JPS62280387A - Production of high purity metallic cobalt - Google Patents

Production of high purity metallic cobalt

Info

Publication number
JPS62280387A
JPS62280387A JP12521786A JP12521786A JPS62280387A JP S62280387 A JPS62280387 A JP S62280387A JP 12521786 A JP12521786 A JP 12521786A JP 12521786 A JP12521786 A JP 12521786A JP S62280387 A JPS62280387 A JP S62280387A
Authority
JP
Japan
Prior art keywords
soln
cobalt
electrolytic
plates
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12521786A
Other languages
Japanese (ja)
Inventor
Yoshio Hoshino
星野 義雄
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Mining Co Ltd
Original Assignee
Furukawa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Mining Co Ltd filed Critical Furukawa Mining Co Ltd
Priority to JP12521786A priority Critical patent/JPS62280387A/en
Publication of JPS62280387A publication Critical patent/JPS62280387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce high purity metallic Co when Co is electrolytically winned and refined, by using Ni plates as the cathode. CONSTITUTION:An aqueous CoSO4 soln. having 50g/l concn. of Co is used as an electrolytic soln. and 20g/l boric acid is added to the soln. Three graphite plates are used as the anode and two Ni plates as the cathode. While the electrolytic soln. is circulated, an aqueous sulfuric acid soln. is added to adjust the pH to 5.0. 16A electric current is then supplied to the electrolytic soln. at 1A/dm<2> current density and electrolytic winning is carried out at 60 deg.C for 240hr to obtain high purity metallic Co adhering well to the Ni plates, causing no warping or stripping and having metallic luster. During the electrolytic winning, 95% current efficiency is attained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、金属コバルトを電解採取及び電解精製する方
法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for electrowinning and electrolytic refining of metallic cobalt.

従来の技術 ]バルトは主にコバルト基合金として薄膜材料や永久磁
石に用いられており、近年高性能化の要求により、より
高純度のコバルトが求められている。
[Prior Art] Balt is mainly used as a cobalt-based alloy in thin film materials and permanent magnets, and in recent years, higher purity cobalt has been required due to demands for higher performance.

従来、金属コバルトを電解採取及び電解M製する際には
、一般に陰極板としてステンレスやチタンが用いられて
きた。この方法で電解採取や電解精製して得られた金属
コバルトは、電解中に亀裂や剥離が生じたり、或いはそ
り返りが生じるので、電解液に硫酸アンモニウムや硼酸
等を加えてPH副調整行ってきた。又、だの添加剤を加
えて析出状態を改善したが、依然として、コバルトがス
テンレス、チタン等の陰極板に馴染まず、亀裂や剥離を
抑えるにいたらず、48時間程度の電解しかできない。
Conventionally, stainless steel or titanium has been generally used as the cathode plate when cobalt metal is electrolytically won and produced. Metallic cobalt obtained by electrowinning or electrorefining using this method tends to crack, peel, or warp during electrolysis, so ammonium sulfate, boric acid, etc. are added to the electrolyte to sub-adjust the pH. . In addition, although the precipitation state was improved by adding a cobalt additive, cobalt still does not fit into the cathode plate made of stainless steel, titanium, etc., and it is not possible to suppress cracking or peeling, and electrolysis can only be carried out for about 48 hours.

そのため、析出した薄板状の金属コノ\ルトを種板とし
て使用し、この種板に金属コバルトを析出させる2段階
の工程によって電解を行わざるをえないので生産性も悪
かった。
Therefore, the electrolysis had to be carried out in a two-step process in which the deposited thin plate metal cobalt was used as a seed plate and metal cobalt was deposited on this seed plate, resulting in poor productivity.

本発明はこれらの欠点をを解消することを目的とした高
純度金属コバルトの製造法を提供することにある。
The object of the present invention is to provide a method for producing high-purity metal cobalt, which aims to eliminate these drawbacks.

問題点を解決するための手段 本発明による高純度金属コバルトの製造法は、陰極にニ
ッケルを用いることを特徴とし、これにより、電解析出
状態を改善し、かつ従来の種板製造工程をも排除でき、
相当に長い時間連続電解採取及び電解精製を行うことが
できるものである。
Means for Solving the Problems The method for producing high-purity metal cobalt according to the present invention is characterized by the use of nickel for the cathode, which improves the electrolytic deposition state and also eliminates the conventional seed plate production process. can be eliminated,
It is capable of performing continuous electrowinning and electrolytic refining for a considerably long period of time.

従来の方法において、陰極板がステンレスの場合には、
水素過電圧が小さいので、水素内抱による内部歪が大き
い他、ステンレス表面の不動態酸化皮膜が金属密着性を
低下させるため、剥離を起し易い。又、陰極板がチタン
の場合においても、水素過電圧が小さいので、水素との
共析出により薄片状のコバルトしか得られない。本発明
による方法では、ニッケルの性状がコバルトと類似して
いるために、ニッケルを陰極板に用いた場合、コバルト
の密着性が良好となる他、水素過電圧がほぼ一致するた
め陰極表面側と成長方向側で内抱される水素の濃度はほ
ぼ一定となる。従って、内部歪を極小に抑えることがで
きるので、長時間の電解が可能であり、高純度のコバル
トが効率良く辱られる。
In the conventional method, when the cathode plate is made of stainless steel,
Since the hydrogen overvoltage is small, internal strain due to hydrogen inclusion is large, and the passive oxide film on the stainless steel surface reduces metal adhesion, making it easy to peel off. Further, even when the cathode plate is made of titanium, since the hydrogen overvoltage is small, only flaky cobalt can be obtained by co-precipitation with hydrogen. In the method of the present invention, since the properties of nickel are similar to those of cobalt, when nickel is used for the cathode plate, the adhesion of cobalt is good, and the hydrogen overvoltage is almost the same, so the growth occurs on the cathode surface side. The concentration of hydrogen contained on the direction side becomes almost constant. Therefore, since internal strain can be suppressed to a minimum, long-time electrolysis is possible, and high-purity cobalt is efficiently degraded.

以下本発明による高純度金属コバルトの製造法の実施例
について説明する。
Examples of the method for producing high-purity metallic cobalt according to the present invention will be described below.

実施例1 コバルト濃度50g/βの硫酸コバルトの水溶液を電解
とし、さらに20g/lの硼酸を添加する。陽極として
黒鉛彼3枚、陰極としてニッケル板2枚を用い、電解液
を循環させながら硫酸水溶液を添加して11)15.0
に調整し、電流密度IA/dmI、16Aの電流を通じ
、液温を60℃に保持しながら240時間電解採取を行
った。ニッケル板との密着性は良好でそり返り又は剥離
なしに金属光沢のあるコバルトを得た。電流効率は95
%であった。
Example 1 An aqueous solution of cobalt sulfate with a cobalt concentration of 50 g/β is used as an electrolyte, and further 20 g/l of boric acid is added. Using three graphite plates as anodes and two nickel plates as cathodes, an aqueous sulfuric acid solution was added while circulating the electrolyte.11) 15.0
A current of 16 A was applied at a current density of IA/dmI, and electrowinning was carried out for 240 hours while maintaining the liquid temperature at 60°C. Adhesion to the nickel plate was good, and cobalt with metallic luster was obtained without warping or peeling. Current efficiency is 95
%Met.

実施例2 コバルト1度60g/λの硫酸コバルトと塩化コバルト
の2:1混合水溶液を電解浴とし、さらに硼酸10g/
fiを添加する。陽極として高純度コバルト板3ri、
陰極としてニッケル板2枚を用い、実施例1と同様にp
H5,0、電流密度1Δ/d m’、60℃で240時
間電解精製を行った。聞出したコバルトはそり返り、割
れ等を生じることなく、金属面を平滑で緻密な金属コバ
ルトを1等だ。
Example 2 A 2:1 mixed aqueous solution of cobalt sulfate and cobalt chloride with a cobalt concentration of 60 g/λ was used as an electrolytic bath, and boric acid was further added at 10 g/λ.
Add fi. High purity cobalt plate 3ri as anode,
Two nickel plates were used as cathodes, and p
Electrolytic refining was performed at H5,0, current density 1Δ/d m', and 60°C for 240 hours. The cobalt found is a first-class metal cobalt that has a smooth and dense metal surface without warping or cracking.

電流効率は97%であった。Current efficiency was 97%.

発明の詳細 な説明したように、陰極にニッケルを使用すると長時間
の電解に対して何ら支障もなく析出が可能となる他、コ
バルト電解採取及び電解精製において種板製造工程を省
くことができるので、生産効率よく金属コバルトの製造
を行うことができる。
As described in detail of the invention, the use of nickel for the cathode allows for long-term electrolysis to be deposited without any problems, and also makes it possible to omit the seed plate manufacturing process in cobalt electrowinning and electrolytic refining. , metal cobalt can be manufactured with high production efficiency.

Claims (1)

【特許請求の範囲】[Claims] コバルトの電解採取及び電解精製において、陰極にニッ
ケル板を使用することを特徴とする高純度金属コバルト
の製造法。
A method for producing high-purity metallic cobalt, characterized by using a nickel plate as a cathode in electrowinning and electrolytic refining of cobalt.
JP12521786A 1986-05-30 1986-05-30 Production of high purity metallic cobalt Pending JPS62280387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12521786A JPS62280387A (en) 1986-05-30 1986-05-30 Production of high purity metallic cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12521786A JPS62280387A (en) 1986-05-30 1986-05-30 Production of high purity metallic cobalt

Publications (1)

Publication Number Publication Date
JPS62280387A true JPS62280387A (en) 1987-12-05

Family

ID=14904760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12521786A Pending JPS62280387A (en) 1986-05-30 1986-05-30 Production of high purity metallic cobalt

Country Status (1)

Country Link
JP (1) JPS62280387A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396959A (en) * 1977-02-05 1978-08-24 Sumitomo Metal Mining Co Cobalt powder manufacturing process by electrolysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396959A (en) * 1977-02-05 1978-08-24 Sumitomo Metal Mining Co Cobalt powder manufacturing process by electrolysis

Similar Documents

Publication Publication Date Title
CN102268703B (en) Method for preparing iron-nickel or iron-nickel-chromium alloy foil and electrolyte used in same
US4159231A (en) Method of producing a lead dioxide coated cathode
WO2011083700A1 (en) Chromium plating method
CN112593273A (en) Metal/sulfur-nickel-containing composite material and preparation method and application thereof
US3864227A (en) Method for the electrolytic refining of copper
CN100588748C (en) High-strength high-plasticity nano nickel and its plating solvent and preparation method
CN110820034A (en) Nickel button production method
US3855089A (en) Process for the electrolytic refining of heavy metals
JPS62280387A (en) Production of high purity metallic cobalt
US3920527A (en) Self-regulating plating bath and method for electrodepositing chromium
US2358029A (en) Process of electrodepositing indium
AU567973B2 (en) Electrode for electrometallurgical process.
CA1084445A (en) Cathode starting blanks for metal deposition
JP2012087405A (en) Method of producing high-purity nickel
US2335821A (en) Palladium plating bath
RU2814771C1 (en) Method of electroplating chromium coatings from electrolyte based on hexahydrate of chromium (iii) sulphate and sodium formate
JP2005163096A5 (en)
JPH02104688A (en) Electrolytically depositing method for fe-ni alloy to produce fe-ni alloy foil
US3442776A (en) Electrolyte and process for the electrodeposition of cadmium
JPS62280386A (en) Method for electrolyzing high-purity metal
US2057475A (en) Electrodeposition of rhodium
US2313372A (en) Electrodeposition of lead
US3622474A (en) Electrodeposition of osmium
CA1265470A (en) Manufacture of self supporting members of copper containing phosphorus
SU933817A1 (en) Electrolyte for electrochemically depositing osmium coatings