JPS62277780A - Manufacture of piezoelectric ceramic body - Google Patents

Manufacture of piezoelectric ceramic body

Info

Publication number
JPS62277780A
JPS62277780A JP61120666A JP12066686A JPS62277780A JP S62277780 A JPS62277780 A JP S62277780A JP 61120666 A JP61120666 A JP 61120666A JP 12066686 A JP12066686 A JP 12066686A JP S62277780 A JPS62277780 A JP S62277780A
Authority
JP
Japan
Prior art keywords
layers
ceramic
porous
piezoelectric ceramic
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61120666A
Other languages
Japanese (ja)
Inventor
Seishiro Yamakawa
山河 清志郎
Michimasa Tsuzaki
津崎 通正
Hideo Kawamura
英雄 河村
Hisamitsu Takahashi
高橋 久光
Shigekazu Kusanagi
草薙 繁量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61120666A priority Critical patent/JPS62277780A/en
Publication of JPS62277780A publication Critical patent/JPS62277780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To reduce the adhesive strength of ceramic layers and electrode layers and even strain with the formation of the electrode layers without requiring a material for shaping expensive electrodes, and to form multilayer structure proper to low-voltage drive by preparing a laminate, in which the ceramic layers and porous layers as the electrode layers are laminated alternately, and giving the porous layers conductivity. CONSTITUTION:Slurry in which an assistant is added to piezoelectric ceramic calcining substance powder having a desired composition as re quired is changed into a green sheet by using an extrusion method. With a material for shaping a porous layer, the assistant and graphite powder for forming air gaps are added to the piezoelectric ceramic calcining substance powder, a trace quantity of a metal such as Pd functioning as nuclei on subsequent electroless plating are added, and a plurality of green sheets to which the paste is printed are laminated, thermocompression-bonded at pressure at a temperature, and sintered at a temperature of approximately 1300 deg.C. When sintering is completed, graphite is slipped off, thus acquiring a laminate in which ceramic layers and the porous layers are laminated alternately. When the laminate is dipped in an electroless plating liquid, Pd serves as nuclei, and a conductive substance precipitates in the porous layers, and is turned into electrode layers 3.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔技術分野〕 この発明は、セラミックス層と電極層が交互に積層され
ている圧電セラミックス体の製法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Technical Field] The present invention relates to a method for manufacturing a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated.

〔背景技術〕[Background technology]

セラミックス層と電極層が交互に積層されている圧電セ
ラミックス体は、従来、つぎのような方法で製造されて
いた。
A piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated has conventionally been manufactured by the following method.

所望の組成を有するセラミックスの仮焼物粉末にバイン
ダーなどを添加して共に混合粉砕・脱泡することにより
得られたスラリーを、ドクターブレード法あるいは押し
出し成形法でグリーンシートにする。このグリーンシー
トを切断した後、導電性ペーストを用いてグリーンシー
ト表面に電極パターンを印刷したものを複数枚重ねてお
いて、60〜150℃の温度で、熱圧着し積層する。そ
の後、積層体を焼結すると、圧電セラミックス層と導電
性ペーストによる電極層が交互に積層された圧電セラミ
ックス体が得られることとなる。バインダーは焼結工程
で除かれる。外部電極は焼結したあとに取り付け・る。
A binder and the like are added to ceramic calcined powder having a desired composition, and the resulting slurry is mixed, pulverized, and defoamed to form a green sheet using a doctor blade method or an extrusion method. After cutting this green sheet, a plurality of green sheets with electrode patterns printed on their surfaces using conductive paste are stacked one on top of the other, and are bonded and laminated by thermocompression at a temperature of 60 to 150°C. Thereafter, the laminate is sintered to obtain a piezoelectric ceramic body in which piezoelectric ceramic layers and electrode layers made of conductive paste are alternately laminated. The binder is removed during the sintering process. The external electrodes are attached after sintering.

この従来の製法は、量産性に優れ、一層あたりのセラミ
ックス層の厚みを薄くして駆動電圧を低くできるという
長所を有する。しかしながら、電極層とセラミックス層
を約1300℃の高温下で同時に焼かれるので、電極形
成用材料が高い焼結温度に耐えるものでなければならな
い。そのため、Pdの含有量が多いAg−Pd系の高価
な材料を用いている。それで、多層化するとコストが非
常に高くなってしまう。そればかりか、得られた圧電セ
ラミックス体におけるセラミックス層と電極層の熱膨張
順歴の違いに基づく歪みが残留し、圧電セラミックス体
の強度が劣化する。また、電極層とセラミックス層の密
着強度も強くないので、圧電素子のようにグイナミソク
な動きを伴う機能素子に用いるには、いまひとつ信頬性
が十分ではない。
This conventional manufacturing method has the advantage that it is excellent in mass production and that the thickness of each ceramic layer can be made thinner and the driving voltage can be lowered. However, since the electrode layer and the ceramic layer are simultaneously fired at a high temperature of approximately 1300° C., the material for forming the electrode must be able to withstand the high sintering temperature. Therefore, an expensive Ag-Pd material with a high content of Pd is used. Therefore, the cost becomes extremely high when the layer is multi-layered. Moreover, distortion remains in the resulting piezoelectric ceramic body due to the difference in thermal expansion history between the ceramic layer and the electrode layer, and the strength of the piezoelectric ceramic body deteriorates. Furthermore, since the adhesion strength between the electrode layer and the ceramic layer is not strong, the reliability is not sufficient to be used in a functional element that moves slowly, such as a piezoelectric element.

このような短所を解消するため、電極形成用材料にセラ
ミックス粉末を混入したり、電極パターンに小孔を設け
て密着強度を増すようなこともなされているが、みるべ
き効果は得られていない。
In order to overcome these shortcomings, efforts have been made to mix ceramic powder into the electrode forming material and create small holes in the electrode pattern to increase adhesion strength, but these efforts have not produced the desired effect. .

また、セラミックス電極層を用いる方法も提案されてい
る。BaTi0z  (チタン酸バリウム)組成の材料
と半導電性B a T i O3組成の材料をの組み合
わせて焼結する方法では、一定の効果も見られるが、圧
電特性に優れた、例えば、PZT(チタン酸ジルコン酸
鉛)組成の材料に半導電性Ba T i Oz組成の材
料を組み合わせたものでは、Pbがす早く半導電性Ba
TtO,組成の材料へ拡散する速度が早いため、電極層
である導電性セラミックス層がなくなってしまう(導電
性を有しなくなる)という問題がある。
A method using a ceramic electrode layer has also been proposed. A method of sintering a material with BaTiOz (barium titanate) composition and a material with semiconductive B a T i O3 composition has a certain effect, but When a material with a semiconductive BaTiOz composition is combined with a material with a composition of lead acid zirconate, Pb quickly changes to semiconductive Ba
Since the rate of diffusion into the material having the composition TtO is fast, there is a problem that the conductive ceramic layer serving as the electrode layer disappears (no longer has conductivity).

〔発明の目的〕[Purpose of the invention]

この発明は、上記の事情に鑑み、高価な電極形成用材料
を必要とせず、セラミックス層と電極層の密着強度や電
極層形成に伴う歪みも解消することができ、しかも、低
電圧駆動に適した多層構造を有する圧電セラミックス体
の製法を提供することを目的とする。
In view of the above circumstances, this invention eliminates the need for expensive electrode forming materials, eliminates the adhesion strength between the ceramic layer and the electrode layer, and eliminates the distortion associated with electrode layer formation, and is suitable for low voltage driving. The present invention aims to provide a method for manufacturing a piezoelectric ceramic body having a multilayer structure.

〔発明の開示〕[Disclosure of the invention]

前記目的を達成するため、この発明は、セラミックス層
と電極層が交互に積層されている圧電セラミックス体を
得る方法において、前記セラミックス層と前記電極層と
なる多孔質層が交互に積層されてなる積層体を準備して
おいて、前記多孔質層にメッキにより導電性を付与する
ことを特徴とする圧電セラミックス体の製法を要旨とす
る。
In order to achieve the above object, the present invention provides a method for obtaining a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated, wherein the ceramic layers and porous layers serving as the electrode layers are alternately laminated. The gist of the present invention is a method for manufacturing a piezoelectric ceramic body, which comprises preparing a laminate and imparting conductivity to the porous layer by plating.

以下、この発明にかかる圧電セラミックス体の製法を、
その一実施例にもとすいて詳しく説明する。
The method for manufacturing the piezoelectric ceramic body according to the present invention will be described below.
A detailed description will be given of one embodiment thereof.

所望の組成の圧電セラミックス仮焼物粉末に、必要に応
じてバインダー、可塑剤、溶剤を加えたものを、混合・
粉砕しスラリー化する。得られたスラリーをドクターブ
レード法、または、押出法を用いて、グリーンシートに
し、このグリーンシートを所望の大きさに切断する。
A piezoelectric ceramic calcined powder with a desired composition is mixed with a binder, plasticizer, and solvent as necessary.
Grind and slurry. The obtained slurry is made into a green sheet using a doctor blade method or an extrusion method, and this green sheet is cut into a desired size.

次に、このグリーンシート上に、電極となる多孔質層形
成用の材料をスクリーン印刷法で付ける、多孔質層形成
用の材料には、圧電セラミックス仮焼物粉末に、バイン
ダー、可塑剤、溶剤、および、空隙を作るためのグラフ
ァイト粉末を加えてペースト状にしたものを用いる。グ
ラファイト粉末は、約700 ’Cで熱分解を開始しC
otとなって抜は出す。また、無定形の炭素でも、分解
温度は低いが使用できる。そして、このペースト中に後
の無電解メッキの際に核となる金属、例えば、金属パラ
ノウ上(Pd)を微量添加しておく。
Next, on this green sheet, a material for forming a porous layer that will become an electrode is applied by screen printing.The material for forming the porous layer includes piezoelectric ceramic calcined powder, a binder, a plasticizer, a solvent, A paste made by adding graphite powder to create voids is used. Graphite powder starts to thermally decompose at about 700'C
He became OT and will be released. Amorphous carbon can also be used although its decomposition temperature is low. Then, a trace amount of metal, such as metal paranoids (Pd), which will become a core during electroless plating later, is added to this paste.

多孔質層形成用のペーストを印刷したグリーンシートを
複数枚積層しておいて、温度と圧力を加えて接着する(
熱圧着する)。このようにして得られた積層体(生チッ
プ)を焼結する。空気中で徐々に脱バインダー化し、つ
いで約1300℃の温度で焼結する。焼結が完了すると
、グラファイトが抜けてペースト印刷層は多孔質層とな
る。このように、セラミックス層と多孔質層が交互に積
層されてなる積層体を準備する。
Multiple green sheets printed with paste for forming a porous layer are stacked together and bonded together by applying temperature and pressure (
heat and press). The thus obtained laminate (green chip) is sintered. The binder is gradually removed in air and then sintered at a temperature of about 1300°C. Once sintering is complete, the graphite is removed and the paste printing layer becomes a porous layer. In this way, a laminate in which ceramic layers and porous layers are alternately stacked is prepared.

焼結に続いて、多孔質層に導電性を付与する。Following sintering, the porous layer is rendered electrically conductive.

この実施例では、無電解メッキ法で導電性物質を多孔質
層内に析出させることによって導電性を持たせている。
In this embodiment, conductivity is imparted by depositing a conductive substance into the porous layer using an electroless plating method.

多孔質層を形成した積層体を、例えば、Cu、Ni、S
nのような卑金属が含まれている無電解メッキ液に漬け
る。多孔質層にはPdが含まれているので、これが核と
なってメッキ液に含まれる導電性物質が多孔質層内に析
出成長する。導電性物質が析出すると導電性が付与され
るので、電極層となる。
The laminate in which the porous layer is formed is made of, for example, Cu, Ni, S.
dipped in an electroless plating solution containing base metals such as n. Since the porous layer contains Pd, this serves as a nucleus and the conductive substance contained in the plating solution precipitates and grows within the porous layer. When the conductive substance is deposited, conductivity is imparted to the layer, so that it becomes an electrode layer.

以上のようにして、第1にみるように、セラミックス層
2と電極N3が交互に積層されている圧電セラミックス
体1が得られるのである。この圧電セラミックス体1の
セラミックスH2の厚み、あるいは、電極層3の厚みは
、それぞれ、グリーンシートの厚み、あるは、ペースト
印刷の厚みに応じて決まることとなり、適当に調節する
こともができる。ただ、積層構造の圧電セラミックスが
小型で低電圧駆動の機能素子に用いられるものであるこ
とを考えれば、セラミックス層2は、薄いほど変位しや
すいので50〜300μm程度とするのがよい。また、
電極層3もできるだけ薄いほうがよいけれど、5〜10
μm程度の厚みにはしておくのが、信頼性確保の点で望
ましい。
In the above manner, as shown in the first example, the piezoelectric ceramic body 1 in which the ceramic layers 2 and the electrodes N3 are alternately laminated is obtained. The thickness of the ceramic H2 of the piezoelectric ceramic body 1 or the thickness of the electrode layer 3 is determined depending on the thickness of the green sheet or the thickness of paste printing, and can be adjusted appropriately. However, considering that piezoelectric ceramics with a laminated structure are used for small-sized, low-voltage-driven functional elements, the thickness of the ceramic layer 2 is preferably about 50 to 300 μm, since the thinner it is, the easier it is to displace. Also,
It is better for the electrode layer 3 to be as thin as possible, but 5 to 10
From the viewpoint of ensuring reliability, it is desirable to keep the thickness at about μm.

以上の説明から明らかなように、焼結のすんだセラミッ
クス層間の多孔質層に無電解メッキで導電性物質を析出
させるだけであるので、導電性材料は高温をこさらされ
ない。そのため、何ら高価な電極用の導電性材料を用い
る必要がない。多孔質層もセラミックス層に類似の材料
であるから、熱膨張率の差による歪みや接着強度の弱さ
の問題も解消される。したがって、セラミックス層の厚
みを薄くして低電圧で駆動させるようにしても十分強度
が備わっている。つまり、安価で十分に信頼性のあるも
のとすることができるのである。
As is clear from the above description, since the conductive material is simply deposited by electroless plating on the porous layer between the sintered ceramic layers, the conductive material is not exposed to high temperatures. Therefore, there is no need to use any expensive conductive material for electrodes. Since the porous layer is also made of a material similar to the ceramic layer, the problems of distortion and weak adhesive strength due to differences in thermal expansion coefficients are also resolved. Therefore, even if the ceramic layer is made thinner and driven at a lower voltage, it still has sufficient strength. In other words, it can be made inexpensive and sufficiently reliable.

また、セラミックス層と多孔質層とよりなる積層体を準
備するのに、グリーンシートに多孔質層用パターンを印
刷しておいたものを複数枚重ねておいて、全層を同時に
焼結するようにしていたが、これに限らない。あらかじ
め焼結したセラミックス層のみを、バルクの焼結体をス
ライスしたり、グリーンシートのみを焼結することによ
り得て、これらのセラミックス層に多孔質層が交互に積
層されるように多孔質層を別工程で形成してもよい。た
だ、非常に薄いセラミックス層をバルクの焼結体から切
断することや、薄いセラミックス層を取り扱うことは容
易なことではないばかりか、工程数も増えることから、
上記の実施例のように両方の層を同時形成することが望
ましい。また、メッキの方法も、無電解メッキ以外の適
当なメッキの方法であってもよい。
In addition, to prepare a laminate consisting of a ceramic layer and a porous layer, it is recommended to stack multiple green sheets with patterns for the porous layer printed on them and sinter all the layers at the same time. However, it is not limited to this. Pre-sintered ceramic layers are obtained by slicing a bulk sintered body or by sintering only green sheets, and porous layers are layered so that porous layers are alternately laminated on top of these ceramic layers. may be formed in a separate process. However, cutting a very thin ceramic layer from a bulk sintered body or handling a thin ceramic layer is not only difficult, but also requires an increased number of steps.
It is desirable to form both layers simultaneously as in the example above. Furthermore, the plating method may be any suitable plating method other than electroless plating.

続いてより具体的な実施例と比較例を示す。Next, more specific examples and comparative examples will be shown.

(実施例1) P b Z r O,5:IT i o、atozなる
組成となるように特級試薬のpbo、Zr0z、Ti0
zを秤量し、湿式混合粉砕後、濾過し、さらにアルミナ
ルツボ中、850℃の温度下で焼成し、仮焼物とする。
(Example 1) Special grade reagents pbo, Zr0z, and Ti0 were used to obtain a composition of P b Z r O,5:IT io, atoz.
z is weighed, wet mixed and pulverized, filtered, and further calcined in an alumina crucible at a temperature of 850°C to obtain a calcined product.

この仮焼物を湿式粉砕後、濾過・乾燥して仮焼物粉末を
得る。
This calcined product is wet-pulverized, filtered and dried to obtain a calcined powder.

つぎにこの仮焼物粉末100重量部に対し、バインダー
としてポリビニルブチラール樹脂8重量部、可塑剤とし
てフタル酸エステル4重量部、溶剤としてブタノール2
0重量部、トリクロルエチレン50重量部を添加したも
のを、ディスペンサーで混合しスラリー状にした。この
スラリーをドクターブレード法を用いて厚み300μm
のグリーンシートを作成した。このグリーンシートを3
01真角に切断した。
Next, to 100 parts by weight of this calcined powder, 8 parts by weight of polyvinyl butyral resin as a binder, 4 parts by weight of phthalate ester as a plasticizer, and 2 parts by weight of butanol as a solvent.
0 parts by weight and 50 parts by weight of trichlorethylene were mixed in a dispenser to form a slurry. This slurry was made into a thickness of 300 μm using the doctor blade method.
A green sheet was created. This green sheet 3
01 Cut to a right angle.

多孔質形成用の材料をつぎのようにして作成した。P 
b Z r 6. S’!T i o、 4?Oxなる
組成の仮焼物粉末を30重量部、グラファイト粉末を7
0重量部の合計100重量部に対し、核となるPd金属
粉(粒径1μm以下)を0.001重量部、バインダー
としてポリビニルブチラール樹脂8重量部、可塑剤とし
てフタル酸エステル4重量部、溶剤としてブタノール2
5重量部およびトリクロルエチレン55重量部を添加し
たものを、ディスペンサーで混合し、スラリー状とした
A porous material was prepared as follows. P
b Z r 6. S'! Tio, 4? 30 parts by weight of calcined powder with the composition Ox, 7 parts by weight of graphite powder
For a total of 100 parts by weight of 0 parts by weight, 0.001 parts by weight of Pd metal powder (particle size of 1 μm or less) as a core, 8 parts by weight of polyvinyl butyral resin as a binder, 4 parts by weight of phthalate ester as a plasticizer, and a solvent. as butanol 2
5 parts by weight and 55 parts by weight of trichlorethylene were mixed in a dispenser to form a slurry.

このスラリー(多孔質層形成用材料)を、前述のグリー
ンシートの両方の面それぞれにスクリーン印刷法で塗布
した。厚みは20μIとした。印刷済のグリーンシート
50枚を重ねて、100℃の温度下、500kg/an
tの圧力で熱圧着した。
This slurry (material for forming a porous layer) was applied to both sides of the green sheet by screen printing. The thickness was 20μI. Stacking 50 printed green sheets at a temperature of 100℃, 500kg/an
Thermocompression bonding was carried out at a pressure of t.

この後、積層したグリーンシートの焼結をつぎのように
しておこな、った。100℃/時間の速度で、300°
Cまで昇温し、300℃の状態を24時間保持して脱脂
(バインダー等の除去)をした “あと、200″C/
時間の速度で1260℃まで昇温し、この温度を1時間
保持し、つぎに300℃7時間の速度で降温する。この
場合、積層したグリーンシートはMgO製の匣鉢中に置
かれるが、Pboの蒸発を防ぐため同じ圧電セラミック
スのダミー材で囲んでおく。また、脱脂を行う時には、
匣鉢のフタを開けておいて、空気の出入りを良くしてお
く。このようにして、セラミックス層と多孔質層が交互
に積層されてなる積層体が得られる。多孔質層の厚みは
、15μmであった。
Thereafter, the laminated green sheets were sintered as follows. 300° at a rate of 100°C/hour
The temperature was raised to 200°C, and the temperature was maintained at 300°C for 24 hours to degrease (remove binders, etc.).
The temperature is raised to 1260°C at a rate of 1 hour, maintained at this temperature for 1 hour, and then lowered to 300°C at a rate of 7 hours. In this case, the laminated green sheets are placed in a MgO sagger, which is surrounded by a dummy material made of the same piezoelectric ceramic to prevent Pbo from evaporating. Also, when degreasing,
Leave the lid of the sagger pot open to allow air to flow in and out. In this way, a laminate in which ceramic layers and porous layers are alternately laminated is obtained. The thickness of the porous layer was 15 μm.

この積層体の多孔質層に導電性を付与する。多孔質層を
形成した積層体を、無電解ニッケルメッキ液に浸漬し多
孔質層にNiを析出させた。奥野製薬工業■ 無電解ニ
ッケルメッキ液・ナイトクラッド752のうち、ナイト
クラッド752A150m1/j!、および、ナイトク
ラッド752R5Qmj!/lを用い、PH6,0で液
温度65℃の状態で、メッキ時間20分であった。メッ
キ処理の後、研磨処理で、必要な個所以外に付着したN
iを除去し、圧電セラミックス体を完成した(実施例2
) 無電解ニッケルメッキ液の代わりに、無電解銅メッキ液
を用いて多孔質層にCuを析出させる他は、実施例1と
同様にして圧電セラミックス体を完成した。奥野製薬工
業■ 無電解銅メッキOPCカッパーのうち、OPCカ
ッパーA  60mj!/1、opcカッパーB  1
5m1/j、および、OPCカンバーC250m1l/
lを用い、pH12,5で液温度55℃の状態で、メッ
キ時間は30分であった。
Conductivity is imparted to the porous layer of this laminate. The laminate with the porous layer formed thereon was immersed in an electroless nickel plating solution to deposit Ni on the porous layer. Okuno Pharmaceutical Industry ■ Among the electroless nickel plating solution/Nightclad 752, Nightclad 752A150m1/j! , and Nightclad 752R5Qmj! plating time was 20 minutes at a pH of 6.0 and a liquid temperature of 65°C. After the plating process, the polishing process removed N that adhered to areas other than where it was needed.
i was removed to complete a piezoelectric ceramic body (Example 2
) A piezoelectric ceramic body was completed in the same manner as in Example 1, except that an electroless copper plating solution was used instead of the electroless nickel plating solution to deposit Cu in the porous layer. Okuno Pharmaceutical Industry■ Among electroless copper plated OPC copper, OPC copper A 60mj! /1, opc copper B 1
5m1/j, and OPC camber C250m1l/
The plating time was 30 minutes at a pH of 12.5 and a liquid temperature of 55°C.

(比較例1) 実施例1で得られた30Im角のグリーンシートの両面
にptペースト(エンゲルハルト社I  A−3444
)をスクリーン印刷で塗布した。厚みは、10μ鋼であ
った。印刷済のグリーンシート50枚を重ね、100℃
の温度下、500kg/altのプレス圧で熱圧着し、
実施例1と同じ条件で焼結し、圧電セラミックス体を完
成した。
(Comparative Example 1) PT paste (Engelhard IA-3444) was applied to both sides of the 30 Im square green sheet obtained in Example 1.
) was applied by screen printing. The thickness was 10μ steel. Stack 50 printed green sheets and heat to 100℃
Heat-compression bonded at a temperature of 500 kg/alt and press pressure of 500 kg/alt.
Sintering was performed under the same conditions as in Example 1 to complete a piezoelectric ceramic body.

実施例1〜3および比較例1の電極層の抵抗値は、いず
れも、十分に低かった。
The resistance values of the electrode layers of Examples 1 to 3 and Comparative Example 1 were all sufficiently low.

電極層とセラミックス層の密着強度は、つぎのようにし
て測定した。完成した圧電セラミックス体は、25wX
 25wmX l 5關の大きさとなった。これから2
.5璽■x2.5mmX15n+の大きさのものをダイ
ヤモンドカッターで切り出し、電極層と平行方向の抗折
強度と破壊個所を測定した。
The adhesion strength between the electrode layer and the ceramic layer was measured as follows. The completed piezoelectric ceramic body is 25wX
The size is 25wm x l 5mm. From now on 2
.. A piece measuring 5 x 2.5 mm x 15 n+ was cut out using a diamond cutter, and the bending strength in the direction parallel to the electrode layer and the fracture location were measured.

結果は次のとおりである。The results are as follows.

実施例1 破壊強度 760kg/ant破壊個所 セ
ラミックス層間 実施例2 破壊強度 680 kg/a+1破壊個所 
セラミックス層間 比較例1 破壊強度 360kg/cni破壊個所 電
極−セラミックス層界面 上記の測定結果から明らかなように、実施例1〜3の圧
電セラミックス体は、電極−セラミックス層界面では剥
離が生じないので、電極層とセラミックス層の密着強度
は十分強いものであることがわかる。また、破壊がおき
るときの強さも、比較例1と比べて、格段に大きいこと
から歪みが生じているようなものではないことがわかる
Example 1 Fracture strength 760 kg/ant fracture location Ceramic interlayer Example 2 Fracture strength 680 kg/a+1 fracture location
Ceramic interlayer comparison example 1 Breaking strength 360 kg/cni Breakage point Electrode-ceramic layer interface As is clear from the above measurement results, the piezoelectric ceramic bodies of Examples 1 to 3 do not peel off at the electrode-ceramic layer interface. It can be seen that the adhesion strength between the electrode layer and the ceramic layer is sufficiently strong. Furthermore, the strength at which the breakage occurred was significantly greater than that of Comparative Example 1, indicating that no distortion occurred.

〔発明の効果〕〔Effect of the invention〕

以上に詳しくのべたように、この発明にかかる圧電セラ
ミックス体を得る方法は、セラミックス層と電極層とな
る多孔質層が交互に積層されてなる積層体を準備してお
いて、多孔質層に導電性を付与する構成となっている。
As described in detail above, the method for obtaining a piezoelectric ceramic body according to the present invention involves preparing a laminate in which ceramic layers and porous layers serving as electrode layers are alternately laminated, and It has a structure that provides conductivity.

そのため、高価な電極形成用導電性材料を用いる必要が
ないく低いコストで、低電圧駆動できる圧電セラミック
ス体を゛製造できる。さらに、導電性材料を用いる前の
工程で電極層となる多孔質層を形成することとなるため
、導電性材料と無関係にセラミックス層と多孔質層を好
ましい状態に積層させることができるので、得られた圧
電セラミックス体が信鯨性の高0ものとなる。
Therefore, there is no need to use expensive conductive materials for electrode formation, and a piezoelectric ceramic body that can be driven at low voltage can be manufactured at low cost. Furthermore, since the porous layer that becomes the electrode layer is formed in the process before using the conductive material, the ceramic layer and the porous layer can be laminated in a preferable state regardless of the conductive material, making it possible to obtain benefits. The resulting piezoelectric ceramic body has high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる圧電セラミックス体の製法
の一実施例によって製造された圧電セラミックス体の部
分断面図である。 l・・・圧電セラミックス体  2・・・セラミックス
層  3・・・電極層
FIG. 1 is a partial sectional view of a piezoelectric ceramic body manufactured by an embodiment of the piezoelectric ceramic body manufacturing method according to the present invention. l... Piezoelectric ceramic body 2... Ceramic layer 3... Electrode layer

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックス層と電極層が交互に積層されている
圧電セラミックス体を得る方法において、前記セラミッ
クス層と前記電極層となる多孔質層が交互に積層されて
なる積層体を準備しておいて、前記多孔質層にメッキに
より導電性を付与することを特徴とする圧電セラミック
ス体の製法。
(1) In a method for obtaining a piezoelectric ceramic body in which ceramic layers and electrode layers are alternately laminated, a laminate in which the ceramic layers and the porous layers serving as the electrode layers are alternately laminated is prepared. . A method for producing a piezoelectric ceramic body, characterized in that conductivity is imparted to the porous layer by plating.
(2)メッキが無電解メッキであり、多孔質層がメッキ
の際に核となる金属を含んでいることを特徴とする特許
請求の範囲第1項記載の圧電セラミックス体の製法。
(2) The method for manufacturing a piezoelectric ceramic body according to claim 1, wherein the plating is electroless plating, and the porous layer contains a metal that becomes a core during plating.
JP61120666A 1986-05-26 1986-05-26 Manufacture of piezoelectric ceramic body Pending JPS62277780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120666A JPS62277780A (en) 1986-05-26 1986-05-26 Manufacture of piezoelectric ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120666A JPS62277780A (en) 1986-05-26 1986-05-26 Manufacture of piezoelectric ceramic body

Publications (1)

Publication Number Publication Date
JPS62277780A true JPS62277780A (en) 1987-12-02

Family

ID=14791903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120666A Pending JPS62277780A (en) 1986-05-26 1986-05-26 Manufacture of piezoelectric ceramic body

Country Status (1)

Country Link
JP (1) JPS62277780A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363250A (en) * 1991-03-19 1992-12-16 Tokyo Electric Co Ltd Ink jet printer head and method for its production
JPH05147215A (en) * 1991-10-04 1993-06-15 Tokyo Electric Co Ltd Manufacture of ink jet printer
US5245734A (en) * 1989-11-14 1993-09-21 Battelle Memorial Institute Multilayer piezoelectric actuator stack and method for its manufacture
US5311219A (en) * 1991-10-04 1994-05-10 Tokyo Electric Co., Ltd. Ink jet print head
US7685686B2 (en) * 2005-03-22 2010-03-30 Brother Kogyo Kabushiki Kaisha Method of producing a piezoelectric actuator and an ink-jet head

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245734A (en) * 1989-11-14 1993-09-21 Battelle Memorial Institute Multilayer piezoelectric actuator stack and method for its manufacture
JPH04363250A (en) * 1991-03-19 1992-12-16 Tokyo Electric Co Ltd Ink jet printer head and method for its production
US5311218A (en) * 1991-03-19 1994-05-10 Tokyo Electric Co., Ltd. Ink jet print head and method of fabricating the same
JPH05147215A (en) * 1991-10-04 1993-06-15 Tokyo Electric Co Ltd Manufacture of ink jet printer
US5311219A (en) * 1991-10-04 1994-05-10 Tokyo Electric Co., Ltd. Ink jet print head
US7685686B2 (en) * 2005-03-22 2010-03-30 Brother Kogyo Kabushiki Kaisha Method of producing a piezoelectric actuator and an ink-jet head

Similar Documents

Publication Publication Date Title
CN102110767B (en) Multilayer piezoelectric element
EP0285873B1 (en) Method of producing a multi-layered ceramic capacitor
US11107632B2 (en) Multilayer ceramic electronic component
JP5796602B2 (en) Ceramic electronic component and manufacturing method thereof
JP3760942B2 (en) Manufacturing method of multilayer ceramic electronic component
KR100693119B1 (en) Ceramic component element and ceramic component and method for the same
JPS62277780A (en) Manufacture of piezoelectric ceramic body
CN103606623A (en) Method for manufacturing piezoelectric element comprising SrO stress buffer bodies
US20010035253A1 (en) Ceramic sintered body and production method thereof
CN103700764A (en) Method for manufacturing piezoelectric element comprising HfO2 stress buffer body
JPS5826680B2 (en) Ceramic warm air conditioner
JPS6114679B2 (en)
JPS6347137A (en) Manufacture of piezoelectric ceramic body
JPS6027545A (en) Manufacture of matrix printing head
JPS62276887A (en) Manufacture of piezoelectric ceramic laminate
JP4715128B2 (en) Method for manufacturing piezoelectric element
JP2021190636A (en) Substrate for electric inspection
JPH0379007A (en) Green sheet for laminated ceramic capacitor and manufacture of laminated ceramic capacitor
JP2639139B2 (en) Multilayer feedthrough capacitor array
JPH0746540B2 (en) Method for manufacturing glass-ceramic substrate
JP2005015255A (en) Method of manufacturing thin layer ceramic sheet
CN103762305A (en) Manufacturing method for piezoelectric element containing La203 stress buffer body
JP2000169244A (en) Production of ceramic sintered compact
KR20240079846A (en) Method for manufacturing a multilayer piezoelectric element including internal electrodes
JPS60246269A (en) Manufacture of ceramic thin plate