JPS6227651A - Quantitative analysis method of double-layered type alloy plated plate - Google Patents

Quantitative analysis method of double-layered type alloy plated plate

Info

Publication number
JPS6227651A
JPS6227651A JP16698085A JP16698085A JPS6227651A JP S6227651 A JPS6227651 A JP S6227651A JP 16698085 A JP16698085 A JP 16698085A JP 16698085 A JP16698085 A JP 16698085A JP S6227651 A JPS6227651 A JP S6227651A
Authority
JP
Japan
Prior art keywords
base metal
metal
layer
plating layer
plated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16698085A
Other languages
Japanese (ja)
Inventor
Shingo Nomura
伸吾 野村
Hirohiko Sakai
堺 裕彦
Masatoshi Iwai
正敏 岩井
Makoto Terada
誠 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16698085A priority Critical patent/JPS6227651A/en
Publication of JPS6227651A publication Critical patent/JPS6227651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve accuracy in analysis and to improve the yield rate and the quality of surface treated products, by using the integrated values of the detected strengths of a base metal and other elements up to specified times as calibration curves for standard samples. CONSTITUTION:On a base metal including a metal element B, a plated layer including a metal element A other than the element B is formed. On the layer, a plated layer including a metal element C as well as the element B is formed. Thus a double-layer alloy plated plate is formed. The plated plate is sputtered in the direction of a depth from the surface. Based on the time change in detected strength of the sputtered metal, the amount of attachment of the plated layer and the rate of inclusion of components are analyzed. The calibration curves for standard samples are prepared as follows. For the elements A and C other then the element B for the base metal, the integrated value of the detected strengths are used until the values agree with the background. For the element B, which is the same as the base metal, the integrated value of the detected strength is used until the minimum value is indicated. The integrated values for both cases are shown by the shaded lines. The sample to be measured is analyzed through the calibration curves.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、二層型合金めっき板の定量分析方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a quantitative analysis method for a two-layer alloy plated plate.

[発明の背景] 近年2自動車用鋼板をはじめとして、耐食性の要求され
る種々の防錆処理鋼板が開発されている。これらの中に
は、用途の違いに伴って上層めっき、下層めっきの成分
含有率、付R量を夫々、別個に規定した二層めっき鋼板
が含まれる。
[Background of the Invention] In recent years, various anti-corrosion treated steel sheets, including steel sheets for automobiles, have been developed that require corrosion resistance. These include two-layer plated steel sheets in which the component contents of the upper layer plating and lower layer plating and the amount of radius applied are separately defined depending on the purpose of use.

このような二層めっき鋼板は成分含有率、付着量が変る
と、耐食性をはじめ種々の特性が変るので、めっき工程
では成分含有率、付着量を厳密に管理する必要がある。
In such a double-layer plated steel sheet, if the component content and coating amount change, various properties including corrosion resistance will change, so it is necessary to strictly control the component content and coating amount in the plating process.

鋼板表面が単層のめっき層で処理しである場合には、め
っき層を溶解して、原子吸光法などで分析したり、めっ
き鋼板のまま蛍光X線法などで分析することが可f@で
あり、管理も比較的容易である。
If the surface of the steel sheet has been treated with a single plating layer, it is possible to dissolve the plating layer and analyze it using atomic absorption spectroscopy, or to analyze the plated steel sheet as it is using fluorescent X-ray method. It is also relatively easy to manage.

然るに、二層のめっき鋼板では、めっき層を溶解して行
う分析方法では、めっき層を形成している元素毎の付着
量は求められるが、めっき層毎の成分含有率や付着量を
求めることができなかった。又前記蛍光X線法などによ
る非破壊分析法によっても、成分含有率および付着量を
共に求めることができなかった。
However, in the case of two-layer coated steel sheets, the analysis method performed by dissolving the plated layer can determine the adhesion amount of each element forming the plating layer, but it is not possible to determine the component content and adhesion amount of each plating layer. I couldn't do it. Further, even by non-destructive analysis methods such as the aforementioned fluorescent X-ray method, it was not possible to determine both the component content and the amount of adhesion.

そこで最近では、めっき鋼板を深さ方向にスパッタしな
がら、スパッタ金属元素を検出し、この検出強度・時間
曲線をもとにして、めっき層毎の成分含有率および付着
量を求める方法が検討されるようになっている。
Recently, a method of detecting the sputtered metal elements while sputtering a plated steel sheet in the depth direction and determining the component content and adhesion amount of each plating layer based on the detected intensity/time curve has been studied. It has become so.

この場合の分析装置としては、グロー放電発光分光分析
装置 (GDS)、二次イオン質量分析袋2(SIMS
)等が用いられる。これらの中では1分析が迅速で、め
っき処理鋼板製造時の操業管理に速やかに対応できると
いう点でGDSが有力である。   。
In this case, the analyzers include a glow discharge optical emission spectrometer (GDS), a secondary ion mass spectrometer bag 2 (SIMS), and a secondary ion mass spectrometer bag 2 (SIMS).
) etc. are used. Among these, GDS is effective in that it can perform quick analysis and can quickly respond to operational management during the production of galvanized steel sheets. .

GDS等による分析手法により、めっき処理鋼板の各元
素の付着量を求める定量法には(a)マトリックス効果
補正法、(b)検量線法、(C)強度積分法などが提案
されている。この中で、三元素以上からなるめっき板に
対しては、標準試料の作成および解析が容易なことがら
(C)の強度積分法が注目されている。
As a quantitative method for determining the adhesion amount of each element on a plated steel sheet using an analysis method such as GDS, (a) matrix effect correction method, (b) calibration curve method, (C) intensity integration method, etc. have been proposed. Among these, the intensity integration method (C) is attracting attention for plated plates made of three or more elements because it is easy to prepare and analyze standard samples.

この強度積分法による解析手順は次のように行われる。The analysis procedure using this intensity integration method is performed as follows.

即ち、 (1)成分元素の付着量を変化させた標準試料を用いて
、スパッタ金属の検出強度・時間曲線を測定する。
That is, (1) Measure the detection intensity/time curve of sputtered metal using standard samples with varying amounts of component elements attached.

(2)(1)の結果から積分強度と付着量の検量線を求
める。
(2) From the results of (1), obtain a calibration curve of integrated intensity and adhesion amount.

(3)未知試料について、積分強度を測定し、(2)で
求めた検量線を用いて付着量に換算する。
(3) Measure the integrated intensity of the unknown sample, and convert it to the adhesion amount using the calibration curve obtained in (2).

[問題点] 上記の手順によって、例えばベース金属B上に、A、C
の元素を含む合金めっき層を形成し。
[Problem] By the above procedure, for example, A and C are formed on base metal B.
An alloy plating layer containing the following elements is formed.

該めっき層の上に、A、B(ベース金属)の元素を含む
合金めっき層を形成した二層型めっき板を、深さ方向に
スパッタして、スパッタ金属の検出強度一時間曲線を測
定すると、第1図のようになる0図中の曲線が金属A、
B、C夫々の検出強度である。
A two-layer plated plate with an alloy plated layer containing elements A and B (base metal) formed on the plated layer is sputtered in the depth direction, and the one-hour curve of the detection intensity of the sputtered metal is measured. , the curve in Figure 0 as shown in Figure 1 is metal A,
These are the detection intensities of B and C, respectively.

上記のようにして二層型めっき板をスパッタした場合、
めっき層のミクロ的不均−やスパッタ速度の不均一等の
影響で、めっさ層とベース金属Bの境界付近では、めっ
き成分とベース成分が同時にスパッタされることがあり
、これが測定の誤差となる。また、めっき成分A、Cの
検出強度の減衰曲線は、ベース金属Bの表面粗さなどの
要因によって変化する。従って測定に際しては検出強度
の時間積分を、どこで打切るかが、定量精度に大きく影
響した。この点、従来から時間積分の打切点が明確でな
かった。
When sputtering a two-layer plated plate as described above,
Due to micro-inhomogeneities in the plating layer, non-uniform sputtering speed, etc., the plating component and the base component may be sputtered at the same time near the boundary between the plating layer and base metal B, which may cause measurement errors. becomes. Furthermore, the attenuation curves of the detected intensities of the plating components A and C change depending on factors such as the surface roughness of the base metal B. Therefore, during measurement, the point at which the time integration of the detected intensity was terminated had a large effect on the quantitative accuracy. In this respect, the cutoff point of time integration has not been clear until now.

一例として、Zn−Feめっき鋼板やZn−Fe/Zn
−Feめっき鋼板のように、めっき層と素地に共通の元
素が含有される場合に、めっき層−ベース金属境界付近
においてZnの検出強度の変曲点でZnとFeの検出強
度の時間積分を打切ることが提案されている程度である
。この方法に従って前記A−B/A−C/Bのめっき板
の検出強度の時間積分を行うと、第1図の斜線部分が積
分されることになる。
As an example, Zn-Fe plated steel sheet and Zn-Fe/Zn
- When common elements are contained in the plating layer and the base metal, such as in Fe-plated steel sheets, the time integration of the detected intensities of Zn and Fe is calculated at the inflection point of the detected intensities of Zn near the boundary between the plating layer and the base metal. It is only proposed that it be discontinued. When the detected intensities of the AB/A-C/B plated plates are time-integrated according to this method, the shaded area in FIG. 1 will be integrated.

この場合、めっき層とベース金属Bの境界付近では、元
素AおよびCの検出強度の変曲点以降にスパッタされた
分の検出強度は切捨てられることになる。一方、めっき
層に含まれた元素Bに関しては、変曲点以前に検出した
強度は全て、めっき層に関する情報として時間積分され
ることになる。従って試料によって、めっき層とベース
金属の境界条件が変化すると、変曲点以降に切捨てられ
る元素A、cのスパッタ量および変曲点以前に付加され
る元素Bのスパッタ擾も変化し、定量精度の低下を免れ
なかった。
In this case, near the boundary between the plating layer and the base metal B, the detected intensities of elements A and C sputtered after the inflection point of the detected intensities are discarded. On the other hand, regarding element B contained in the plating layer, all the intensities detected before the inflection point are time-integrated as information regarding the plating layer. Therefore, if the boundary conditions between the plating layer and the base metal change depending on the sample, the amount of sputtering of elements A and c that are discarded after the inflection point and the sputtering of element B that is added before the inflection point will also change, resulting in quantitative accuracy. could not avoid a decline in

[発明の概要] そこで本発明では、前記変曲点以降のめっき層に関する
情報を検出すると共に、ベース金属の情報をめっき暦の
情報に混入させないようにするものであって、次のよう
な方法を特徴とする。
[Summary of the Invention] Therefore, the present invention detects information regarding the plating layer after the inflection point and prevents information on the base metal from being mixed in with the information on the plating calendar, and uses the following method. It is characterized by

即ち、ベース金属上に、ベース金属を含まない1以上の
金属のめっき層を形成し、該めっき層を形成した二層型
合金めっき板を表面から深さ方向にスパッタし、スパッ
タされた金属の検出強度の時間変化からめっき層の付着
量および成分含有率を分析する方法において、標準試料
による検量線を、ベース金属以外の元素についてはバッ
クグラウンドと一致する時までの検出強度の積分値を用
い、ベース金属と同一の元素については極小値を示す時
までの検出強度の積分値を用いて作成し、該検量線を介
して被測定試料の分析を行うことを特徴とする。
That is, one or more metal plating layers not containing the base metal are formed on a base metal, and the two-layer alloy plated plate on which the plating layer is formed is sputtered from the surface in the depth direction, and the sputtered metal is In the method of analyzing the adhesion amount and component content of the plating layer from the time change of the detection intensity, a calibration curve using a standard sample is used, and for elements other than the base metal, the integrated value of the detection intensity until it matches the background is used. For the same element as the base metal, the calibration curve is created using the integrated value of the detection intensity up to the time when it shows a minimum value, and the sample to be measured is analyzed using the calibration curve.

本発明の方法を前記A−B/A−C/Bのめっき板の検
出強度に適用すると第2図のようになり、図の斜線部分
が検出強度の時間積分値として用いられる。
When the method of the present invention is applied to the detected intensity of the AB/A-C/B plated plate, the result is as shown in FIG. 2, and the shaded area in the figure is used as the time integral value of the detected intensity.

即ち本発明の方法では、ベース金属以外の元素について
は検出強度を全て付着量と対応するものとして扱うこと
になる。又、ベース金属については、めっき層に含まれ
る分だけを付着量と対応するものとして扱うことになる
。この結果、標準試料と未知試料間のめっき層とベース
金属の境界条件の変化が、誤差として混入しないことに
なり。
That is, in the method of the present invention, all detection intensities for elements other than the base metal are treated as corresponding to the amount of deposition. Further, as for the base metal, only the amount included in the plating layer is treated as corresponding to the amount of adhesion. As a result, changes in the boundary conditions between the plating layer and base metal between the standard sample and the unknown sample will not be introduced as errors.

定量精度を向上することができる。Quantitative accuracy can be improved.

尚、本発明の方法の適用は、A−B/A−C/Bの構成
のめっき板に限られるものではなく、A−B/A/B 
(ベース金属)や、B/A−C/B(ベース金属)、或
いはB/C/B (ベース金属)等の一方又は両方のめ
っき層が1成分であっても適用することができる。又、
更にA−B/A−C−D/B (ベース金属)や、A−
B−D/A−C/B (ベース金属などのように、めっ
き層に別の元素が含まれる場合でも適用することができ
る。
Note that the application of the method of the present invention is not limited to plated plates having the configuration of A-B/A-C/B.
(Base metal), B/A-C/B (Base metal), or B/C/B (Base metal) can be applied even if one or both of the plating layers is one component. or,
Furthermore, A-B/A-C-D/B (base metal) and A-
BD/A-C/B (This method can be applied even when the plating layer contains another element, such as a base metal.

[実施例] 鋼板上にZn−Niめっき層を形成し、該めっき層の上
に、Zn−Feめっき層を形成したZn−Fe/Zn−
Ni二層めっさ鋼板について、GDSを用いて定量分析
を行った。
[Example] Zn-Fe/Zn- in which a Zn-Ni plating layer was formed on a steel plate and a Zn-Fe plating layer was formed on the plating layer.
Quantitative analysis was performed on the Ni double-layer plated steel plate using GDS.

試料の付着量範囲、成分含有率は次表のものを用いた。The following table was used for the coating amount range and component content of the sample.

表 二■ 第3図はこの実施例で得た検量線と従来の手法(変曲点
で時間積分を打切る)による検量線を表し、原子吸光法
で求めたデータを検量線に重ねてプロットしたものであ
る。−は検量線と原子吸光値とのバラツキ度を示し、実
施例の検量線の精度が向上していることが判明した。
Table 2 ■ Figure 3 shows the calibration curve obtained in this example and the calibration curve obtained by the conventional method (time integration is stopped at the inflection point), and the data determined by atomic absorption spectrometry is plotted over the calibration curve. This is what I did. - indicates the degree of dispersion between the calibration curve and the atomic absorption value, and it was found that the accuracy of the calibration curve of the example was improved.

この検量線を用いて未知試料の分析を行えば。If you use this calibration curve to analyze an unknown sample.

精度の向上が期待できることは言うまでもない。Needless to say, an improvement in accuracy can be expected.

[発明の効果] 以上に説明した通り、この発明によれば分析精度を向上
できることから1表面処理製品の歩留りの向上および品
質向上に寄与するできる。功来がちる。
[Effects of the Invention] As explained above, according to the present invention, analysis precision can be improved, and therefore it can contribute to improvement in yield and quality of surface-treated products. Good luck.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法における検出強度および時間積分範囲
を説明するグラフ図、第2図は本発明における検出強度
および時間積分範囲を説明するグラフ図、第3図は、本
発明の実施例の検量線と従来法の検量線を表したグラフ
図である。 時閉 軒 藺
FIG. 1 is a graph explaining the detection intensity and time integration range in the conventional method. FIG. 2 is a graph explaining the detection intensity and time integration range in the present invention. FIG. 3 is a graph explaining the detection intensity and time integration range in the present invention. FIG. 3 is a graph showing a calibration curve of a conventional method. Closed house 藺

Claims (2)

【特許請求の範囲】[Claims] (1)ベース金属上に、ベース金属を含まない1以上の
金属のめっき層を形成し、該めっき層上に前記ベース金
属を含む1以上の金属のめっき層を形成した二層型合金
めっき板を表面から深さ方向にスパッタし、スパッタさ
れた金属の検出強度の時間変化からめっき層の付着量お
よび成分含有率を分析する方法において、標準試料によ
る検量線を、ベース金属以外の元素についてはバックグ
ラウンドと一致する時までの検出強度の積分値を用い、
ベース金属と同一の元素については極小値を示す時まで
の検出強度の積分値を用いて作成し、該検量線を介して
被測定試料の分析を行うことを特徴とした二層型合金め
っき板の定量分析方法。
(1) A two-layer alloy plated plate in which a plating layer of one or more metals not containing the base metal is formed on a base metal, and a plating layer of one or more metals containing the base metal is formed on the plating layer. In the method of sputtering from the surface in the depth direction and analyzing the adhesion amount and component content of the plating layer from the time change in the detection intensity of the sputtered metal, a calibration curve using a standard sample is used for elements other than the base metal. Using the integrated value of the detection intensity until it matches the background,
A two-layer alloy plated plate characterized in that for the same element as the base metal, it is created using the integrated value of the detection intensity up to the minimum value, and the sample to be measured is analyzed using the calibration curve. Quantitative analysis method.
(2)スパッタ金属の検出は、グロー放電発光分析装置
又は二次イオン質量分析装置で行う特許請求の範囲第1
項記載の二層型合金めっき板の定量分析方法。
(2) Sputtered metal is detected using a glow discharge optical emission spectrometer or a secondary ion mass spectrometer.
Quantitative analysis method for two-layer alloy plated plate described in Section 2.
JP16698085A 1985-07-27 1985-07-27 Quantitative analysis method of double-layered type alloy plated plate Pending JPS6227651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16698085A JPS6227651A (en) 1985-07-27 1985-07-27 Quantitative analysis method of double-layered type alloy plated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16698085A JPS6227651A (en) 1985-07-27 1985-07-27 Quantitative analysis method of double-layered type alloy plated plate

Publications (1)

Publication Number Publication Date
JPS6227651A true JPS6227651A (en) 1987-02-05

Family

ID=15841170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16698085A Pending JPS6227651A (en) 1985-07-27 1985-07-27 Quantitative analysis method of double-layered type alloy plated plate

Country Status (1)

Country Link
JP (1) JPS6227651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147227A (en) * 1988-11-29 1990-06-06 Toshiba Mach Co Ltd Injection apparatus of injection molding machine
JPH05192971A (en) * 1992-01-17 1993-08-03 Nissei Plastics Ind Co Injection molding machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147227A (en) * 1988-11-29 1990-06-06 Toshiba Mach Co Ltd Injection apparatus of injection molding machine
JPH0552773B2 (en) * 1988-11-29 1993-08-06 Toshiba Machine Co Ltd
JPH05192971A (en) * 1992-01-17 1993-08-03 Nissei Plastics Ind Co Injection molding machine

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
JPS6227651A (en) Quantitative analysis method of double-layered type alloy plated plate
KR100348065B1 (en) Method of measuring plating amount and alloying degree using fluorescence X-ray
Bojan et al. Quantification of SIMS data for multicomponent glasses
JP2672929B2 (en) Quantitative analysis method for upper layer plating of double-layered alloyed hot dip galvanized steel sheet by glow discharge emission spectrometry
JPH049736A (en) Method for sampling alloy membrane
Winchester et al. Availability of layered certified reference materials for industrial application of glow discharge spectrometric depth profiling
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JP3270781B2 (en) Analysis method of alloy layer
JPH056139B2 (en)
KR100206491B1 (en) Metal quantity analyzing method of plated steel plate
CN117907562B (en) Method for simultaneously detecting contents of multiple elements in coating
JPH0750043B2 (en) X-ray spectroscopic analysis method for thin layer
KR19980044273A (en) Iron content measurement method of alloyed hot dip galvanized layer
Weiss Emission yields in glow discharge optical emission spectroscopy
JP2001337056A (en) METHOD FOR MEASURING Ti COATING MASS OF TITANIUM-BASED CHEMICAL CONVERSION COATING FORMED ON SURFACE TREATED STEEL PLATE
JP2745999B2 (en) Quantitative method of plating film of two-layer plated steel sheet
JPH0211765A (en) Method of determining sputtering depth, sputtering yield or sputtering rate of metallic sample by glow discharge
KR970010978B1 (en) Phosphorus quantitative analysis method in zinc coated steel plate using x-ray
JP2803982B2 (en) Quantitative method of glow discharge emission spectrometry
JPS60185142A (en) Spectrochemical analysis method using glow discharge
Nir-El Elemental assay of Roma silver and copper coins and associated casting items by XRF
CN116794078A (en) Method for detecting multiple elements of cold-plated zinc layer by using X-ray fluorescence without standard sample
JPS60151505A (en) Determining method of plating film of two-layer plated steel plate
JPS62138741A (en) Fluorescent x-ray analysis