layer).Clean the water surface again and bring the bottom end of the substrate up to 51Ω below the water surface.
A monomolecular film of bis-tetracyanoquinodimethane docosylviridinium was formed on the water surface, and the substrate was heated at a speed of 5 mrn.
/rnin (formation of third layer). When the second layer and the edge reached the water surface, the immersion was interrupted, and then the water surface was zero-purified and the substrate was immersed until the water surface and the top edge of the first layer coincided. Ndocosylviridinium mmin'fIl! ! form. Further, gently pull the board north at a speed of 5 mm/min (forming the 4th layer)
, When the bottom end of the third layer reaches a position approximately 3 mm below the water surface, the substrate is gently immersed at a speed of 5 m + n / + nin (5
layer formation). 'I Stop immersion when the top of the 54 layer is submerged to about 5mII+ below the water surface, and then lower the substrate to a speed of 51II.
Gently pull up with 111/lll1n (forming the 6th layer)
,, When the bottom of the third layer reached the water surface, the lifting was stopped,
Clean the water surface to zero and lift the board completely. In this way, a layered structure in which a conductive layer consisting of two monomolecular films was folded into three layers was formed as shown in FIG. 1a, and an organic thin film resistance element of the present invention was obtained. The current path at this time was 3 cm wide, and the resistance was measured to be 600Ω.

更に上記のようにして得られた有機薄膜抵抗素子に、第
3図(a)に示すようにレーザートリミングにより基板
1端から3本の平行な切り欠きを入れ、幅6+nm、長
さl 0nonの電流経路を4本作った。これにより第
1図(C)に回路図を示すような3MΩ低抗低木4木む
抵抗アレイ(本発明の有機薄膜抵抗素子)が得られた。
Furthermore, as shown in FIG. 3(a), three parallel notches were cut into the organic thin film resistance element obtained as described above from one end of the substrate by laser trimming, with a width of 6+nm and a length of l0non. Four current paths were created. As a result, a resistor array (organic thin film resistive element of the present invention) having a low resistance of 3 MΩ and having four shrubs was obtained as shown in the circuit diagram in FIG. 1(C).

(発明の効果) 本発明の有機薄膜抵抗素子は、導電層と絶縁層の両方が
有機物質からなり、導電層と絶縁層が一度の積層処理に
て形成されるため作製が簡単であり、また常温常圧下で
も容易に作成することが可能であるという効果を有する
(Effects of the Invention) The organic thin film resistance element of the present invention is easy to manufacture because both the conductive layer and the insulating layer are made of an organic substance, and the conductive layer and the insulating layer are formed in a single lamination process. It has the effect that it can be easily produced even under normal temperature and normal pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の有機薄膜抵抗素子
の実施態様の模式図であり、第1図(C)は第1図(b
)の回路図であり、第2図(a)〜(C)は本発明の有
機薄膜抵抗素子の切り欠きを入れたものの平面模式図で
あり、第3図(a) 、 (b)は本発明の有機薄膜抵
抗素子に貫通する切り欠きを入れ抵抗を複数にした場合
の平面模式図であり、第4図(a)。 (b)は本発明の有機薄膜抵抗素子を形成するための装
置の模式図であり、755図(a)〜(C)は抵抗層を
形成する有機革分子膜又は単分子累積膜を形成する工程
を表す模式図である。 l:導電層 2、絶縁層 3ニガラス基板 4:取り出し電極 5:下地処理層 6:取り出し電極 7:電流経路 8:表血圧計 9:表面圧制御装置 IQ=移動障壁 lI:水相 12:成膜基板 13:成膜基板ホルダー j4:水槽 15:圧力センサー 16二親水性部分 17:疎水性部分 18:抵抗体をなす有機分子 19:切り欠き 特許出願人    キャノン株式会社 代 理   人    若   林    忠第1図 第2図 第3図 (a) (b) 第4図 第5図 手  続  補  正  書 (方式)%式% 1、事件の表示  昭和61年特許願第123531号
2、発明の名称 有機薄膜抵抗素子 3、補正をする者 事件との関係 特許出願人 (10G)キャノン株式会社 4、代 理 人 住 所 東京都港区赤坂1丁目9番20号5、補正命令
の日付 発送日:昭和61年7月29日 8、補正の対象 明細書の[図面の簡単な説明」の欄 7、補正の内容
FIGS. 1(a) and 1(b) are schematic diagrams of embodiments of the organic thin film resistance element of the present invention, and FIG.
), FIGS. 2(a) to (C) are schematic plan views of the organic thin film resistance element of the present invention with cutouts, and FIGS. 3(a) and (b) are the circuit diagrams of the present invention. FIG. 4(a) is a schematic plan view of a case where a penetrating notch is inserted into the organic thin film resistance element of the invention to provide a plurality of resistors; FIG. (b) is a schematic diagram of the apparatus for forming the organic thin film resistance element of the present invention, and Figures 755 (a) to (C) are for forming the organic leather molecular film or monomolecular cumulative film forming the resistance layer. It is a schematic diagram showing a process. l: conductive layer 2, insulating layer 3, glass substrate 4: extraction electrode 5: base treatment layer 6: extraction electrode 7: current path 8: table blood pressure monitor 9: surface pressure control device IQ = movement barrier lI: aqueous phase 12: formation Film substrate 13: Film-forming substrate holder j4: Water tank 15: Pressure sensor 16 Two hydrophilic parts 17: Hydrophobic parts 18: Organic molecules forming a resistor 19: Notches Patent applicant: Canon Co., Ltd. Representative: Tadashi Wakabayashi Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 Figure 5 Procedure Amendment (Method) % formula % 1. Indication of the case 1985 Patent Application No. 123531 2. Title of the invention Thin film resistive element 3, relationship to the case of the person making the amendment Patent applicant (10G) Canon Co., Ltd. 4, agent Address 5-9-20, 1-9 Akasaka, Minato-ku, Tokyo Date of amendment order Date of dispatch: Showa July 29, 1961 8, [Brief explanation of drawings] column 7 of the specification subject to amendment, Contents of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)、基板上に、親水性部位と疎水性部位の両方をあ
わせ持つ有機分子の導電性単分子膜又はその累積膜を含
む抵抗体が積層されていることを特徴とする有機薄膜抵
抗素子。
(1) An organic thin film resistance element characterized in that a resistor including a conductive monomolecular film of organic molecules having both hydrophilic sites and hydrophobic sites or a cumulative film thereof is laminated on a substrate. .
(2)、前記抵抗体が、前記導電性単分子膜の親水性部
位が疎水性部位をはさんで折り畳まれ積層された連続導
電帯域を構成する特許請求の範囲第1項記載の有機薄膜
抵抗素子。
(2) The organic thin film resistor according to claim 1, wherein the resistor constitutes a continuous conductive band in which a hydrophilic part of the conductive monomolecular film is folded and stacked with a hydrophobic part in between. element.
JP61123531A 1986-05-20 1986-05-30 Organic thin-film resistance element Pending JPS62281460A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61123531A JPS62281460A (en) 1986-05-30 1986-05-30 Organic thin-film resistance element
US07/051,368 US4780790A (en) 1986-05-20 1987-05-19 Electric device
GB8711810A GB2190792B (en) 1986-05-20 1987-05-19 Electronic device.
GB9006910A GB2231201B (en) 1986-05-20 1990-03-27 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123531A JPS62281460A (en) 1986-05-30 1986-05-30 Organic thin-film resistance element

Publications (1)

Publication Number Publication Date
JPS62281460A true JPS62281460A (en) 1987-12-07

Family

ID=14862916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123531A Pending JPS62281460A (en) 1986-05-20 1986-05-30 Organic thin-film resistance element

Country Status (1)

Country Link
JP (1) JPS62281460A (en)

Similar Documents

Publication Publication Date Title
US4939556A (en) Conductor device
JPS59183861A (en) Method and apparatus for forming alternate monomolecular layers
DE10006257A1 (en) Field effect transistor has a channel layer containing a semiconducting inorganic-organic hybrid material between source and drain regions, a gate region and an electrically insulating layer
JPH0766990B2 (en) Organic device and manufacturing method thereof
DE10318187A1 (en) Encapsulation for organic light emitting diode components
US4780790A (en) Electric device
JPH01321612A (en) Method of providing laminated or capsulated metal conductors
EP1465201A3 (en) Producing conductive layers
KR20200028989A (en) Method of manufacturing a film of light-absorbing material having a perovskite-like structure
DE10210772C1 (en) Temperature sensor comprises a temperature sensitive element formed by a platinum thin film resistor as epitaxial layer on a surface of a single crystalline substrate
DE2365826A1 (en) CAPACITIVE HUMIDITY SENSOR
KR100745527B1 (en) Molecular electronic device using metal-metal bonded complexes
Bergenti Recent advances in molecular ferroelectrics
US20070243678A1 (en) Inkjet printing of cross point passive matrix devices
DE3201482A1 (en) MULTI-LAYER AREA
JPS62281460A (en) Organic thin-film resistance element
DE102016109485A1 (en) METHOD FOR PRODUCING AN OPTOELECTRONIC COMPONENT, OPTOELECTRONIC COMPONENT AND PROTECTIVE LAYER
KR20170114200A (en) Thin film of nanoparticle-graphene oxide composite and method for producing the same
JP2728123B2 (en) Switching element and manufacturing method thereof
DE2534414A1 (en) Thin film semiconductive magnetoresistor - of indium antimonide or arsenide formed from deposited elemental layers
CA1333637C (en) Method of driving device having mim structure
CN109595132A (en) The brake of the production method of the actuator of more stimuli responsives and more stimuli responsives
JPS62271409A (en) Organic thin film capacitor
GB2231201A (en) Electronic device
WO2023182421A1 (en) Method for manufacturing solar battery submodule