JPS62276764A - Operating method for fuel cell - Google Patents

Operating method for fuel cell

Info

Publication number
JPS62276764A
JPS62276764A JP61119335A JP11933586A JPS62276764A JP S62276764 A JPS62276764 A JP S62276764A JP 61119335 A JP61119335 A JP 61119335A JP 11933586 A JP11933586 A JP 11933586A JP S62276764 A JPS62276764 A JP S62276764A
Authority
JP
Japan
Prior art keywords
temperature
battery
cell
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61119335A
Other languages
Japanese (ja)
Inventor
Hajime Toritani
初 鳥谷
Akio Soma
相馬 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61119335A priority Critical patent/JPS62276764A/en
Publication of JPS62276764A publication Critical patent/JPS62276764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To lower the operating temperature of a fuel cell so as to prevent corrosion and creep phenomena happening on the internal members of a cell, and deterioration in performance of the cell with lapse of time, by controlling ore cell temperature based upon the temperatures of fuel and oxidizing gas at inlet side of the cell and also, controlling the current density to obtain the maximum output point at that cell temperature. CONSTITUTION:By controlling the cell temperature, current density is controlled so as to gain the maximum output point at that temperature. That is, temperature controllers 5 and 9 are provided with the fuel control valves 11 and 12 to control the temperature. Relationship among the operation temperature T, output and the current I is previously input to a computing unit 15 and when a signal to change load is applied thereto, the computing unit 15 output a signal 17 which is to change the temperature in relation to the present load condition so that the control valves 11 and 12 of the gas temperature regulator can be controlled.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は燃料電池の運転法に係り、特に電池寿命を増大
し、かつ、高出力を得るのに好適な運転法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of operating a fuel cell, and particularly to an operation suitable for increasing battery life and obtaining high output. Regarding the law.

〔従来の技術〕[Conventional technology]

一般的な燃料電池は正極と負極を持ち、それらを積層し
て燃料電池積層体を成し、積層体内の各電池は直列に接
続されている。これらの電池は通常空気を使用してその
正極へ酸素を供給し、また水素を使用してその負極へ燃
料を供給することによって発電する。
A typical fuel cell has a positive electrode and a negative electrode, which are stacked to form a fuel cell stack, and each cell in the stack is connected in series. These cells typically generate electricity by using air to provide oxygen to their positive electrode and hydrogen to provide fuel to their negative electrode.

ここでは溶融炭酸塩型燃料電池の例についてその構造を
詳細に述べる。まず電池構成要素としては、酸化ニッケ
ル多孔質板からなる正極と、ニッケル多孔質板から成る
負極があり、それらに挟持されて電解質を含浸した電解
質タイルがある。電解質は一般に炭酸カリウムと炭酸リ
チウムの混合から成りその融点は約500℃である。ま
た、電解質タイルはりチウムアルミネート粉末を焼結し
たものであり、電解質を含むための微細な空孔が体積の
約50%をしめる。また、電池は積層されるため、正極
に通る空気と、負極に通る水素ガスを分離するためのガ
ス分離板が各電池間にある。溶融塩型燃料電池は一般に
650℃の高温で運転され、炭酸塩はアルカリであるた
め、電極材や分離板の腐食が問題になる。そのため、耐
食性材料が一般に使用され分離板にはオーステナイト系
ステンレス鋼が広(使用されている。
Here, the structure of an example of a molten carbonate fuel cell will be described in detail. First, the battery components include a positive electrode made of a porous nickel oxide plate, a negative electrode made of a porous nickel plate, and an electrolyte tile impregnated with an electrolyte sandwiched between them. The electrolyte generally consists of a mixture of potassium carbonate and lithium carbonate and has a melting point of about 500°C. The electrolyte tile is made by sintering lithium aluminate powder, and about 50% of the volume is made up of fine pores to contain the electrolyte. Furthermore, since the batteries are stacked, there is a gas separation plate between each battery to separate air passing through the positive electrode from hydrogen gas passing through the negative electrode. Molten salt fuel cells are generally operated at a high temperature of 650° C., and since carbonates are alkaline, corrosion of electrode materials and separators becomes a problem. Therefore, corrosion-resistant materials are generally used, and austenitic stainless steel is widely used for separator plates.

積層された燃料電池は、その接触抵抗を少なくするため
と電池内部に通ったガスの外部への漏洩を防ぐために一
般に一定の力で締付けられている。
Stacked fuel cells are generally tightened with a certain force in order to reduce their contact resistance and to prevent gas that has passed inside the cells from leaking to the outside.

しかしながら、電池は高温であることから長時間的に電
解質タイルの空孔をつぶし、また、多孔質電極の空孔を
も無くしてしまう。これをクリープ現象と称する。この
結果前者は、電解質タイル中の空孔に含まれていた電解
質が外部へ押出されてしまい電解質不足となる。また、
後者は電極の空孔がつぶれてしまうことによって電極反
応の低下を招き、この結果電池性能が低下してしまう。
However, due to the high temperature of the battery, the pores in the electrolyte tile are crushed over a long period of time, and the pores in the porous electrode are also eliminated. This is called a creep phenomenon. As a result, in the former case, the electrolyte contained in the pores in the electrolyte tile is pushed out to the outside, resulting in an electrolyte shortage. Also,
In the latter case, the pores of the electrode are crushed, resulting in a decrease in electrode reaction, resulting in a decrease in battery performance.

また、電池作動温度を下げることは、電解質の蒸発を防
止し、電解質タイル中のイオンの移動をおさえて電池の
出力を下げると共に、電池の寿命を大幅に延ばすことに
なる。
Lowering battery operating temperatures also prevents evaporation of the electrolyte and reduces the movement of ions in the electrolyte tiles, reducing battery output and significantly extending battery life.

電池出力は電池電圧と電池電流の積で計算される。電池
の電圧は単セルにおいて無負荷特約1■であり、負荷時
はそれ以下となる。従って積層された電池の電圧はその
積層数によってほぼ決定されているが、電池へ導入され
るガスの量や組成を変えることによっても電圧は制御可
能である。
Battery output is calculated as the product of battery voltage and battery current. The voltage of the battery is 1■ when there is no load in a single cell, and it is less than that when it is under load. Therefore, the voltage of a stacked battery is almost determined by the number of stacked layers, but the voltage can also be controlled by changing the amount and composition of gas introduced into the battery.

一方、電流は、電池へ導入されるガス量や組成を変える
ことにより制御することが一般的であるが、系統内の負
荷抵抗を変化させることによっても可能である。以上の
ように電圧電流を変えることにより負荷を変えることが
できる。
On the other hand, the current is generally controlled by changing the amount and composition of gas introduced into the battery, but it is also possible to control the current by changing the load resistance within the system. As described above, the load can be changed by changing the voltage and current.

なお、燃料電池の電池出力制御方法としては、特開昭5
5−53876号に記載されているような方法が′ある
が、これは、電池の作動温度を下げ、酸化剤ガス組成や
流量を制御することにより出力を低下させる方法である
In addition, as a battery output control method of a fuel cell, Japanese Patent Application Laid-open No. 5
There is a method as described in Japanese Patent No. 5-53876, in which the output is reduced by lowering the operating temperature of the battery and controlling the oxidant gas composition and flow rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のように、燃料電池においては、電池の作動温度を
下げ、電池寿命をのばしながら、高出力を達成する方法
はこれまで知られていなかった。
As mentioned above, in fuel cells, there has been no known method for achieving high output while lowering the operating temperature of the cell and extending the battery life.

本発明の目的は、電池寿命を増大し、かつ高出力を得る
燃料電池の運転法を提供することにある。
An object of the present invention is to provide a method of operating a fuel cell that increases battery life and obtains high output.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は燃料電池の運転において、電池温度を制御し
、かつ、電流密度をその電池温度における最高出力点に
制御することにより達成される。
The above object is achieved by controlling the cell temperature and controlling the current density to the maximum output point at the cell temperature during operation of the fuel cell.

電池温度を制御する方法について最も効率的な方法は、
電池入口側の燃料及び酸化剤ガスの温度を制御する方法
である。具体的には例えば入口ガス導管に温度調節器を
設けて供給ガス温度を制御する。一方、電池からの温度
、電圧、電流の信号は演算器に受けとり、出力を算出す
る。この時の電池温度と出力を対比する。一方、演算器
は外部からの作動温度に運転されるようにガス温度調節
器に指令し温度制御する。
The most efficient way to control battery temperature is
This is a method of controlling the temperature of fuel and oxidant gas on the cell inlet side. Specifically, for example, a temperature regulator is provided in the inlet gas conduit to control the temperature of the supplied gas. On the other hand, temperature, voltage, and current signals from the battery are received by a computing unit and the output is calculated. Compare the battery temperature and output at this time. On the other hand, the computing unit instructs the gas temperature controller to operate at an external operating temperature to control the temperature.

また、電流密度は、入口ガスの流量又はガス組成を変え
ること、また系統内の負荷抵抗を変化させることにより
制御され、作動温度におけるR高出力になるように設定
される。
The current density is also controlled by varying the inlet gas flow rate or gas composition and by varying the load resistance within the system, and is set to provide R-high output at the operating temperature.

よって、各温度における最高出力が得られるため出力効
率はきわめて高い。
Therefore, the maximum output at each temperature can be obtained, resulting in extremely high output efficiency.

〔作用〕[Effect]

本発明の燃料電池の運転法において、燃料電池の運転温
度を下げることにより、電池内部部材の腐食及びクリー
プ現象が防止され、時間の経過による電池性能の低下が
防がれる。しかも、電池密度の制御により各温度におけ
る最高出力が得られるため、高い出力効率が得られる。
In the method of operating a fuel cell of the present invention, by lowering the operating temperature of the fuel cell, corrosion and creep phenomena of internal members of the cell are prevented, and deterioration of cell performance over time is prevented. Moreover, since the maximum output at each temperature can be obtained by controlling the battery density, high output efficiency can be obtained.

〔実施例〕〔Example〕

以下に添付の図を参照しながら本発明の実施例について
詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は燃料電池発電プラントの一部を示しである。電
気的に直列に接続された複数個の電池を′含む燃料電池
積層体が符号1にて示されているが簡単のために電池の
正極2と負極3により概略図で示しである。各電池は溶
融炭酸塩電解質にて浸漬されたりチウムアルミネートマ
トリックスを含んでいる。このマトリックスは酸素電極
即ち工種電極2と燃料電極即ち負極電極3との間にサン
ドイッチ状に挟持されている。各電池間にはガス分離板
が配設され、隣接する電池を分離している。
FIG. 1 shows a part of a fuel cell power generation plant. A fuel cell stack comprising a plurality of cells electrically connected in series is designated by the reference numeral 1, but is schematically illustrated by the positive and negative electrodes 2 and 3 of the cells for the sake of simplicity. Each cell contains a lithium aluminate matrix immersed in a molten carbonate electrolyte. This matrix is sandwiched between an oxygen or metal electrode 2 and a fuel or negative electrode 3. A gas separation plate is disposed between each battery to separate adjacent batteries.

電池に供給されるガス導管は負極側導管4により燃料が
供給され、電池入口側に位置する温度調節器5にてガス
温度を昇温する。しかる後、ガスは負極3へ導入される
。電池内部では発電によりガスが昇温されて排出される
。排出ガスの組成は入口ガスの組成と異なり水素が消費
された後であるため水素割合は減少しているが、電池内
部で100%消費されないで排出される。入口供給ガス
量と発電に利用されたガス量の比を利用率と称する。
The gas conduit supplied to the battery is supplied with fuel through a negative electrode side conduit 4, and the temperature of the gas is raised by a temperature regulator 5 located on the battery inlet side. Thereafter, the gas is introduced into the negative electrode 3. Inside the battery, gas is heated and discharged due to power generation. The composition of the exhaust gas is different from the composition of the inlet gas, and since hydrogen has been consumed, the proportion of hydrogen is reduced, but it is discharged without being 100% consumed inside the battery. The ratio of the amount of gas supplied at the inlet to the amount of gas used for power generation is called the utilization rate.

一般に負極のガス利用率Uf=20〜80%であるので
残りの80〜20%の水素は発電に利用されないで排出
されることになる。この排出ガスの水素の熱量を再利用
するため、図中に示す送風機6によりガス入口側に循環
される。また、その途中において入口ガス導管4と熱交
換器7にて熱交換される。
Generally, since the gas utilization rate Uf of the negative electrode is 20 to 80%, the remaining 80 to 20% of hydrogen is not used for power generation and is discharged. In order to reuse the heat of hydrogen in this exhaust gas, it is circulated to the gas inlet side by a blower 6 shown in the figure. Further, heat is exchanged between the inlet gas conduit 4 and the heat exchanger 7 along the way.

一方、正極側導管8からは酸化剤ガス(主として空気と
二酸化炭素)が供給され正極2に導入される。電池排気
後は入口ガスと熱交換器9にて熱交換された後排気され
る。ここで電池からの排気ガスは電池内部の発熱により
入口ガスよりも高温であるため熱交換器を介して入口ガ
ス温度を高くする効果は十分にある。また、負極からの
排気ガスの一部には二酸化炭素が電池内部の反応により
生成す−るため析出する。これを温度調節器9にて温度
を調節した後、送風機10により正極入口導管に導(こ
とにすれば更に効率的である。前記説明の温度調節器5
及び9は燃料器、電気的加熱器及び熱交換器のいずれで
あってもよい。但し、それぞれの温度は調節できるよう
な機構にしておく必要がある。ここでは燃焼器と考えて
、その温度を調節するために燃料制御弁11及び12を
持つことにする。また電池本体に関しては、電池出力計
13を持ち、それから電圧■と電流Aを検出する機能を
持ち出力演算器14において出力を計算し表示記録する
装置を持つ。また、電池本体の温度Tは検出され演算器
15に送られる。ここで電池本体の温度として電池積層
体lの中央部の温度か、もしくは、ガス出口付近の温度
がよい。これは電池内部の発熱反応によって温度分布が
異なる。一般に温度が高過ぎると電池を損傷する危険性
があるため、ガス出口部の温度を監視することがよりよ
い。しかし、電池内において温度検出器を数多く取りつ
ける経済的余裕が有るならば各電池内部の温度を数点測
定し、また積層方向にも数セル分測定し、各温度の平均
値か、もしくは最高点を検出する方法がより望ましい。
On the other hand, oxidizing gas (mainly air and carbon dioxide) is supplied from the positive electrode side conduit 8 and introduced into the positive electrode 2 . After the battery is exhausted, heat is exchanged with the inlet gas in a heat exchanger 9, and then the battery is exhausted. Here, since the exhaust gas from the battery has a higher temperature than the inlet gas due to heat generation inside the battery, there is a sufficient effect of increasing the temperature of the inlet gas via the heat exchanger. In addition, carbon dioxide is generated in a part of the exhaust gas from the negative electrode due to reactions inside the battery, and is therefore deposited therein. After regulating the temperature with the temperature regulator 9, the air blower 10 guides the material to the positive electrode inlet conduit (this is more efficient.The temperature regulator 5 described above
and 9 may be any of a fuel device, an electric heater, and a heat exchanger. However, it is necessary to have a mechanism that allows each temperature to be adjusted. Here, it will be considered as a combustor, and will have fuel control valves 11 and 12 to adjust its temperature. Regarding the battery itself, it has a battery output meter 13, which has a function of detecting voltage (2) and current A, and an output calculator 14 that calculates and displays and records the output. Further, the temperature T of the battery body is detected and sent to the computing unit 15. Here, the temperature of the battery body is preferably the temperature at the center of the battery stack l or the temperature near the gas outlet. The temperature distribution differs depending on the exothermic reaction inside the battery. It is better to monitor the temperature at the gas outlet, since in general there is a risk of damaging the battery if the temperature is too high. However, if you can afford to install many temperature detectors inside the battery, you can measure the temperature inside each battery at several points, and also at several cells in the stacking direction, and calculate the average value of each temperature or the highest point. A method that detects is more desirable.

演算器15には、作動温度Tと出力と電流■の関係が前
もって入力されているか、又は外部入力信号16にて与
えられる。
The relationship between the operating temperature T, the output, and the current (2) is input to the computing unit 15 in advance, or is given as an external input signal 16.

いま、負荷を変更する信号が与えられると、演算器15
にて、現状負荷との関係より温度を変更する信号17を
出し、ガス温度調節器の制御弁11及び12を制御する
Now, when a signal to change the load is given, the arithmetic unit 15
, a signal 17 is issued to change the temperature in relation to the current load, and the control valves 11 and 12 of the gas temperature regulator are controlled.

ここで、この制御弁の変化率、すなわち、温度変化率は
、演算器15の中に前もって組込まれているか、もしく
は、外部信号16と同時に入力される。
Here, the rate of change of the control valve, that is, the rate of temperature change, is either built into the calculator 15 in advance, or is input simultaneously to the external signal 16.

温度変化率が大きいと、電池のガス通路とそうでない部
分とに大きな伸び差が生じる。特にセラミックスから成
る電解質タイルと、オーステナイト鋼から成る分離板と
の熱膨張係数の差が太きいため、電解質仮に亀裂が生じ
る危険性があることから注意して制御する必要がある。
When the rate of temperature change is large, a large difference in elongation occurs between the gas passage and other parts of the battery. In particular, since there is a large difference in coefficient of thermal expansion between the electrolyte tile made of ceramics and the separator plate made of austenitic steel, there is a risk that cracks may occur in the electrolyte, so careful control is required.

以上電池温度の制御方法として電池への供給ガス温度を
制御する方法を述べたが、小規模発電プラントにおいて
はガス導入管に温度調節器を設けることは経済的に不利
益になる恐れがある。この場合は、ガスによる電池加熱
制御法によらず、電池本体をその廻りから加熱する方法
の方がよい。
Although a method of controlling the temperature of the gas supplied to the battery has been described above as a method of controlling the battery temperature, providing a temperature regulator in the gas introduction pipe may be economically disadvantageous in small-scale power plants. In this case, it is better to use a method that heats the battery body from its surroundings, rather than using a gas-based battery heating control method.

その時の温度調節システムも前記大規模発電プラントと
同様に設ける。
A temperature control system at that time will also be provided in the same way as in the large-scale power generation plant.

次に、温度と電池性能特性の関係について詳細に述べる
。第2図は、電池温度と電圧、電流密度との関係を示す
。ここで電流密度は1セルの平均電池電流密度を示す。
Next, the relationship between temperature and battery performance characteristics will be described in detail. FIG. 2 shows the relationship between battery temperature, voltage, and current density. The current density here indicates the average battery current density of one cell.

これに電池の発電面積を乗すると電池電流になる。更に
これに電圧を乗すると電池出力となる。
Multiplying this by the power generation area of the battery gives the battery current. Furthermore, multiplying this by voltage gives the battery output.

本図において、例えば650 ”Cの作動温度において
は、電流密度を増加すると電圧がほぼそれに比例して低
下する。この特性は、各温度において同じ傾向にある。
In this figure, for example, at an operating temperature of 650''C, increasing the current density causes the voltage to decrease approximately proportionally. This characteristic tends to be the same at each temperature.

また、電池の作動温度を変化させると、電流密度がO又
は50mA/cnlと低い場合には低温側の電圧の低下
量は少ないが、電流密度を150〜200mA/cal
と高くすると低温側の電圧低下量が太き(なる。これは
低温では電解質タイル中の炭酸イオンの伝導性が低下す
ること、また電極の分極が上昇するためといわれている
In addition, when the operating temperature of the battery is changed, when the current density is as low as 0 or 50 mA/cnl, the amount of voltage drop on the low temperature side is small, but when the current density is changed to 150 to 200 mA/cal,
The higher the temperature, the greater the voltage drop on the low temperature side.This is said to be because the conductivity of carbonate ions in the electrolyte tile decreases at low temperatures, and the polarization of the electrodes increases.

第2図に示す電池温度、電池電圧、電流密度の関係を、
電池出力と電流密度及び電池作動温度との関係にすると
第3図となる。
The relationship between battery temperature, battery voltage, and current density shown in Figure 2 is
Figure 3 shows the relationship between battery output, current density, and battery operating temperature.

電池出力は各温度において常に極大点を持つ。Battery output always has a maximum point at each temperature.

この極大点での運転は電流密度を調節することにより可
能であり、電流密度は電池へ導入されるガス量及び組成
により反応状態を変えること又は負荷抵抗を変えること
により可能である。
Operation at this maximum point is possible by adjusting the current density, which can be controlled by changing the reaction state by changing the amount and composition of gas introduced into the battery, or by changing the load resistance.

第4図は第3図に示す出力極大点をとり、各温度と電池
出力の関係でまとめた図である。図中点1日は電池作動
温度650℃の定格出力の位置を示す。
FIG. 4 is a diagram that takes the output maximum points shown in FIG. 3 and summarizes the relationship between each temperature and battery output. The middle point 1st in the figure indicates the position of the rated output at a battery operating temperature of 650°C.

叉点19は部分負荷時の温度と出力を示す。一方高負荷
時には点20の作動温度と出力を示す。これらの点を包
絡するvi21を求める。これにそって電池の温度を制
御することにより目標の出力を得ることができる。従っ
て前記第1図に示した演算器15には、この曲線が入力
されているか、もしくは外部入力16にて必要出力に見
合った電池温度信号を入力することにより電池出力を制
御することができる。
Cross point 19 indicates temperature and power at part load. On the other hand, when the load is high, the operating temperature and output at point 20 are shown. Find vi21 that envelops these points. By controlling the temperature of the battery in accordance with this, the target output can be obtained. Therefore, the battery output can be controlled by inputting this curve into the arithmetic unit 15 shown in FIG. 1, or by inputting a battery temperature signal suitable for the required output through the external input 16.

〔発明の効果〕〔Effect of the invention〕

本発明によれば電池の温度を下げかつ高出力運転ができ
る。従って、電池内部部材の腐食やクリープ現象を防止
でき、又、電解質の消耗を抑制できるため、電池寿命の
大幅な増大となるとともに、出力効率が高いという効果
を奏する。
According to the present invention, the temperature of the battery can be lowered and high output operation can be performed. Therefore, corrosion and creep phenomena of internal battery members can be prevented, and consumption of electrolyte can be suppressed, resulting in a significant increase in battery life and high output efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の発電プラント部分系統図、
第2図は電池特性説明図、第3図は電池出力特性説明図
、第4図は電池出力と温度の相関説明図である。 1・・・燃料電池、2・・・正極電極、3・・・負極電
極、4・・・燃料導管、5・・・燃料ガス温度調節器、
6,10・・・送風機、7.9・・・熱交換器、8・・
・酸化ガス導管、IL 12・・・温度調節器制御弁、
13・・・負荷装置、14・・・出力演算器、15・・
・演算器、16・・・外部負荷信号、17・・・温度信
号、】8・・・定格出力点、19・・・低負荷出力点、
20・・・高負荷出力点、21・・・出力包絡線。 代理人 弁理士 平 木 祐 輔 3′同楔電換8二酸化剤導管    15:演算器第2
図 電池温度じC) 第3図 18、定格出力点 19:低負荷出力点 20:高負荷出力点
FIG. 1 is a partial system diagram of a power generation plant according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of battery characteristics, FIG. 3 is an explanatory diagram of battery output characteristics, and FIG. 4 is an explanatory diagram of the correlation between battery output and temperature. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Positive electrode, 3... Negative electrode, 4... Fuel conduit, 5... Fuel gas temperature controller,
6,10...Blower, 7.9...Heat exchanger, 8...
・Oxidizing gas conduit, IL 12...Temperature regulator control valve,
13...Load device, 14...Output calculator, 15...
- Arithmetic unit, 16... External load signal, 17... Temperature signal, ]8... Rated output point, 19... Low load output point,
20...High load output point, 21...Output envelope. Agent Patent Attorney Yusuke Hiraki 3' Wedge electric converter 8 Dioxidant conduit 15: Computing unit No. 2
Figure 3: Battery temperature C) Figure 3: 18, Rated output point 19: Low load output point 20: High load output point

Claims (1)

【特許請求の範囲】 1、正極と負極とを有する燃料電池が電気的に直列に接
続された積層体を成し、酸化剤ガスが燃料電池の正極に
接する空気通路へ供給され、燃料ガスがその負極に接す
る燃料通路へ供給される導管を持ち、電池出力装置を持
つ燃料電池において、電池温度を制御し、その温度にお
ける最高出力点を得られるように電流密度を制御するこ
とを特徴とする燃料電池の運転法。 2、酸化剤ガスが空気であり、燃料ガスが水素である特
許請求の範囲第1項記載の燃料電池の運転法。
[Claims] 1. A fuel cell having a positive electrode and a negative electrode forms a stacked body electrically connected in series, and an oxidizing gas is supplied to an air passage in contact with the positive electrode of the fuel cell, and the fuel gas is A fuel cell having a conduit for supplying fuel to a fuel passage in contact with the negative electrode and having a cell output device, characterized in that the cell temperature is controlled and the current density is controlled so as to obtain the maximum output point at that temperature. How to operate a fuel cell. 2. The method of operating a fuel cell according to claim 1, wherein the oxidant gas is air and the fuel gas is hydrogen.
JP61119335A 1986-05-26 1986-05-26 Operating method for fuel cell Pending JPS62276764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119335A JPS62276764A (en) 1986-05-26 1986-05-26 Operating method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119335A JPS62276764A (en) 1986-05-26 1986-05-26 Operating method for fuel cell

Publications (1)

Publication Number Publication Date
JPS62276764A true JPS62276764A (en) 1987-12-01

Family

ID=14758933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119335A Pending JPS62276764A (en) 1986-05-26 1986-05-26 Operating method for fuel cell

Country Status (1)

Country Link
JP (1) JPS62276764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191572A (en) * 2008-11-18 2013-09-26 Tokyo Gas Co Ltd Mcfc power generation system and operation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191572A (en) * 2008-11-18 2013-09-26 Tokyo Gas Co Ltd Mcfc power generation system and operation method thereof

Similar Documents

Publication Publication Date Title
US5302471A (en) Compact phosphoric acid fuel cell system and operating method thereof
NL193678C (en) Fuel cell with molten carbonate.
JPS6010425B2 (en) How to reduce the output power of a fuel cell
JPH08171928A (en) Laminated body of fuel cell
EP1521327B1 (en) Fuel cell modulation and temperature control
CA2504296A1 (en) Fuel cell operation method
JPH09259913A (en) Fuel battery power generator and operation method thereof
JPH0696782A (en) Internal reforming type fuel cell device and its operating method
US8092953B2 (en) Fuel cell system and method of operating the fuel cell system
WO2014045894A1 (en) Fuel cell system
JP2007059359A (en) Operation control method of solid oxide fuel cell system
CN201238067Y (en) Electric pile activation system of fuel cell
EP3627603B1 (en) Fuel cell system and method for operating the same, and electrochemical system and method for operating the same
JP2701522B2 (en) Fuel cell generator
JPS60177565A (en) Operation method of fuel cell power generating system
US10854897B2 (en) Temperature control system and method for fuel cell system and fuel cell system
JP4639574B2 (en) Solid oxide fuel cell
JPS62276764A (en) Operating method for fuel cell
CN102792507A (en) Fuel cell system and method for controlling electric current of same
JP2004349214A (en) Operation method of solid oxide fuel cell
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP2004055192A (en) Operation method and system for solid electrolyte fuel cell
JPH0654674B2 (en) Fuel cell power generator
JPH0650639B2 (en) Fuel cell
JPH01298653A (en) Fuel cell