JPS62278302A - Variably regenerating circuit - Google Patents

Variably regenerating circuit

Info

Publication number
JPS62278302A
JPS62278302A JP61122494A JP12249486A JPS62278302A JP S62278302 A JPS62278302 A JP S62278302A JP 61122494 A JP61122494 A JP 61122494A JP 12249486 A JP12249486 A JP 12249486A JP S62278302 A JPS62278302 A JP S62278302A
Authority
JP
Japan
Prior art keywords
oil
pressure
passage
oil chamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61122494A
Other languages
Japanese (ja)
Other versions
JPH06100202B2 (en
Inventor
Wataru Kubomoto
亘 久保本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Yutani Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutani Heavy Industries Ltd filed Critical Yutani Heavy Industries Ltd
Priority to JP61122494A priority Critical patent/JPH06100202B2/en
Publication of JPS62278302A publication Critical patent/JPS62278302A/en
Publication of JPH06100202B2 publication Critical patent/JPH06100202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To improve spool strength and to decrease passage resistance, by providing a predetermined communication function and communication condition adjusting function in a hydraulic cylinder actuating variably regenerating circuit valve, independently of a hydraulic selector valve so as to simplify constitution of the variably regenerating circuit valve. CONSTITUTION:The control level of a pilot valve 29 is pulled in a direction J in the drawing, and if a signal pressure is generated in a pilot oil path 30, a hydraulic selector valve 3 is switched to a position G, and pressure oil from a pump 1 passes through an oil path 24 from a port A being allowed to flow into the head side oil chamber C of a hydraulic cylinder 2. And as the hydraulic cylinder 2 extends, return oil from a rod side oil chamber D is allowed to flow into the selector valve 3 from an oil path 25 and a port B. Here the return oil generates a pressure higher than the pressure in the head side oil chamber C, accordingly a regenerating circuit, is formed. So that pressure oil in a high pressure passage 15' can detach a piston 11 from a check part 10 via a notched hole 18 and an oil chamber 8, passing through a notched hole 12 and joining a bridge circuit 17.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 この発明は油圧シリンダなどのアクチュエータに圧油を
供給し、その戻り油を選択再生する再生回路弁の構造を
簡略化し、かつ再生中および作動中の管路抵抗を減少せ
しめる油圧回路に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Application Field This invention simplifies the structure of a regeneration circuit valve that supplies pressure oil to an actuator such as a hydraulic cylinder and selectively regenerates the return oil. The present invention also relates to a hydraulic circuit that reduces pipe resistance during regeneration and operation.

従来の技術 従来から、油圧シリンダのロッド側油室からの戻り油を
ヘッド側油室へ再生合流させる可変式再生回路弁では、
戻り油を小径スプールなどで閉塞して再生回路を形成し
、作動圧が一定値を越えると解除し、また、外部からの
信号圧力などにより、再生解除圧力を可変にさせていた
Conventional technology Conventionally, variable regeneration circuit valves have been used to regenerate and merge return oil from the rod side oil chamber of a hydraulic cylinder into the head side oil chamber.
A regeneration circuit was formed by blocking the return oil with a small-diameter spool, and the circuit was released when the operating pressure exceeded a certain value, and the regeneration release pressure was made variable by signal pressure from the outside.

例えば、第5図は可変再生回路弁の一例を示す断面図で
あるが、この図において、可変再生回路弁53のスプー
ル55における、油圧シリンダ2のロッド側油室りに通
ずる油路を開閉する側に中空穴を設け、スプリング63
により付勢され、軸線方向に移動自在に中心穴を有する
小径スプール62を嵌挿し、外周から中空穴に通ずるノ
ツチ穴70.68.71を設け、スプール55が中立時
においては、上記ノツチ穴70は弁本体54内のブリッ
ジ通路67に通じ、ノツチ穴68はブリフジ通路67と
高圧通路50との中間に開口し、弁本体54により閉塞
され、ノツチ穴71はタンク連通路51に連通し、更に
、スプール55を右方に移動させるとノツチ穴70は引
続きブリフジ通路67に連通し、同時に油路65により
ピストン油室59に通じ、ノツチ穴68は高圧通路50
に連通し、ノツチ穴71は引続きタンク連通路51に通
じる位置にある。また、小径スプール62の中心穴には
、チェック弁60を介し隣接して、ピストン61を端部
に嵌挿したピストン油室59と、小径スプール油室69
とを設け、外周から該小径スプール油室69に連通ずる
ノツチ穴72.56.57を設け、該小径スプール62
がスプリング63の付勢力により左方にあるときは、ノ
ツチ穴72はノツチ穴70とノツチ穴56はノツチ穴6
8と連通し、ノツチ穴57はスプール55の内壁で閉塞
され、また、小径スプール62がスプリング63の付勢
力に抗して右方に移動すると、ノツチ穴72.56は、
それぞれノツチ穴70.68に連通したままの状態で、
ノツチ穴57はタンク連通路51に通じているノツチ穴
71に連通する位置に設けである。更にスプリング63
はスプール55の中空穴に設けてあり、小径スプール6
2をスプール55との間で付勢しており、このスプリン
グ室は小径スプール62の端面とプラグ66とにより油
室58を形成し、核油室58にはスプール55が右方に
移動するとパイロット油口52から外部圧力信号を導入
するノツチ穴25を設けである。
For example, FIG. 5 is a cross-sectional view showing an example of a variable regeneration circuit valve, and in this figure, the oil passage leading to the rod side oil chamber of the hydraulic cylinder 2 in the spool 55 of the variable regeneration circuit valve 53 is opened and closed. A hollow hole is provided on the side and a spring 63 is installed.
A small-diameter spool 62 having a center hole is fitted and movable in the axial direction, and notched holes 70, 68, and 71 are provided that communicate with the hollow hole from the outer periphery. communicates with the bridge passage 67 in the valve body 54, the notch hole 68 opens between the bridge passage 67 and the high pressure passage 50 and is closed by the valve body 54, the notch hole 71 communicates with the tank communication passage 51, and further , when the spool 55 is moved to the right, the notched hole 70 continues to communicate with the bridge passage 67 and at the same time communicates with the piston oil chamber 59 through the oil passage 65, and the notched hole 68 communicates with the high pressure passage 50.
The notched hole 71 is located at a position that continues to communicate with the tank communication passage 51. Further, adjacent to the center hole of the small diameter spool 62 via the check valve 60, there is a piston oil chamber 59 into which the piston 61 is inserted into the end, and a small diameter spool oil chamber 69.
and notch holes 72, 56, 57 communicating with the small diameter spool oil chamber 69 from the outer periphery, and the small diameter spool 62
is on the left side due to the biasing force of the spring 63, the notched hole 72 is aligned with the notched hole 70, and the notched hole 56 is aligned with the notched hole 6.
8, the notched hole 57 is closed by the inner wall of the spool 55, and when the small diameter spool 62 moves to the right against the biasing force of the spring 63, the notched hole 72.
While still communicating with the notch holes 70 and 68, respectively,
The notched hole 57 is provided at a position communicating with the notched hole 71 which communicates with the tank communication passage 51. Furthermore, spring 63
is provided in the hollow hole of the spool 55, and the small diameter spool 6
This spring chamber forms an oil chamber 58 with the end face of the small diameter spool 62 and the plug 66, and when the spool 55 moves to the right, the core oil chamber 58 contains a pilot. A notched hole 25 is provided through which an external pressure signal is introduced from the oil port 52.

上記構成の可変再生回路弁53において、スプール55
を右方に切換えて油圧シリンダ2を伸長させ、その負荷
が少ないときにはロッド側油室りからの戻り油は、高圧
通路50、ノツチ穴68.56、小径スプール油室69
、チェック弁60、ノツチ穴72.70を通りブリッジ
通路67に合流する再生回路を形成する。次に油圧シリ
ンダ2への負荷が増大し、ヘッド側油室Cの圧力、従っ
てブリフジ通路67の圧力が上昇すると、その圧油は同
時に油路65を通りピストン油室59にも流入するので
、ピストン61は外方に抜は出そうとし、その反力がス
プリング63の付勢力よりも大きくなると小径スプール
62はスプール55の内部を右方に移動してゆき、閉塞
されていたノツチ穴71.57が開口して小径スプール
油室69とタンク連通路51は連通ずるので、ロッド側
油室りの戻り油の再生は解除される。また、パイロット
油口52からの信号圧力がノツチ穴25を通って油室5
8に達すると、その圧力に比例した力が小径スプール6
2に、スプリング63の付勢力に付加して作用し小径ス
プール62の右方への多動条件を加減することとなるの
で、再生解除時期を外部からの信号圧力の大小に応じて
、自由に指令することができる。
In the variable regeneration circuit valve 53 configured as described above, the spool 55
is switched to the right to extend the hydraulic cylinder 2, and when the load is small, the return oil from the rod side oil chamber is routed to the high pressure passage 50, the notch hole 68, 56, and the small diameter spool oil chamber 69.
, the check valve 60 and the notched holes 72, 70 to form a regeneration circuit that joins the bridge passage 67. Next, when the load on the hydraulic cylinder 2 increases and the pressure in the head side oil chamber C and therefore the pressure in the bridge passage 67 rises, the pressure oil simultaneously flows into the piston oil chamber 59 through the oil passage 65. The piston 61 tries to pull out outward, and when the reaction force becomes larger than the biasing force of the spring 63, the small diameter spool 62 moves to the right inside the spool 55, and the notched hole 71. 57 is opened and the small diameter spool oil chamber 69 and the tank communication passage 51 are communicated with each other, so that the regeneration of the return oil in the rod side oil chamber is canceled. Also, the signal pressure from the pilot oil port 52 passes through the notch hole 25 to the oil chamber 5.
8, a force proportional to that pressure is applied to the small diameter spool 6.
Second, since it acts in addition to the biasing force of the spring 63 and adjusts the conditions for the small diameter spool 62 to move to the right, the regeneration release timing can be freely adjusted depending on the magnitude of the signal pressure from the outside. can be commanded.

なお、第 図における6、6゛はスプール55を切換え
るためのバイロッド油室、7.7°は高通路15.50
の最畜圧力を規整するリリーフ弁、16はタンク連通路
、39は油圧切換弁53の切換過渡期において圧油が逆
流をすることを防止するロードチェック弁であり、−g
に使用されるパイロット操作式の油圧切換弁の構成と同
様である。
In addition, 6 and 6゛ in the figure are the birod oil chambers for switching the spool 55, and 7.7 degrees is the high passage 15.50.
16 is a tank communication passage, 39 is a load check valve that prevents pressure oil from flowing backward during the switching transition period of the hydraulic switching valve 53, -g
The structure is similar to that of the pilot-operated hydraulic switching valve used in

また、22はスプール55の内部に設けられた油路であ
り、小径スプール62の外周あるいはピストン油室59
から漏れた高圧油をノツチ穴23を経由してタンク連通
路16へ流出させ、閉じ込み圧油による作動不良を起さ
せないようにしである。
Further, 22 is an oil passage provided inside the spool 55, which is the outer periphery of the small diameter spool 62 or the piston oil chamber 59.
This is to allow high pressure oil leaking from the tank to flow out into the tank communication passage 16 via the notched hole 23 to prevent malfunctions due to trapped pressure oil.

発明が解決しようとする問題点 ところで、このような従来の可変再生回路弁にあっては
、再生機能を付与する12がすべて液弁のスプール内に
収納されているため、スプールの構造は複雑であるばか
りではなく、再生回路における通路抵抗を最小限にしよ
うとすると、再生図路弁自体が大形となったり、さもな
くばスプールの肉厚が少なくなり、強度上から好ましく
ないという欠点と、通路の有効面積が確保できず、再生
油量に限界を生ずる。
Problems to be Solved by the Invention Incidentally, in such a conventional variable regeneration circuit valve, all of the components 12 that provide the regeneration function are housed in the spool of the liquid valve, so the structure of the spool is complicated. Not only that, but if you try to minimize the passage resistance in the regeneration circuit, the regeneration circuit valve itself will become large, or the spool will become thinner, which is not desirable from the viewpoint of strength. The effective area of the passage cannot be secured, and there is a limit to the amount of recycled oil.

ここにおいて、従来技術による実施例である第6図の可
変再生回路弁における具備すべき機能構成を大別すると
、第1要件は、再生中、油圧シリンダ2のロンド側油室
りからヘッド側油室Cに圧油を流入させる通路となるノ
ツチ穴68.56、小径スプール油室69、チェック弁
60、ノツチ穴70などを有し、ヘッド側油室Cの圧力
が一定値以内においては、ロンド側油室りからの戻り油
をヘッド側油室Cに再生させる機能、第2要件は、ヘッ
ド側油室Cの圧力がロンド側油室りよりも高くなったと
きにヘッド側油室Cの回路からロンド側油室の回路へ圧
油が流失することを防止するチェック弁60を小径スプ
ール62の内部中空穴の中に設けること、第3要件は、
ヘッド側油室Cの圧力が更に上昇し、油圧シリンダ2が
最大の能力を発揮すべきときには、ロンド側油室りから
の戻り油を小径スプール62に設けたノツチ穴57、ス
プール55に設けたノツチ穴71を経てタンク連通路5
1に通じさせる機能、および第4要件として、バイロッ
ド油口52から外部の圧力信号を、スプール55、小径
スプール62、プラグ66で形成する油室58に導き、
その圧力信号の大小により上記ノツチ穴57.71が連
通する条件を調整する機能である。
Here, roughly dividing the functional configuration that should be provided in the variable regeneration circuit valve of FIG. It has a notched hole 68.56, a small diameter spool oil chamber 69, a check valve 60, a notched hole 70, etc., which serve as a passage for pressure oil to flow into the chamber C, and when the pressure in the head side oil chamber C is within a certain value, the rond The second requirement is the function of regenerating the return oil from the side oil sac to the head side oil sac C. The third requirement is to provide a check valve 60 in the internal hollow hole of the small diameter spool 62 to prevent pressure oil from flowing out from the circuit to the circuit of the rond side oil chamber.
When the pressure in the head side oil chamber C increases further and the hydraulic cylinder 2 should exert its maximum capacity, the return oil from the rond side oil chamber is provided in the notch hole 57 provided in the small diameter spool 62 and the spool 55. Tank communication path 5 via notched hole 71
1, and as a fourth requirement, the external pressure signal is guided from the birod oil port 52 to the oil chamber 58 formed by the spool 55, the small diameter spool 62, and the plug 66,
This function adjusts the conditions under which the notched holes 57 and 71 communicate according to the magnitude of the pressure signal.

上記のように、従来の可変再生回路弁には前記4つの機
能をすべてスプール55に具備させるために非常に複雑
な形状となり、また圧油通路となる開閉口部断面積を大
きくするため、どうしても肉薄となり強度も低下すると
共に、内蔵される関連部品も複雑となる。ここにおいて
、本発明は、前記4つの機能のうち、第1、第2の機能
をスプール以外の作動回路において行なわしめ、第3、
第4の機能はそのまま再生回路弁において果たすことに
より、可変再生回路弁の構成を簡略化し、スプール強度
を強化すると共に、再生中における再生圧油通路の通過
抵抗を最小に止めるような再生油圧回路を実現しようと
するものである。
As mentioned above, the conventional variable regeneration circuit valve has a very complicated shape in order to provide all four functions to the spool 55, and also has a large cross-sectional area of the opening and closing part that becomes the pressure oil passage. The walls become thinner, the strength decreases, and the related parts built in become more complex. Here, the present invention performs the first and second functions among the four functions in an operating circuit other than the spool, and the third,
By performing the fourth function as is in the regeneration circuit valve, the configuration of the variable regeneration circuit valve is simplified, the spool strength is strengthened, and the regeneration hydraulic circuit is designed to minimize passage resistance of the regeneration pressure oil passage during regeneration. This is what we are trying to achieve.

問題点を解決するための手段 この発明は前記問題点を解決するものであって、以下に
その内容を実施例に対応する第1図および第2図を用い
て説明する。
Means for Solving the Problems The present invention solves the above-mentioned problems, and the details thereof will be explained below with reference to FIGS. 1 and 2, which correspond to embodiments.

第2図の油圧回路図に示す如く、油圧シリンダ2のヘッ
ド側油室Cと一方の出ロポートA、ロッド側油室りと他
方の出口ポートBとをそれぞれ、油路24.25で連通
し、パイロット弁29の圧力信号により切換えられる油
圧切換弁3と、常時は内部通路を閉路し、油圧シリンダ
2のヘッド側油室Cに通ずる油路24の圧油が油路26
を通ってパイロット油室に作用すると内部通路を開路し
油路25の分岐油路27をタンクに通ぜしめ、また内部
通路を閉路するスプールの移動方向に、外部指令圧力の
大きさに比例して加勢するようにした外部信号油室14
を有するアンロード弁23とを設け、該アンロード弁2
3の外部信号油室には外部信号油路20を通して所望の
指令圧力油を送油する。
As shown in the hydraulic circuit diagram in Fig. 2, the head side oil chamber C of the hydraulic cylinder 2 is connected to one outlet port A, and the rod side oil chamber and the other outlet port B are connected through oil passages 24 and 25, respectively. , the hydraulic switching valve 3 which is switched by a pressure signal from the pilot valve 29, and the internal passage which is normally closed, and the pressure oil in the oil passage 24 which communicates with the head side oil chamber C of the hydraulic cylinder 2 is transferred to the oil passage 26.
When it acts on the pilot oil chamber through the spool, it opens the internal passage, connects the branch oil passage 27 of the oil passage 25 to the tank, and closes the internal passage in the direction of movement of the spool in proportion to the magnitude of the external command pressure. External signal oil chamber 14
An unload valve 23 having a
A desired command pressure oil is fed to the external signal oil chamber No. 3 through the external signal oil passage 20.

また、油圧切攪弁3は第1図に示す縦断面図の如く、ス
プール5には、油圧シリンダ2のへラド側油室Cに通ず
る油路を開閉する側の中心部に段状の連続した油室8、
ピストン油室9を形成する中空穴を設け、スプリング1
3により油室8に向けて付勢され、軸線方向に移動自在
で、一端は細径となり、その先端部がテーパ状のチェッ
ク部10を形成するピストン11を嵌挿してあり、該チ
ェック部10は油室8、ピストン油室9の接合段。
In addition, as shown in the vertical cross-sectional view of FIG. 1, the hydraulic cut-off valve 3 has a continuous step-like structure in the center of the spool 5 on the side that opens and closes the oil passage leading to the oil chamber C on the hydraulic cylinder 2. oil chamber 8,
A hollow hole forming the piston oil chamber 9 is provided, and the spring 1
3 toward the oil chamber 8, is movable in the axial direction, has a small diameter at one end, and is fitted with a piston 11 whose distal end forms a tapered check section 10. is the joint stage between the oil chamber 8 and the piston oil chamber 9.

件部をシート面として、常時、スプリング13の付勢力
で着座している。また、スプール5の外周からノツチ穴
21.12.18および細径ノツチ穴19が内部のピス
トン油室9、油室8に貫通しているが、ノツチ穴21は
、スプール5の高圧通路15に対応する細径部に、ノツ
チ穴12はスプール5が中立または右方に移動したとき
にブリッジ通路17とピストン11の細径部で形成され
る油室とを連通ずる位置に、ノツチ穴18はスプール5
の高圧通FIs15’に対応する細径部に、細径ノツチ
穴19は、スプール5が中立または右方に移動したとき
、タンク連il路16’に通じる位置に、それぞれ設け
る。従って、この構成において、ピストン油室9はピス
トン11の中心穴内面とピストン11の大径側端面、プ
ラグ22とにより、ノツチ穴21を除いては密閉室とな
っている。
The seat is always seated by the biasing force of the spring 13, with the subject part as the seat surface. Also, notched holes 21, 12, 18 and a small diameter notched hole 19 penetrate from the outer circumference of the spool 5 to the piston oil chamber 9 and the oil chamber 8 inside. The notched hole 12 is located in the corresponding small diameter part, and the notched hole 18 is located in a position that communicates the bridge passage 17 with the oil chamber formed by the small diameter part of the piston 11 when the spool 5 moves to the neutral or right side. Spool 5
A small diameter notched hole 19 is provided in the small diameter portion corresponding to the high pressure communication FIs 15' at a position that communicates with the tank communication path 16' when the spool 5 moves to the neutral position or to the right. Therefore, in this configuration, the piston oil chamber 9 is a sealed chamber, except for the notch hole 21, due to the inner surface of the center hole of the piston 11, the large-diameter end surface of the piston 11, and the plug 22.

作用 第1図および第2図において、パイロット弁29の操作
レバをJ方向に引き、パイロット油路30に信号圧力が
発生すると油圧切換弁3はG位置に切換えられ、ポンプ
1からの圧油がポートAから油路24を通って油圧シリ
ンダ2のヘッド側油室Cに流入するが、油圧シリンダ2
の伸長時負荷が小さいときは、その作動圧力も比較的低
いので、油路24から分岐した油路26を通りパイロッ
ト油室に導入された圧力も、さほど高くはないのでアン
ロード弁23は、第2図の如くF位置のままで内部通路
は閉路されている。一方、油圧シリンダ2の伸長にとも
ないロッド側油室りからの戻り油は、油路25、ボー)
Bから切換弁3に流入するが、このときの戻り油圧力は
ヘッド側油室Cの圧力よりも高圧となるので高圧通路1
5’の圧油はノツチ穴18、油室8を経てピストン11
をスプリング13の付勢力およびピストン11の大径側
端面に働らく油圧力に抗してチェック部10の着座を解
除し、ノツチ穴12を通ってブリッジ回路17に合流す
る再生回路を形成する。
1 and 2, when the operating lever of the pilot valve 29 is pulled in the J direction and a signal pressure is generated in the pilot oil passage 30, the hydraulic switching valve 3 is switched to the G position, and the pressure oil from the pump 1 is switched to the G position. It flows from the port A through the oil passage 24 into the head side oil chamber C of the hydraulic cylinder 2.
When the load during extension is small, the operating pressure is relatively low, so the pressure introduced into the pilot oil chamber through the oil path 26 branched from the oil path 24 is not very high, so the unload valve 23 As shown in FIG. 2, the internal passage remains closed in the F position. On the other hand, as the hydraulic cylinder 2 expands, the return oil from the rod side oil sac flows through the oil passage 25 (bow).
B flows into the switching valve 3, but the return oil pressure at this time is higher than the pressure in the head side oil chamber C, so the high pressure passage 1
5' pressure oil passes through the notch hole 18 and the oil chamber 8 to the piston 11.
The checking portion 10 is released from its seating against the biasing force of the spring 13 and the hydraulic pressure acting on the large-diameter end surface of the piston 11, and a regeneration circuit that passes through the notched hole 12 and joins the bridge circuit 17 is formed.

次に、油圧シリンダ2の伸長時負荷が更に増大すると、
負荷抵抗のため高圧通路15の圧力は上昇し、高圧通路
15゛の圧力は従前よりも低下してゆき、油圧シリンダ
2は、より大きい能力を発蓮してゆくが、この高圧通路
15の圧油がノツチ穴21を通りピストン油室9に流入
し、ピストン11に作用する力はスプリング13の付勢
力の和が、油室8、すなわちロッド側油室りからの戻り
油の圧力でピストン11を左方に押付ける力よりも大き
くなるとチェック部1oはシート面に着座し、高圧通路
15’からプリフジ通路17への再生回路は遮断され、
油路24の圧力は更に上昇しようとするが′、分岐油路
26の作用により、アンロード弁23はF位置からE位
置に切換わり内部通路を開路するので油路25の圧油は
、油路27、アンロード弁23のE位置通路を通り直接
タンクに戻る。
Next, when the load on the hydraulic cylinder 2 increases further,
The pressure in the high-pressure passage 15 increases due to the load resistance, and the pressure in the high-pressure passage 15 decreases compared to before, and the hydraulic cylinder 2 develops a greater capacity, but the pressure in the high-pressure passage 15 decreases. Oil flows into the piston oil chamber 9 through the notched hole 21, and the force acting on the piston 11 is the sum of the biasing forces of the spring 13, and the pressure of the return oil from the oil chamber 8, that is, the rod side oil chamber, causes the piston 11 to flow into the piston oil chamber 9. When the force becomes larger than the force pressing the check part 1o to the left, the check part 1o is seated on the seat surface, and the regeneration circuit from the high pressure passage 15' to the pre-fuji passage 17 is cut off.
The pressure in the oil passage 24 is about to rise further, but due to the action of the branch oil passage 26, the unload valve 23 is switched from the F position to the E position and the internal passage is opened, so that the pressure oil in the oil passage 25 is passage 27, returns directly to the tank through the E position passage of unload valve 23.

また、外部信号油路20により信号圧力を外部信号油室
14に送ると、その圧力に比例した力でアンロード弁2
3のスプールがF位置を保持しようとするので、再生回
路の解除に必要な油路26の圧力値を可変にすることが
できる。
Furthermore, when signal pressure is sent to the external signal oil chamber 14 through the external signal oil passage 20, a force proportional to the pressure is applied to the unload valve 2.
Since the spool No. 3 attempts to maintain the F position, the pressure value of the oil passage 26 required to release the regeneration circuit can be made variable.

なお、細径ノツチ穴19は、少なくとも再生回路解除作
動時においては油室8の圧油をタンク連通路16°へ少
量づつ流出させるのでピストン11の着座が円滑である
Note that the small diameter notched hole 19 allows the pressure oil in the oil chamber 8 to flow out little by little into the tank communication passage 16° at least when the regeneration circuit is released, so that the piston 11 can be seated smoothly.

実施例 以下、本発明の一実施例を説明する。Example An embodiment of the present invention will be described below.

第1図は本発明油圧回路に使用する油圧切換弁3のスプ
ール5が中立位置にあるときの縦断面図、第2図は本発
明の可変再生回路を示す油圧回路図、第3図は油圧切換
弁3のスプール5を右方に切換えたときAポートの負荷
圧力が比較的低いときの、第4図は第3図と同様の状態
からAポートの負荷圧力が増大したとき、それぞれにつ
いての油圧切換弁3の縦断面図を示す。第2図において
1は作動回路の高圧油を発生させる油圧ポンプで、その
高圧油を油圧切換弁3に供給し、2はヘッド側油室C1
口、7ド側油室りを有する油圧シリンダで、これに加わ
る負荷により発生する油圧は主としてヘッド側油室Cで
あり、作動を終了して復帰を主目的とする動作時にはロ
ッド側油室りに圧油を供給する。3はパイロット圧切模
式の油圧切換弁で、該油圧切換弁3のAポートは油路2
4を経てヘッド側油室Cへ、また、Bポートは油路25
を経てロッド側油室りに通じている。23はパイロット
油室に加わる圧力信号により内部通路を開路し、圧力信
号が消滅すると内部通路を閉路するアンロード弁である
が、同時に、外部信号油室14を備え、外部信号油路2
0から圧力信号が送られると、その圧力の大小に比例し
て内部通路が閉路状態を持続する保持力を増減させるよ
うになっており、油路25の分岐油路27は該アンロー
ド弁23を介してタンクに接続してあり、油路24の分
岐油路26はアンロード弁23のパイロット油室に通じ
ている。また、油圧切換弁3は、その縦断面を示す第1
図において、4はその弁本体であり、パイロット油室6
または6゛に作用する圧力信号により左右に移動するス
プール5を内装し、ボートAに連通ずる高圧通路15、
ボー)Bに連通ずる高圧通路15゛、ポートAまたはB
からの戻り油並びにリリーフ弁7.7゛のリリーフ油、
その他のドレン油などをも集合させ、タンクに導くタン
ク連通路16.16゛、油圧ポンプ1からロードチェッ
ク弁39を経て流入する高圧油を高圧通路15または1
5’の何れかへ選択的に供給するブリフジ通路17があ
り、また該弁本体4に付属して、スプール5を中立位置
に、一定の強制力で保持するスプリングセンタ装置を有
しているなどは、既知の油圧切換弁と全く同様であるが
、本可変油圧回路に使用する油圧切換弁では、内装され
るスプール5が異なる。すなわち、切換用スプール5は
、前述した如く、Bポート側中心部に段状に連続した油
室8、ピストン油室9を設け、スプリング13により油
室8に向は付勢され、一端が細径となり、その先端部が
テーパ状のチェック部lOを形成するピストン11を嵌
挿し、該チェック部10は油室8、ピストン油室9の接
合段付部をシート面として着座している。そうして、ス
プール5の外周からノツチ穴21.12.18および細
径ノツチ穴19が、前項で説明した位置に、ピストン油
室9、油室8に貫通して設けてあり、22はスプール5
の端部に設けたプラグであり、ピストン油室9にピスト
ン11.スプリング13を挿入した後は、ピストン油室
9がノツチ穴21を除き密閉室となるようにしている。
Fig. 1 is a longitudinal sectional view when the spool 5 of the hydraulic switching valve 3 used in the hydraulic circuit of the present invention is in the neutral position, Fig. 2 is a hydraulic circuit diagram showing the variable regeneration circuit of the present invention, and Fig. 3 is a hydraulic circuit diagram of the hydraulic switching valve 3 of the present invention. When the spool 5 of the switching valve 3 is switched to the right, when the load pressure of the A port is relatively low, Figure 4 shows the graph when the load pressure of the A port increases from the same state as in Figure 3. A vertical cross-sectional view of the hydraulic switching valve 3 is shown. In Fig. 2, 1 is a hydraulic pump that generates high-pressure oil in the operating circuit, and supplies the high-pressure oil to the hydraulic switching valve 3, and 2 is a head-side oil chamber C1.
This is a hydraulic cylinder with an oil sac on the 7th and 7th sides, and the hydraulic pressure generated by the load applied to this is mainly in the head side oil sac C. When the main purpose is to return after completing the operation, the oil sac on the rod side is used. Supply pressure oil to. 3 is a pilot pressure switching type hydraulic switching valve, and the A port of the hydraulic switching valve 3 is connected to oil path 2.
4 to the head side oil chamber C, and the B port is connected to the oil passage 25.
It leads to the rod side oil chamber through. Reference numeral 23 designates an unload valve that opens an internal passage in response to a pressure signal applied to the pilot oil chamber, and closes the internal passage when the pressure signal disappears.
When a pressure signal is sent from 0, the holding force that keeps the internal passage closed is increased or decreased in proportion to the magnitude of the pressure, and the branch oil passage 27 of the oil passage 25 is connected to the unload valve 23. The branch oil passage 26 of the oil passage 24 communicates with the pilot oil chamber of the unload valve 23. Moreover, the hydraulic switching valve 3 has a first
In the figure, 4 is the valve body, and the pilot oil chamber 6
or a high-pressure passage 15, which is equipped with a spool 5 that moves left and right in response to a pressure signal applied to the boat A, and communicates with the boat A;
High pressure passage 15゛ communicating with port A or B
Return oil from and relief oil from relief valve 7.7゛,
A tank communication passage 16.16'' collects other drain oil and leads it to the tank, and high pressure oil flowing from the hydraulic pump 1 through the load check valve 39 is sent to the high pressure passage 15 or 16.
5', and a spring center device attached to the valve body 4 to hold the spool 5 in a neutral position with a constant force. is exactly the same as the known hydraulic switching valve, but the hydraulic switching valve used in this variable hydraulic circuit differs in the spool 5 installed inside. That is, as described above, the switching spool 5 is provided with an oil chamber 8 and a piston oil chamber 9 which are continuous in a stepped manner at the center on the B port side, biased toward the oil chamber 8 by a spring 13, and one end is narrow. A piston 11 having a tapered check part 10 is inserted thereinto, and the check part 10 is seated on the stepped part of the joint between the oil chamber 8 and the piston oil chamber 9 as a seat surface. Then, notched holes 21, 12, 18 and a small diameter notched hole 19 are provided from the outer circumference of the spool 5 at the positions explained in the previous section, penetrating the piston oil chamber 9 and the oil chamber 8, and 22 is a spool. 5
It is a plug provided at the end of the piston 11. in the piston oil chamber 9. After the spring 13 is inserted, the piston oil chamber 9 becomes a sealed chamber except for the notch hole 21.

なお、33はバイロッド弁29などの油圧源となるパイ
ロットポンプであり、その吐出油は油路28によりバイ
ロッド弁29、その他に接続されている。
Note that 33 is a pilot pump that serves as a hydraulic pressure source for the birod valve 29 and the like, and its discharge oil is connected to the birod valve 29 and others through an oil path 28.

以上の油圧回路構成からなる可変再生回路の作動につい
て説明する。
The operation of the variable regeneration circuit having the above hydraulic circuit configuration will be explained.

第2図におけるパイロット弁29の操作レバをJ方向に
傾倒させると、パイロットポンプ33の圧油は調圧され
てパイロット圧となり、パイロット油路30を通り油圧
切換弁3のパイロット油室に入り、スプール5をG位置
に切換えるので、油圧ポンプ1の圧油は油圧切換弁のG
位置通路、Aポート、油路24を通ってヘッド側油室C
に流入し、同時に油路24の分岐油路26を経て、アン
ロード弁23のパイロット油室にも流入する。ヘッド側
油室Cに圧油が流入し、油圧シリンダ2を伸長させると
ロンド側油室りからの戻り油は油路25に流出すること
となるが、油圧切換弁3がG位置であって、しかも油圧
シリンダ2の伸長時負荷抵抗が小さいときはヘッド側油
室Cの圧力、すなわち油路26の圧力もさほど上昇して
いないので、アンロード弁23のスプールはF位置を保
持しているので油路25の戻り油は分岐した油路27に
流入することなく、昇圧して油圧切換弁3のBポートに
流入し、第3図に示すように、高圧通路15’、ノツチ
穴18を経て油室8に流入し、ピストン11をスプリン
グ13の付勢力、高圧油路15の圧油によるピストン1
1への作用力に抗して移動させ、チェック部の着座をそ
止してノツチ穴12を経てブリッジ通路17へと再生し
てゆく。
When the operating lever of the pilot valve 29 in FIG. 2 is tilted in the J direction, the pressure oil in the pilot pump 33 is regulated to the pilot pressure, passes through the pilot oil passage 30, and enters the pilot oil chamber of the hydraulic switching valve 3. Since the spool 5 is switched to the G position, the pressure oil of the hydraulic pump 1 is transferred to the G position of the hydraulic switching valve.
Head side oil chamber C through the position passage, A port, and oil passage 24
At the same time, it flows into the pilot oil chamber of the unload valve 23 via the branch oil path 26 of the oil path 24. Pressure oil flows into the head side oil chamber C and when the hydraulic cylinder 2 is extended, the return oil from the rond side oil chamber flows out into the oil passage 25, but the hydraulic switching valve 3 is in the G position. Moreover, when the load resistance during extension of the hydraulic cylinder 2 is small, the pressure in the head-side oil chamber C, that is, the pressure in the oil passage 26, does not increase much, so the spool of the unload valve 23 maintains the F position. Therefore, the return oil of the oil passage 25 does not flow into the branched oil passage 27, but increases in pressure and flows into the B port of the hydraulic switching valve 3, and as shown in FIG. The oil flows into the oil chamber 8, and the piston 11 is pushed by the biasing force of the spring 13, and the piston 1 by the pressure oil in the high pressure oil passage 15.
1 to prevent the check portion from seating and regenerate into the bridge passage 17 via the notched hole 12.

上記状態から、油圧シリンダ2の伸長時負荷が増大して
ヘッド側油室Cの作動圧力の大部分が負荷に対抗するこ
とに消費され、ロッド側油室圧力が低下すると、第4図
に示すようにピストン11の細径、先端のチェック部1
0は着座し、再生回路は閉じられ、ブリフジ通路17の
圧油は油室8へ逆流することはなく、同時にヘッド側油
室Cの圧油は油路26を通りアンロード弁23のパイロ
ット油室に作用し、該アンロード弁23をF位置からE
位置に切換えるので、四ノド側油室りからの戻り油は油
路25.27、アンロード弁23のE位置通路を通り、
タンクへ直接流入する。従って油圧シリンダ2を伸長さ
せる能力は最大となる。
From the above state, when the hydraulic cylinder 2 is extended, the load increases, most of the operating pressure in the head side oil chamber C is consumed in resisting the load, and the rod side oil chamber pressure decreases, as shown in Fig. 4. As shown in the small diameter of the piston 11, the check part 1 at the tip
0 is seated, the regeneration circuit is closed, the pressure oil in the bridge passage 17 does not flow back to the oil chamber 8, and at the same time, the pressure oil in the head side oil chamber C passes through the oil passage 26 to the pilot oil of the unload valve 23. chamber and moves the unload valve 23 from the F position to the E position.
Since the switch is switched to the position, the return oil from the four-throat side oil chamber passes through the oil passages 25 and 27 and the E position passage of the unload valve 23.
Flows directly into the tank. Therefore, the ability to extend the hydraulic cylinder 2 is maximized.

また、再生機能を解除する条件は、上述の如く油圧シリ
ンダ2の伸長時負荷が増大しヘッド側油室Cの作動圧力
が上昇し、その圧力によりアンロード弁23がF位置か
らE位置に切換ねることであるが、外部から調整可能の
信号圧油を外部信号油路20を経て、アンロード弁23
の外部信号油室14に導いておくと、その信号圧力に比
例した力が該アンロード弁23のF位置保持力に付加さ
れる。従って調整可能の信号圧力を加減して供給するこ
とにより自由に再生機能の解除時期を選択、決定するこ
とのできる可変再生回路が実現できる。
Furthermore, the conditions for canceling the regeneration function are as described above, when the hydraulic cylinder 2 is extended, the load increases, the operating pressure in the head side oil chamber C increases, and this pressure causes the unload valve 23 to switch from the F position to the E position. However, the externally adjustable signal pressure oil is passed through the external signal oil passage 20 to the unload valve 23.
When the external signal pressure is guided to the external signal oil chamber 14, a force proportional to the signal pressure is added to the F position holding force of the unload valve 23. Therefore, it is possible to realize a variable regeneration circuit that can freely select and determine the timing for canceling the regeneration function by supplying an adjustable signal pressure by increasing or decreasing the signal pressure.

次に、パイロ7ト弁29の操作レバを■方向に傾倒する
と油圧切換弁3はH位置に切換わり、油路24.26は
タンクに通じるのでアンロード弁23はF位置に復帰し
油路27は閉止され油圧シリンダ2の縮小作動は障害な
く通常の作動となる。
Next, when the operating lever of the pilot valve 29 is tilted in the direction ■, the hydraulic switching valve 3 is switched to the H position, and since the oil passages 24 and 26 lead to the tank, the unload valve 23 is returned to the F position, and the oil passage 27 is closed and the contraction operation of the hydraulic cylinder 2 is normal without any hindrance.

なお、この実施例においては、油圧切換弁3の切換操作
はパイロット弁29による、いわゆるバイロッド圧リモ
ートコントロール方式としたが、本発明は、この方式の
油圧切換弁を使用することに限定されるものではなく、
例えば、手動操作レバ式あるいはtN操作式などにも適
用できることは勿論である。
In this embodiment, the switching operation of the hydraulic switching valve 3 is performed using a so-called birod pressure remote control method using the pilot valve 29, but the present invention is limited to the use of this type of hydraulic switching valve. not,
For example, it is of course applicable to a manually operated lever type or a tN operated type.

発明の詳細 な説明したように、この発明の回路は、油圧シリンダ作
動用可変再生回路弁における、前述の第3.4機能のみ
を油圧切換弁から独立して設けたので、従来の可変再生
回路弁のスプールに比し、UUI−な形状のスプールを
備えた油圧切換弁を使用することができ、従って、内部
通路断面積を大きくとり流体の通過抵抗を少なくし、か
つ、スプールの強度を十分に保つことができる。また、
独立した単体のアンロード弁は油圧切換弁の設置位置に
関係なく設けることができるので、機器、配管の構成上
存利であるばかりでなく、上記再生a能開放時には、油
圧シリンダのロンド側油室を直接タンクに通じさせるの
で、油圧シリンダの伸長時能力を最大限に発揮できる。
As described in detail, the circuit of the present invention provides only the above-mentioned functions 3 and 4 in the variable regeneration circuit valve for hydraulic cylinder operation independently of the hydraulic switching valve, so that the circuit of the present invention is different from the conventional variable regeneration circuit. Compared to the spool of a valve, a hydraulic switching valve with a UUI-shaped spool can be used. Therefore, the cross-sectional area of the internal passage is large, reducing fluid passage resistance, and the spool is sufficiently strong. can be kept. Also,
An independent single unload valve can be provided regardless of the installation position of the hydraulic switching valve, so it is not only useful in terms of the equipment and piping configuration, but also when the above regeneration a function is opened, the rond side oil of the hydraulic cylinder is Since the chamber is connected directly to the tank, the capacity of the hydraulic cylinder can be maximized when extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の回路に使用する油圧切換弁の中立状態
を示す縦断面図、第2図は本発明の油圧回路図、第3図
は第1図の油圧切換弁スプールを右方に切換えたときの
縦断面図、第4図は第3図の状態から、再生解除となっ
たときの油圧切換弁の縦断面図、第5図は従来の可変再
生回路弁の縦断面図である。 3・・・・・・・・・・油圧切換弁 5・・・・・・・・・・スプール 8 ・・・・・・・・・・ 1由室 9・・・・・・・・・・ ピストン油室10・・・・・
・・・・・チェック部 11・・・・・・・・・・ ピストン 14・・・・・・・・・・外部信号油室23・・・・・
・・・工・アンロード弁以上
Fig. 1 is a longitudinal sectional view showing the neutral state of the hydraulic switching valve used in the circuit of the present invention, Fig. 2 is a hydraulic circuit diagram of the invention, and Fig. 3 shows the hydraulic switching valve spool of Fig. 1 to the right. FIG. 4 is a vertical cross-sectional view of the hydraulic switching valve when regeneration is canceled from the state shown in FIG. 3, and FIG. 5 is a vertical cross-sectional view of a conventional variable regeneration circuit valve. . 3......Hydraulic switching valve 5......Spool 8...1 Chamber 9......・Piston oil chamber 10...
...Check section 11... Piston 14... External signal oil chamber 23...
...More than engineering/unload valve

Claims (1)

【特許請求の範囲】[Claims] 油圧切換弁を切換えて油圧シリンダを伸縮させる作動シ
ステムにおいて、該油圧切換弁が油圧シリンダを伸長さ
せる位置に切換えられたとき、ヘッド側油室の圧力がロ
ッド側油室の圧力よりも低くなる負荷時においてはロッ
ド側油室からの戻り油がブリッジ通路に自由に再生供給
され、ヘッド側油室の圧力がロッド側油室の圧力よりも
高くなるとヘッド側油室からの圧油がロッド側油室へ逆
流することを防止するチェック弁をスプールに内蔵した
油圧切換弁と、常時は内部通路を閉路し、パイロット油
室に信号圧力が加わると内部通路を開路してタンクに通
ぜしめ、更に内部通路を閉路する保持力が外部からの指
令圧力に比例して付加される外部信号油室を有するアン
ロード弁とを設け、上記油圧切換弁の油圧シリンダ伸長
方向への切換時圧油出入口ポートと油圧シリンダヘッド
側油室とを油路により連通し、該油路の分岐油路を上記
アンロード弁のパイロット油室に導き、他方の圧油出入
口ポートと油圧シリンダロッド側油室とを油路により連
通し、該油路の分岐油路を上記アンロード弁の圧油流入
ポートに導くようにした油圧シリンダ作動システムにお
ける可変再生回路。
In an operating system that extends and retracts a hydraulic cylinder by switching a hydraulic switching valve, a load that causes the pressure in the head side oil chamber to be lower than the pressure in the rod side oil chamber when the hydraulic switching valve is switched to a position that extends the hydraulic cylinder. At times, the return oil from the rod side oil chamber is freely regenerated and supplied to the bridge passage, and when the pressure in the head side oil chamber becomes higher than the pressure in the rod side oil chamber, the pressure oil from the head side oil chamber is transferred to the rod side oil chamber. The hydraulic switching valve has a check valve built into the spool that prevents backflow to the chamber, and the internal passage is normally closed, but when signal pressure is applied to the pilot oil chamber, the internal passage is opened to allow the flow to the tank. an unload valve having an external signal oil chamber to which a holding force for closing the internal passage is applied in proportion to the command pressure from the outside; and the hydraulic cylinder head side oil chamber are communicated by an oil passage, a branch oil passage of the oil passage is led to the pilot oil chamber of the unload valve, and the other pressure oil inlet/outlet port and the hydraulic cylinder rod side oil chamber are connected to each other by an oil passage. A variable regeneration circuit in a hydraulic cylinder operating system, wherein the variable regeneration circuit communicates with the oil passage by a passage and leads a branch oil passage of the oil passage to a pressure oil inflow port of the unload valve.
JP61122494A 1986-05-27 1986-05-27 Variable playback circuit Expired - Fee Related JPH06100202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122494A JPH06100202B2 (en) 1986-05-27 1986-05-27 Variable playback circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122494A JPH06100202B2 (en) 1986-05-27 1986-05-27 Variable playback circuit

Publications (2)

Publication Number Publication Date
JPS62278302A true JPS62278302A (en) 1987-12-03
JPH06100202B2 JPH06100202B2 (en) 1994-12-12

Family

ID=14837234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122494A Expired - Fee Related JPH06100202B2 (en) 1986-05-27 1986-05-27 Variable playback circuit

Country Status (1)

Country Link
JP (1) JPH06100202B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083428A (en) * 1988-06-17 1992-01-28 Kabushiki Kaisha Kobe Seiko Sho Fluid control system for power shovel
CN102588368A (en) * 2012-02-03 2012-07-18 山东中力机械制造有限公司 Water-controlled reversal valve
JP2012245808A (en) * 2011-05-25 2012-12-13 Hokkaido Railway Co Traveling vehicle
KR20170073128A (en) * 2015-12-18 2017-06-28 주식회사 두산 Hydraulic valve
CN107061404A (en) * 2015-09-29 2017-08-18 纳博特斯克有限公司 Direction switch valve and hydraulic system
CN107250563A (en) * 2015-01-08 2017-10-13 沃尔沃建筑设备公司 Flow control valve for building machinery
CN114294283A (en) * 2021-12-26 2022-04-08 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve
CN114294280A (en) * 2021-12-26 2022-04-08 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923104A (en) * 1982-07-30 1984-02-06 Kayaba Ind Co Ltd Hydraulic pressure control device with combined regeneration and preferential operation
JPS602522A (en) * 1983-06-21 1985-01-08 Mitsubishi Metal Corp Article aligning apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923104A (en) * 1982-07-30 1984-02-06 Kayaba Ind Co Ltd Hydraulic pressure control device with combined regeneration and preferential operation
JPS602522A (en) * 1983-06-21 1985-01-08 Mitsubishi Metal Corp Article aligning apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083428A (en) * 1988-06-17 1992-01-28 Kabushiki Kaisha Kobe Seiko Sho Fluid control system for power shovel
JP2012245808A (en) * 2011-05-25 2012-12-13 Hokkaido Railway Co Traveling vehicle
CN102588368A (en) * 2012-02-03 2012-07-18 山东中力机械制造有限公司 Water-controlled reversal valve
CN102588368B (en) * 2012-02-03 2016-03-23 山东中力高压阀门股份有限公司 Water-controlled reversal valve
CN107250563A (en) * 2015-01-08 2017-10-13 沃尔沃建筑设备公司 Flow control valve for building machinery
US10494791B2 (en) 2015-01-08 2019-12-03 Volvo Construction Equipment Ab Flow control valve for construction machine
CN107061404A (en) * 2015-09-29 2017-08-18 纳博特斯克有限公司 Direction switch valve and hydraulic system
KR20170073128A (en) * 2015-12-18 2017-06-28 주식회사 두산 Hydraulic valve
CN114294283A (en) * 2021-12-26 2022-04-08 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve
CN114294280A (en) * 2021-12-26 2022-04-08 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve
CN114294283B (en) * 2021-12-26 2024-04-09 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve
CN114294280B (en) * 2021-12-26 2024-04-09 浙江海宏液压科技股份有限公司 Working valve plate and multi-way valve

Also Published As

Publication number Publication date
JPH06100202B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JP4410987B2 (en) Electro-hydraulic valve assembly
JPH031523B2 (en)
US4697498A (en) Direction control valve fitted with a flow control mechanism
EP0708252B1 (en) Control valve with variable priority function
US5558004A (en) Control arrangement for at least one hydraulic consumer
JPS62278302A (en) Variably regenerating circuit
EP1375927B1 (en) Hydraulic control device and industrial vehicle with hydraulic control device
US3746040A (en) Directional control valve
JPS62278301A (en) Variably regenerating circuit
JP4088606B2 (en) Flow control device for heavy construction equipment
JPH10252704A (en) Direction switching valve regeneration function
JP2001193709A (en) Hydraulic control device
US5749225A (en) Hydraulic systems and valve assemblies
JPH06117415A (en) Variable regeneration circuit
JPH0875020A (en) Pressure control valve
JP2630775B2 (en) Priority operation control device for high load actuator
KR100511197B1 (en) Apparatus of hydrauric control valve
JP4233203B2 (en) Hydraulic control device
JP3793666B2 (en) Hydraulic control device
JPH0320602B2 (en)
JP2545176Y2 (en) Compound control valve
JPH04181004A (en) Oiltight keeping device for hydraulic cylinder
JPS603419Y2 (en) select valve
JP2583862Y2 (en) Flow control valve with relief function
JP4083963B2 (en) Hydraulic control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees