JPS6227860B2 - - Google Patents

Info

Publication number
JPS6227860B2
JPS6227860B2 JP8723279A JP8723279A JPS6227860B2 JP S6227860 B2 JPS6227860 B2 JP S6227860B2 JP 8723279 A JP8723279 A JP 8723279A JP 8723279 A JP8723279 A JP 8723279A JP S6227860 B2 JPS6227860 B2 JP S6227860B2
Authority
JP
Japan
Prior art keywords
coating liquid
tank
coating
liquid tank
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8723279A
Other languages
Japanese (ja)
Other versions
JPS5613058A (en
Inventor
Atsushi Nakajima
Michisuke Edamatsu
Kenji Kushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8723279A priority Critical patent/JPS5613058A/en
Priority to AU59630/80A priority patent/AU525294B2/en
Priority to US06/163,360 priority patent/US4353934A/en
Priority to EP80103826A priority patent/EP0022528B1/en
Priority to DE8080103826T priority patent/DE3062819D1/en
Publication of JPS5613058A publication Critical patent/JPS5613058A/en
Priority to US06/365,761 priority patent/US4418641A/en
Publication of JPS6227860B2 publication Critical patent/JPS6227860B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は物品の表面に平滑な塗膜表面を得るた
めの浸漬塗布方法とその装置に関するものであ
る。 更に詳しくは塗布液槽の塗布液に超音波を照射
しつつ物品を浸漬塗布するにあたり、塗布液槽の
矩形液面の塗布液が流れる方向の辺の長さが、塗
布液槽の深さ方向の辺の長さの3倍以上である長
大な塗布液槽の液面に強い均一な表面流を形成さ
せる方法とその装置に係るものであり、特にミラ
ーやレンズ等の高度の光学製品に対する表面塗布
処理に本発明を適用した場合、従来実現できなか
つた優れたレベルの製品々質が得られるという著
しい効果をもたらすものである。 従来より被塗物を塗布液槽に浸漬し、低速で引
き上げることにより、塗布膜をその表面に形成さ
せる方法は浸漬塗布法として広く利用されてい
る。この方法は被塗物の形状が液溜りのない単純
な形状のものに限定され、かつ表面の任意の一部
分の塗布は行えないという短所がある反面、得ら
れる塗膜は平滑性にすぐれていて被塗物の表面全
体を一挙に塗布できるという長所があり、平板状
又は単純曲面状の金属や合成樹脂の下塗りや上塗
り等の表面塗装用として用いられる。 塗装品の用途がミラーやレンズ、グレージング
等の光学製品である場合やさらに2次加工として
印刷や鍍金を施す場合は凹凸のない一段とすぐれ
た塗膜の平滑性が要求される。 これら凹凸状の欠陥は業界では「ピンホール」
「ブツ」「ハジキ」「ガスピン」「クレータ」等と称
され、これらの除去が品質確保の重要な課題とさ
れている。 これらの塗膜の欠陥は被塗物を予め洗剤等で洗
浄し、かつ塗布液中のゴミ等の異物を過して除
去し、更に又浸漬塗布して塗膜を乾燥硬化する雰
囲気全体を清浄化する等の方法により、比較的軽
減されるが、いまだ塗膜の平滑性は不充分であつ
た。 更に又塗布槽での塗布液を湧出するごとく、極
めて静粛に流すことにより塗膜の平滑性を確保し
ようとする試みもあるが満足すべきものではなか
つた。 本発明者らは塗布液に超音波を照射しつつ物品
の浸漬塗布を行うにあたり、強い均一な表面流の
形成が絶対不可欠であることを見い出し、特に塗
布液槽液面の流れ路長が流れ路巾の3倍以上の長
大な塗布液槽に適用できる強い均一な表面流を形
成する方法と装置を完成するに至つた。 超音波照射は塗布液中の溶存空気を追い出し、
更に被塗物が塗布液中に浸漬されるとき被塗物表
面に付着したまま持ち込まれる空気層を破壊する
ために必要であると考えられ、強い表面流は塗布
液表面の被塗物の廻りにキヤビテーシヨンにより
生じた気泡が長時間停留していると「ブツ」や
「ピンホール」等の欠陥の発生因となつたり、又
被塗物表面に付着して引き上げられて泡の痕跡と
なるので、これを防ぐために必要であると考えら
れる。 次に本発明を図面に基づいて説明する。 第1図は本発明を実施するためのフローシート
であり、塗布液槽1の塗布液はせき4からオーバ
ーフローしてオーバーフローポケツト5を経て中
間タンク6に至る。中間タンク6には追加する液
を仕込むための漏斗9が付属されている。中間タ
ンク6の液は循環用ポンプ7により加圧されてフ
イルタ8を通るとき液中の異物の除去が行なわれ
る。フイルタ8から出た液は塗布液槽1に再び戻
されて液の循環が行なわれる。 また図中2は超音波振動子3を入れておくため
の水槽であり、塗布液槽1を水槽2に浸して超音
波振動子3の近くに置くことにより超音波振動子
3から生ずる超音波は水槽2中の水を介して塗布
液槽1の壁を通し、塗布液中に超音波圧力波を生
ぜしめることになる。 なお、水槽2中の水は超音波を伝播させるため
の媒体としての役目と超音波振動子3から発生す
る熱の除去の役目を行うため新しい水を外部から
取り入れることが望ましい。 第2図は、塗布液槽底面に超音波振動子3を設
置した斜視図であり、図中のノズル10及び11
はそれぞれ水供給ノズルと水排出ノズルである。 塗布液の超音波振動により塗布液温度は上昇す
る傾向を示すがこれが塗布液にとつて好ましくな
い時は循環ライン中に塗布液の冷却器を付加する
ことも出来る。 本発明の方法において被塗物を槽の巾の方向に
わたつて多数個浸漬するときは、第2図のように
超音波を槽底部から照射する方法が有効である
が、槽の巾方向にわたつて1〜2個の被塗物しか
ないときは、巾方向中央部の被塗物が巾方向側部
の被塗物の蔭になることはないので、超音波を槽
の側面より照射することも出来る。なお、第2図
に示すように槽において、槽の巾方向とは、液が
オーバーフローポケツトに向つて流れる方向に対
して直角方向であり、槽の長さ方向は、それに対
して平行な方向である。 照射する超音波の周波数は1KHz〜100KHzであ
り、好ましくは5〜50KHzである。周波数が1K
Hz未満であるとキヤビテーシヨンが起こりにくく
なり、又周波数が100KHzをこえると液中でのキ
ヤビテーシヨン気泡の膨脹収縮には時間がかかる
ため、その振巾の大きさが小さくなり有効に働か
ない。 又超音波の強度としては0.5w/cm2〜5w/cm2
あり、好ましくは1w/cm2〜2w/cm2の範囲であ
る。超音波の強度が0.5w/cm2未満の時はキヤビ
テーシヨンの圧力波が弱く、又その強度が5w/
cm2をこえると、発生するキヤビテーシヨン群によ
り超音波の伝播が妨害される。更に超音波の液容
量に対する強度としては10w/〜100w/程
度が好適範囲である。 超音波を作用せしめた塗布液槽における塗布液
の供給は塗布液槽表面においてオーバーフローポ
ケツトに向う均一な表面流れを形成する必要があ
る。それは超音波により生じたキヤビテーシヨン
泡を被塗物に作用させつつ順次塗布液槽表面から
円滑に流去させるためであり、この流去が円滑に
行なわれない時は発生した泡が塗布液槽表面全体
を覆い、更には塗布液中の溶存空気あるいは被塗
物表面の破壊された空気層がこの泡中に停留して
塗膜に「ブツ」「ハジキ」「ピンホール」等の欠陥
や泡の痕跡を残すことになり、本発明の目的は達
成されない。 第3図は表面流を形成させる一方法を示したも
のであるが、槽の流れ方向の長さが長いと吹き出
しノズル14から吹き出した液流は対向する槽壁
まで至らず途中で反転流となりオーバーフローポ
ケツト5に流れる。特に被塗物全体が塗布液槽に
入ると流体抵抗は最大となり、著しく流れは押え
られ、吹き出した液流はすぐさまオーバーフロー
ポケツト5に流れ込むような短絡流となつて均一
な表面流は得られない。 このような流れの状態になると塗布液槽のオー
バーフローポケツト5と反対側の部分はデツドス
ペースとなり、その液面にはキヤビテーシヨン気
泡の滞留があるばかりでなく、液面に浮遊してい
るチリ、ホコリ等も円滑にオーバーフローポケツ
ト5に流れなくなり、塗膜表面には「ブツ」「ピ
ンホール」等が発生する。 又対向する槽壁まで液流を到達させようとする
と、過大な吹き出し流量が必要となり、その結果
塗布液槽の液面が乱れ、それによつて誘発される
流れ模様が被塗物表面にできて製品となり得な
い。 本発明者らによる検討によれば、通常使用され
るプラスチイツクの表面処理液に対して、第3図
の方法により均一な表面流が得られるのは大略、
塗布液槽の流れ方向の長さが、塗布液槽の深さ方
向の長さの3倍までであることが確められた。 第4図はかかる観点に基づいて本発明者らによ
つて達成された、流れ方向の長さの長い槽に均一
で強力な表面流を形成する方法であつて、第二液
流入口13′及びこれに接続せる第二液吹き出し
ノズル14′を槽底部のオーバーフローポケツト
側と反対側にさらに付加したものである。第二吹
き出しノズル14′から吹き出された液は槽壁面
に当つて反転して表面流となる。 この第二吹き出しノズル14′からの液流によ
り、塗布液槽1のオーバーフローポケツト5と反
対側の部分のデツドスペースもなくなり、また第
一吹き出しノズル14からの吹き出し液流も第二
吹き出しノズル14′からの吹き出し液流に吸引
随伴されて均一な表面流を形成する。 第一吹き出しノズル14を除いたものは塗布液
槽1のオーバーフローポケツト側にデツドスペー
スが出き、実質的に均一な表面流は得られない。 第一吹き出しノズル14および第二吹き出しノ
ズル14′からの吹き出し流量比は塗布液槽1の
長さ及び塗布液の粘度により異るが大略、第一吹
き出しノズルからの流量/第二吹き出しノズルか
らの流量=5/1〜1/1の範囲である。 上記第一吹き出しノズル14及び第二吹き出し
ノズル14′としては多数の穴を有するものの
他、スリツト状の穴を有するもの等も考え得る
が、吹き出しノズルの各場所にわたつて均等な吹
き出し量をもつものであることが均一な表面流を
得るために大切である。 塗布液槽内の塗布液の流速は、本発明の目的を
達成出来る流速であれば特に限定されないが、2
〜100cm/sec、好ましくは10〜50cm/secであ
る。塗布液の流速が2cm/sec未満の場合には、
「ブツ」や「ハジキ」の発生の点で好ましくな
く、また流速が100cm/secをこえる場合には「流
れ模様の発生」の点で好ましくない。 以上のように本発明は液の深さ方向の長さに比
較して液の流れ方向の長さが長い塗布液槽、具体
的には後者が前者の3倍以上である塗布液槽にお
いて、塗布液に超音波を照射して浸漬塗布を行う
にあたり、第一吹き出しノズル14と第二吹き出
しノズル14′からの吹き出し液流の相互補完作
用によつて得られる均一で強力な表面流を形成せ
しめることを特徴とする方法とそれを実現する装
置であつて、これを用いれば液の流れ方向の長さ
の長い塗布液槽においても表面平滑性の極めて優
れた塗膜が得られるのである。 本発明の効果は以下の実施具体例により明らか
である。 なお、実施例中の部は重量部を表わし、例中の
測定評価は次の様な方法で行なつた。 (1) 面の平滑性測定 イ 目視法 〇:被膜の面の平滑性は良好である。 ×:面に乱れがあり平滑性に劣る。 ロ 度数 レンズメーター(JIS B 7183−1975)を
用いて測定。数値(絶対値)は小さい程面の
平滑性は良好。 ハ 乱視度 レンズメーター(JIS B 7183−1975)を
用いて測定。数値(絶対値)は小さい程面の
平滑性は良好。 ニ 解像力 10倍の望遠鏡を用いて距離5mからNBS
Resolution Test Chartの図を望遠鏡の前に
おいたサンプルを通して解像し、その解像図
の数値で表わす。数値が大きくなる程サンプ
ルの解像力は良好である。 (2) 表面欠陥(ブツ又はピンホール)の判定 〇:ブツ目立たない ×:ブツ目立つ 実施例 1 トリメチロールエタントリメタクリレート30
部、1.6−ヘキサンジオールジアクリレート10
部、n−プロピルアルコール30部、トルエン30
部、ベンゾインエチルエーテル2部からなる液
を、第1図のプロセスと第4図の塗布液槽とから
構成された浸漬塗布装置(実施例1)及び第1図
のプロセスと第3図の塗布液槽とから構成された
浸漬塗布装置(比較例1)に入れ、超音波発振装
置を作動させながら装置を運転する。 各装置とも槽の大きさは700mm(長さ)×250mm
(巾)×150mm(深さ)で、塗布液の流速は30cm/
secとした。また超音波発振装置の周波数及び強
度は夫々28KHz、0.7w/cm2とした。 これらの槽に厚さ3mmの均一なメタクリル樹脂
板を浸漬させ、0.5cm/secの速度で清浄な空気中
に引き上げ、直ちに清浄な窒素気流中で2KWの
高圧水銀灯で紫外線を5秒間照射した。得られた
塗装板の外観は表1の通りであつた。 なお比較例2は、実施例1において超音波発振
装置はそのままでノズル14のみを停止した場合
であり、比較例3は実施例1において超音波発振
装置のみを停止した場合の例である。得られた結
果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dip coating method and apparatus for obtaining a smooth coating surface on the surface of an article. More specifically, when coating an article by dipping while irradiating the coating liquid in the coating liquid tank with ultrasonic waves, the length of the side of the rectangular liquid surface of the coating liquid tank in the direction in which the coating liquid flows is determined in the depth direction of the coating liquid tank. It relates to a method and device for forming a strong, uniform surface flow on the liquid surface of a long coating liquid tank, which is more than three times the side length of When the present invention is applied to a coating process, it brings about a remarkable effect in that an excellent level of product quality that could not be achieved conventionally can be obtained. BACKGROUND ART Conventionally, a method of forming a coating film on the surface of an object to be coated by immersing it in a coating liquid tank and pulling it up at a low speed has been widely used as a dip coating method. This method has the disadvantage that the shape of the object to be coated is limited to simple shapes with no liquid pools, and it is not possible to coat any part of the surface, but on the other hand, the resulting coating film has excellent smoothness. It has the advantage of being able to coat the entire surface of the object at once, and is used for surface coating such as undercoating and topcoating of flat or simply curved metals and synthetic resins. When the coated product is used as an optical product such as a mirror, lens, or glazing, or when it is subjected to secondary processing such as printing or plating, even better coating film smoothness with no irregularities is required. These uneven defects are known as "pinholes" in the industry.
They are called "bumps,""cissing,""gaspins,""craters," etc., and their removal is considered an important issue in ensuring quality. These coating film defects can be removed by cleaning the object to be coated with a detergent or the like in advance, removing foreign substances such as dust in the coating solution, and cleaning the entire atmosphere in which the coating is dried and cured by dip coating. However, the smoothness of the coating film was still insufficient. Furthermore, attempts have been made to ensure the smoothness of the coating film by allowing the coating solution to flow very quietly in the coating tank, but this has not been satisfactory. The present inventors have discovered that the formation of a strong and uniform surface flow is absolutely essential when performing dip coating of articles while irradiating the coating liquid with ultrasonic waves. We have completed a method and device for forming a strong and uniform surface flow that can be applied to a long coating liquid tank that is more than three times the width of the road. Ultrasonic irradiation drives out dissolved air in the coating solution,
Furthermore, it is thought that it is necessary to destroy the air layer that is brought in while adhering to the surface of the workpiece when the workpiece is immersed in the coating solution. If air bubbles generated by cavitation remain for a long time, they may cause defects such as "bumps" or "pinholes", or they may adhere to the surface of the workpiece and be pulled up, leaving traces of bubbles. , is considered necessary to prevent this. Next, the present invention will be explained based on the drawings. FIG. 1 is a flow sheet for carrying out the present invention, in which the coating liquid in the coating liquid tank 1 overflows from the weir 4, passes through the overflow pocket 5, and reaches the intermediate tank 6. A funnel 9 is attached to the intermediate tank 6 for charging liquid to be added. The liquid in the intermediate tank 6 is pressurized by the circulation pump 7, and when it passes through the filter 8, foreign substances in the liquid are removed. The liquid coming out of the filter 8 is returned to the coating liquid tank 1 and the liquid is circulated. Further, 2 in the figure is a water tank in which the ultrasonic vibrator 3 is placed, and by immersing the coating liquid tank 1 in the water tank 2 and placing it near the ultrasonic vibrator 3, the ultrasonic wave generated from the ultrasonic vibrator 3 is generated. passes through the wall of the coating liquid tank 1 via the water in the water tank 2, producing ultrasonic pressure waves in the coating liquid. Note that since the water in the water tank 2 serves as a medium for propagating ultrasonic waves and for removing heat generated from the ultrasonic vibrator 3, it is desirable to introduce new water from outside. FIG. 2 is a perspective view of the ultrasonic vibrator 3 installed on the bottom of the coating liquid tank, and the nozzles 10 and 11 in the figure
are the water supply nozzle and the water discharge nozzle, respectively. The temperature of the coating liquid tends to rise due to the ultrasonic vibration of the coating liquid, but if this is not desirable for the coating liquid, a cooler for the coating liquid may be added to the circulation line. In the method of the present invention, when a large number of objects to be coated are immersed in the width direction of the tank, it is effective to irradiate ultrasonic waves from the bottom of the tank as shown in Figure 2. When there are only one or two objects to be coated across the tank, the objects to be coated at the center in the width direction will not be in the shadow of the objects to be coated at the sides in the width direction, so the ultrasonic waves are irradiated from the side of the tank. You can also do that. As shown in Figure 2, in the tank, the width direction of the tank is perpendicular to the direction in which the liquid flows toward the overflow pocket, and the length direction of the tank is parallel to the direction in which the liquid flows toward the overflow pocket. be. The frequency of the irradiated ultrasonic waves is 1 KHz to 100 KHz, preferably 5 to 50 KHz. Frequency is 1K
If the frequency is less than Hz, cavitation is difficult to occur, and if the frequency exceeds 100 KHz, it takes time for the cavitation bubbles to expand and contract in the liquid, so the amplitude becomes small and it does not work effectively. The intensity of the ultrasonic waves is in the range of 0.5w/cm 2 to 5w/cm 2 , preferably 1w/cm 2 to 2w/cm 2 . When the ultrasonic intensity is less than 0.5w/ cm2 , the cavitation pressure wave is weak;
If it exceeds cm 2 , the propagation of ultrasonic waves is obstructed by cavitation groups that occur. Furthermore, the preferred range for the intensity of the ultrasonic waves relative to the liquid volume is about 10 w/-100 w/. When supplying the coating liquid to the coating liquid tank on which ultrasonic waves are applied, it is necessary to form a uniform surface flow toward the overflow pocket on the surface of the coating liquid tank. This is to allow the cavitation bubbles generated by ultrasonic waves to act on the object to be coated and to smoothly wash them away from the surface of the coating liquid tank. If this flow is not carried out smoothly, the generated bubbles will Furthermore, dissolved air in the coating liquid or the destroyed air layer on the surface of the object to be coated stays in these bubbles, causing defects such as "bumps", "repellents", and "pinholes" on the coating film, and bubbles. This will leave traces and the purpose of the present invention will not be achieved. Fig. 3 shows one method for forming a surface flow, but if the length of the tank in the flow direction is long, the liquid flow blown out from the blowout nozzle 14 will not reach the opposing tank wall and will become a reverse flow on the way. Flows into overflow pocket 5. In particular, when the entire object to be coated enters the coating liquid tank, the fluid resistance becomes maximum and the flow is significantly suppressed, and the blown liquid flow becomes a short-circuit flow that immediately flows into the overflow pocket 5, making it impossible to obtain a uniform surface flow. . When such a flow occurs, the part of the coating liquid tank on the opposite side of the overflow pocket 5 becomes a dead space, and not only cavitation bubbles remain on the liquid surface, but also dirt, dust, etc. floating on the liquid surface. The water does not flow smoothly into the overflow pocket 5, and "bumps" and "pinholes" occur on the surface of the coating film. In addition, when trying to make the liquid flow reach the opposing tank wall, an excessively high blowout flow rate is required, which disturbs the liquid level in the coating liquid tank and creates a flow pattern on the surface of the object to be coated. It cannot be a product. According to the studies conducted by the present inventors, the method shown in Figure 3 can generally provide a uniform surface flow for commonly used plastic surface treatment liquids.
It was confirmed that the length of the coating liquid tank in the flow direction was up to three times the length of the coating liquid tank in the depth direction. FIG. 4 shows a method of forming a uniform and strong surface flow in a tank having a long length in the flow direction, which was achieved by the present inventors based on this viewpoint, and shows the method of forming a uniform and strong surface flow in a tank having a long length in the flow direction. A second liquid blowing nozzle 14' connected thereto is further added to the bottom of the tank on the side opposite to the overflow pocket side. The liquid blown out from the second blowing nozzle 14' hits the wall of the tank and is reversed to form a surface flow. The liquid flow from the second blow nozzle 14' eliminates the dead space in the part of the coating liquid tank 1 opposite to the overflow pocket 5, and the liquid flow from the first blow nozzle 14 also flows from the second blow nozzle 14'. A uniform surface flow is formed by suction and entrainment of the blown liquid flow. With the exception of the first blowing nozzle 14, a dead space appears on the overflow pocket side of the coating liquid tank 1, and a substantially uniform surface flow cannot be obtained. The ratio of the blowout flow rate from the first blowout nozzle 14 and the second blowout nozzle 14' varies depending on the length of the coating liquid tank 1 and the viscosity of the coating liquid, but it is approximately the flow rate from the first blowout nozzle/the blowout flow rate from the second blowout nozzle. The flow rate is in the range of 5/1 to 1/1. The first blow nozzle 14 and the second blow nozzle 14' may have many holes or may have slit-like holes, but they should have an equal amount of blow over each location of the blow nozzle. It is important to obtain a uniform surface flow. The flow rate of the coating liquid in the coating liquid tank is not particularly limited as long as it can achieve the purpose of the present invention.
-100 cm/sec, preferably 10-50 cm/sec. If the flow rate of the coating liquid is less than 2cm/sec,
This is undesirable in terms of the occurrence of "bumps" and "cissing," and if the flow velocity exceeds 100 cm/sec, it is undesirable in terms of the "occurrence of flow patterns." As described above, the present invention provides a coating liquid tank in which the length in the flow direction of the liquid is longer than the length in the depth direction of the liquid, specifically, in a coating liquid tank in which the latter is three times or more longer than the former. When performing dip coating by irradiating the coating liquid with ultrasonic waves, a uniform and strong surface flow is formed by the mutually complementary action of the liquid flows blown from the first blowing nozzle 14 and the second blowing nozzle 14'. This is a method and an apparatus for realizing the same, and by using this method, a coating film with extremely excellent surface smoothness can be obtained even in a coating liquid tank having a long length in the direction of flow of the liquid. The effects of the present invention will be apparent from the following practical examples. In addition, parts in the examples represent parts by weight, and the measurements and evaluations in the examples were performed in the following manner. (1) Measurement of surface smoothness a. Visual method 〇: The surface smoothness of the coating is good. ×: The surface is disordered and the smoothness is poor. B Frequency Measured using a lens meter (JIS B 7183-1975). The smaller the numerical value (absolute value), the better the surface smoothness. C. Astigmatism Measured using a lens meter (JIS B 7183-1975). The smaller the numerical value (absolute value), the better the surface smoothness. NBS from a distance of 5m using a telescope with 10x resolution
The figure on the Resolution Test Chart is resolved through a sample placed in front of the telescope, and the resolved figure is expressed as a numerical value. The larger the value, the better the resolution of the sample. (2) Judgment of surface defects (bumps or pinholes) 〇: Bumps are not noticeable ×: Bumps are noticeable Example 1 Trimethylolethane trimethacrylate 30
parts, 1.6-hexanediol diacrylate 10
parts, n-propyl alcohol 30 parts, toluene 30 parts
A dip coating device (Example 1) consisting of the process shown in FIG. 1 and the coating liquid tank shown in FIG. 4, and the process shown in FIG. 1 and the coating shown in FIG. The sample was placed in a dip coating apparatus (Comparative Example 1) consisting of a liquid tank and the apparatus was operated while an ultrasonic oscillator was activated. The tank size for each device is 700mm (length) x 250mm
(width) x 150mm (depth), and the flow rate of the coating liquid is 30cm/
sec. The frequency and intensity of the ultrasonic oscillator were 28 KHz and 0.7 W/cm 2 , respectively. Uniform methacrylic resin plates with a thickness of 3 mm were immersed in these tanks, lifted into clean air at a speed of 0.5 cm/sec, and immediately irradiated with ultraviolet rays for 5 seconds using a 2 KW high-pressure mercury lamp in a clean nitrogen stream. The appearance of the obtained coated board was as shown in Table 1. Comparative Example 2 is an example in which only the nozzle 14 is stopped while the ultrasonic oscillation device is the same as in Example 1, and Comparative Example 3 is an example in which only the ultrasonic oscillation device is stopped in Example 1. The results obtained are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示すフローシート
を、第2図は塗布液槽底面に超音波振動子を設置
した斜視図を、第3図は他の塗布液槽と塗布液の
フローパターンを示す斜視図を、第4図は本発明
に基づく塗布液槽と塗布液のフローパターンを示
す斜視図を示し、図中1は塗布液槽、3は超音波
振動子、4はせき、13,13′は塗布液流入
口、14は吹き出しノズルである。
Fig. 1 is a flow sheet showing an embodiment of the present invention, Fig. 2 is a perspective view of an ultrasonic vibrator installed on the bottom of the coating liquid tank, and Fig. 3 is a flow pattern of other coating liquid tanks and the coating liquid. 4 is a perspective view showing a coating liquid tank and a flow pattern of the coating liquid according to the present invention, in which 1 is a coating liquid tank, 3 is an ultrasonic vibrator, 4 is a weir, 13 , 13' are coating liquid inlets, and 14 is a blowing nozzle.

Claims (1)

【特許請求の範囲】 1 塗布液槽の矩形液面において塗布液が流れる
方向の辺の長さが、塗布液槽の深さ方向の辺の長
さの3倍以上である塗布液槽に物品を浸漬し、引
き上げて物品の表面に塗膜を得る方法において、
塗布液に超音波を照射し、かつ塗布液槽底部で、
塗布液がオーバーフローする側とそれと反対側の
ところの両方において、塗布液がオーバーフロー
する側からその反対側に向つて均一におよび槽底
面に平行に塗布液を吹き出して供給することを特
徴とする浸漬塗布方法。 2 塗布液槽の矩形液面において塗布液が流れる
方向の辺の長さが、塗布液槽の深さ方向の辺の長
さの3倍以上である塗布液槽に物品を浸漬し、引
き上げて物品の表面に塗膜を得る装置において、
塗布液槽内又は外の底面に超音波振動子を設け、
かつ塗布液槽底部で塗布液がオーバーフローする
側とそれと反対側のところの両方において、塗布
液がオーバーフローする側からその反対側に向つ
て均一におよび槽底面に平行となるように塗布液
を吹き出して供給することのできるノズルを塗布
液がオーバーフローする側とその反対側の塗布液
槽底部に設けたことを特徴とする浸漬塗布装置。
[Scope of Claims] 1. An article is placed in a coating liquid tank in which the length of the side in the direction in which the coating liquid flows in the rectangular liquid surface of the coating liquid tank is three times or more the length of the side in the depth direction of the coating liquid tank. In a method of obtaining a coating film on the surface of an article by dipping and pulling it up,
The coating liquid is irradiated with ultrasonic waves, and at the bottom of the coating liquid tank,
Immersion characterized by spraying and supplying the coating liquid uniformly and parallel to the bottom of the bath from the side where the coating liquid overflows and the opposite side. Application method. 2. An article is immersed in a coating liquid tank in which the length of the side in the direction in which the coating liquid flows on the rectangular liquid surface of the coating liquid tank is at least three times the length of the side in the depth direction of the coating liquid tank, and then pulled out. In an apparatus for forming a coating film on the surface of an article,
An ultrasonic vibrator is installed on the bottom inside or outside the coating liquid tank,
And at both the side where the coating liquid overflows and the opposite side at the bottom of the coating liquid tank, the coating liquid is blown out uniformly and parallel to the bottom of the tank from the side where the coating liquid overflows to the opposite side. What is claimed is: 1. A dip coating device, characterized in that nozzles capable of supplying coating liquid are provided at the bottom of the coating liquid tank on the side where the coating liquid overflows and on the opposite side thereof.
JP8723279A 1979-07-09 1979-07-10 Dip coating method and its apparatus Granted JPS5613058A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8723279A JPS5613058A (en) 1979-07-10 1979-07-10 Dip coating method and its apparatus
AU59630/80A AU525294B2 (en) 1979-07-09 1980-06-25 Dip coating
US06/163,360 US4353934A (en) 1979-07-09 1980-06-26 Dip-coating method
EP80103826A EP0022528B1 (en) 1979-07-09 1980-07-04 Dip-coating method and apparatus
DE8080103826T DE3062819D1 (en) 1979-07-09 1980-07-04 Dip-coating method and apparatus
US06/365,761 US4418641A (en) 1979-07-09 1982-04-05 Dip-coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8723279A JPS5613058A (en) 1979-07-10 1979-07-10 Dip coating method and its apparatus

Publications (2)

Publication Number Publication Date
JPS5613058A JPS5613058A (en) 1981-02-07
JPS6227860B2 true JPS6227860B2 (en) 1987-06-17

Family

ID=13909101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8723279A Granted JPS5613058A (en) 1979-07-09 1979-07-10 Dip coating method and its apparatus

Country Status (1)

Country Link
JP (1) JPS5613058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013806A1 (en) * 1998-09-04 2000-03-16 Seimei Shiratori Method and apparatus for forming film by alternate deposition, and film-coated structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068081A (en) * 1983-09-22 1985-04-18 Canon Inc Coating method
JPS61296853A (en) * 1985-06-25 1986-12-27 Photo Composing Mach Mfg Co Ltd Image read and transfer system
JPS6219284A (en) * 1985-07-16 1987-01-28 Osaka Gas Co Ltd Coating method
JPH0231852A (en) * 1988-07-21 1990-02-01 Nec Corp Paint tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013806A1 (en) * 1998-09-04 2000-03-16 Seimei Shiratori Method and apparatus for forming film by alternate deposition, and film-coated structure

Also Published As

Publication number Publication date
JPS5613058A (en) 1981-02-07

Similar Documents

Publication Publication Date Title
US4353934A (en) Dip-coating method
US5501240A (en) Cleaning method and cleaning apparatus
KR970003672B1 (en) Cleaning dry method & apparatus including a bubble reducing device
KR20070083678A (en) Ultrasonic cleaner
JPS6227860B2 (en)
US4375992A (en) Apparatus and method for cleaning recorded discs
US4131483A (en) Methods for cleaning articles with upward flowing liquids
US5242540A (en) Process for producing thin copper foil-clad circuit board substrate
JPS6227859B2 (en)
US2332385A (en) Apparatus for coating
TWI351989B (en)
JP6984444B2 (en) Electrodeposition coating method and electrodeposition coating equipment
JPH11515142A (en) Method and apparatus for treating holes or depressions extending in a workpiece with a liquid treatment agent
JPH10512101A (en) Method and apparatus for the processing of plate-shaped workpieces with ultrafine holes
JPS625670B2 (en)
US2791514A (en) Apparatus and method of coating elongated webs with light-sensitive material
JPS62293796A (en) Method and apparatus for developing printed wiring board
CN214288996U (en) Sand blasting cleaning device based on coating line
JP2561538B2 (en) Pretreatment equipment for electrodeposition coating
SU1458032A1 (en) Installation for cleaning articles
JP2002347182A (en) Frp molding
JPH0429773A (en) Dip coating apparatus
GB1004225A (en) Apparatus for processing with a liquid
RU1782713C (en) Method of hydraulic abrasive cutting of sheet parts
GB1558648A (en) Cleaning articles