JPS62276374A - Heat recovery method using hydrogen occluded alloy - Google Patents

Heat recovery method using hydrogen occluded alloy

Info

Publication number
JPS62276374A
JPS62276374A JP61119141A JP11914186A JPS62276374A JP S62276374 A JPS62276374 A JP S62276374A JP 61119141 A JP61119141 A JP 61119141A JP 11914186 A JP11914186 A JP 11914186A JP S62276374 A JPS62276374 A JP S62276374A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
slurry
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61119141A
Other languages
Japanese (ja)
Other versions
JPH0820142B2 (en
Inventor
紀久士 常吉
一剛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61119141A priority Critical patent/JPH0820142B2/en
Publication of JPS62276374A publication Critical patent/JPS62276374A/en
Publication of JPH0820142B2 publication Critical patent/JPH0820142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野] 本発明は廃熱や地熱を回収し、有効にそれを活用する熱
回収方法に関し、具体的には蓄熱、ヒートポンプ(昇温
モード、熱増幅モード、冷凍モード)への利用に係る水
素吸蔵合金を用いた熱回収方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat recovery method for recovering waste heat and geothermal heat and effectively utilizing it, and specifically relates to heat storage, heat pumps ( This invention relates to a heat recovery method using a hydrogen storage alloy for use in heating mode, thermal amplification mode, and freezing mode.

〔従来の技術〕[Conventional technology]

金属水素化物を用いたヒートポンプの従来例f!:@2
図に示す。11は水素吸蔵合金Aの水素化物微粉末AH
が充填された耐圧容器、1・2は水素吸蔵合金Bの微粉
末が充填された耐圧容器である。耐圧容器11と12は
ラインaで連結されていて水素ガスが移動できるように
なっている。13は温度TM1の熱源、14は温度TH
の熱取出部、15け温度TLの熱源、16は温度TM2
の熱源である。
Conventional example of heat pump using metal hydride f! :@2
As shown in the figure. 11 is hydride fine powder AH of hydrogen storage alloy A
1 and 2 are pressure containers filled with fine powder of hydrogen storage alloy B. The pressure vessels 11 and 12 are connected by a line a so that hydrogen gas can move therethrough. 13 is a heat source with temperature TM1, 14 is temperature TH
heat extraction part, 15 heat source with temperature TL, 16 with temperature TM2
It is a heat source.

今バルブa1と’! 、’lとa6を開き、一方、パル
プa1と’4 、’7とas を閉じて熱源13から耐
圧容器11へ温度TM1の熱を送り、この耐圧容器11
内で次の反応式(イ)により水素を発生させる。
Now valve a1 and'! , 'l and a6 are opened, while pulp a1, '4, '7 and as are closed to send heat at temperature TM1 from the heat source 13 to the pressure vessel 11.
Hydrogen is generated using the following reaction formula (a).

AH+A十iE!  ・・・(イ)(Δ■、の反応熱を
吸収する) 発生した水素はラインaを通って耐圧容器12に導き、
次式(ロ)により合金Bに吸蔵させる。
AH+A1iE! ...(A) (absorbs the reaction heat of Δ■) The generated hydrogen is led to the pressure vessel 12 through line a,
It is occluded in alloy B according to the following formula (b).

B−4−174H冨→BE  ・・・(ロ)(ΔHBの
反応熱を発生する) この時の発熱を吸収するため熱源15から温度TL の
低温熱を送る。
B-4-174H Tomi→BE (b) (Generates reaction heat of ΔHB) In order to absorb the heat generated at this time, low-temperature heat of temperature TL is sent from the heat source 15.

熱を発生させる時はバルブa3とa4 、&マとalを
開き、一方、バルブa1とal % alとa−を閉じ
て熱源16から耐圧容器12へ温度TM2の熱を送り次
の反応式〇うにより水素を発生させる。
To generate heat, open valves a3 and a4, &ma and al, while closing valves a1, a1, a1 and a- to send heat at temperature TM2 from the heat source 16 to the pressure vessel 12 using the following reaction formula 〇 Hydrogen is generated by sea urchin.

EH−+B+V2H雪  ・・−(ハ)(ΔHBの反応
熱を吸収する) 発生した水素はラインILを通って耐圧容器11に導き
、次式に)によ)合金AK吸蔵させる。
EH-+B+V2H snow...-(c) (absorbs the reaction heat of ΔHB) The generated hydrogen is led to the pressure vessel 11 through the line IL, and is stored in the alloy AK according to the following formula).

A+14H雪→ム■ ・・・に) (ΔHAの反応熱を発生する) この時の反応熱を熱取出部14から取出す。A+14H snow→mu■...to) (Generates reaction heat of ΔHA) The reaction heat at this time is taken out from the heat extraction part 14.

即−ち熱源13からΔEの熱を供給し、熱取出部14か
ら同一の熱tを取出すことになる。この間の反応を合金
ム、Bの水素化物(AH,B)l)の分解平衡水素圧と
温度の関係図上で説明したのが第4図である。温度TM
Iの熱を供給してAHを分解して水素を発生し、この水
素を温度’rLで合金Bに吸蔵させBHとし、BHfT
M2の温度まで昇温して再び水素を発生させ、合金Ai
C吸蔵させる。この時の温度はTtlより高いTHと昇
温した状態で取り出せる。第3図はTMl =TM2(
” TM)のケースを示したものである。これらはTM
 の温度の熱を入れてそれより高い温度τヨの熱を取シ
出すモードで、昇温モードと言われる。
That is, heat of ΔE is supplied from the heat source 13 and the same heat t is extracted from the heat extraction section 14. FIG. 4 illustrates the reaction during this process using a diagram of the relationship between the decomposition equilibrium hydrogen pressure and temperature of the hydride (AH, B) of the alloy B. Temperature TM
Heat of I is supplied to decompose AH to generate hydrogen, and this hydrogen is occluded in alloy B at temperature 'rL to form BH, and BHfT
The temperature is raised to the temperature of M2 to generate hydrogen again, and the alloy Ai
Store C. At this time, the temperature can be taken out in an elevated state with TH higher than Ttl. Figure 3 shows TMl = TM2(
” TM).
This mode is called heating mode because it puts in heat at a temperature of τ and takes out heat at a higher temperature τ.

更に第5図は熱増幅モードと呼ばれるもので温度’rH
の高温の熱をAHに与えてAHを分解して水素を発生し
、この水素を合金Bに吸蔵させBEとし、THよシ低温
の’rMの熱を取り出す。EHをτ1なる低温の熱を加
えてBHを分解し、発生した水素を合金Aに吸蔵させA
Hとし、THより低温のTMの熱を取シ出す。即ちTH
の高温熱源を入れて、それより低温のTMなる熱を二ケ
所から取υ出すモードである。
Furthermore, Fig. 5 shows what is called the thermal amplification mode, where the temperature 'rH
Applying high temperature heat to AH, AH is decomposed to generate hydrogen, this hydrogen is stored in alloy B as BE, and the low temperature 'rM heat is extracted from TH. Heat is applied to EH at a low temperature of τ1 to decompose BH, and the generated hydrogen is stored in alloy A.
H, and the heat of TM, which is lower than TH, is extracted. That is, T.H.
In this mode, a high-temperature heat source is put in, and the lower-temperature heat, called TM, is extracted from two places.

第6図は第5図と同じ流れであるが、BHf温度TLK
するための熱媒をBE分解時の吸熱反応で冷却し、この
冷温を出力とするもので、冷凍モードと呼ばれる。
Figure 6 shows the same flow as Figure 5, but the BHf temperature TLK
This mode cools the heat medium for BE decomposition through an endothermic reaction during BE decomposition, and outputs this cool temperature, which is called a refrigeration mode.

その他にA、B、Oと三種類の合金を使った熱増幅モー
ド(図示せず)も提案されている。
In addition, a thermal amplification mode (not shown) using three types of alloys, A, B, and O, has also been proposed.

〔発明が解決しようとする問題点コ ところで上記従来の微粉末充填方式では次の欠点があっ
た。
[Problems to be Solved by the Invention] The conventional fine powder filling method described above had the following drawbacks.

(1)  熱の流れが間欠的であるため実装置では3連
以上を並べる必要があった。
(1) Because the flow of heat is intermittent, it was necessary to line up three or more units in an actual device.

(2)  合金が水素を吸蔵し金属水素化物に変化する
と、その熱伝導性が極端に低下し、加熱して水素を放出
させる時に熱が伝わり難く、水素放出に時間がかかり、
しかも体積膨張が起シ、容器の変形、破損の恐れがある
(2) When an alloy absorbs hydrogen and turns into a metal hydride, its thermal conductivity decreases dramatically, making it difficult for heat to be transmitted when heated to release hydrogen, and it takes time to release hydrogen.
Moreover, volumetric expansion may occur, leading to deformation and breakage of the container.

(3)  水素全放出する際充填した微粉末が同伴する
ため、容器のガス出入口にフィルターが設置されるが、
このフィルターの目詰りによるトラブルが発生する。
(3) When all hydrogen is released, the filled fine powder is included, so a filter is installed at the gas inlet and outlet of the container.
Trouble occurs due to clogging of this filter.

〔目的〕〔the purpose〕

本発明は、上記従来方式の欠点を解消する水素吸蔵合金
を用いた熱回収方法を提供することを目的とする。
An object of the present invention is to provide a heat recovery method using a hydrogen storage alloy that eliminates the drawbacks of the conventional methods described above.

〔問題点を解決するための手段〕[Means for solving problems]

そして、本発明は、上記目的を達成する手段として、水
素吸蔵合金粉末を溶媒中に懸濁させてスラリー状として
使用する点にある。すなわち、本発明は、炭素と水素の
みで構成された飽和炭化水素、芳香族炭化水素、および
脂環式飽和炭化水素からなる群およびアルコール類から
なる群から選ばれた溶媒に水素吸蔵合金Aを懸濁したス
ラリーと水素を接触させ、水素吸蔵合金Aの水素化物(
AH)スラリーを得る第1工程と、@1工程から送られ
たAHスラリーをAと水素に分解してAのスラリーを第
1工徨に循環させる第2工程と、該溶媒に水素吸合金B
i懸濁したスラリーと第2工程で発生した水素とを接触
させ、水素吸蔵合金Bの水素化物(BH)スラリー?得
る第3工程と、第3工程から送られた(BH)スラリー
をBと水素に分解してBのスラ17−5f:第3工程に
循環させる第4工程から成り、第4工程で発生した水素
を第1工程へ循環させることを特徴とする熱回収方法で
ある。
The present invention, as a means for achieving the above object, consists in suspending hydrogen storage alloy powder in a solvent and using it in the form of a slurry. That is, the present invention provides hydrogen storage alloy A in a solvent selected from the group consisting of saturated hydrocarbons consisting only of carbon and hydrogen, aromatic hydrocarbons, and alicyclic saturated hydrocarbons, and the group consisting of alcohols. The suspended slurry is brought into contact with hydrogen to form a hydride of hydrogen storage alloy A (
AH) A first step of obtaining a slurry, a second step of decomposing the AH slurry sent from @1 step into A and hydrogen and circulating the slurry of A to the first factory, and adding a hydrogen-absorbing alloy B to the solvent.
i The suspended slurry and the hydrogen generated in the second step are brought into contact to form a hydride (BH) slurry of hydrogen storage alloy B? and a fourth step in which the (BH) slurry sent from the third step is decomposed into B and hydrogen and recycled to the third step. This is a heat recovery method characterized by circulating hydrogen to the first step.

本発明では、水素吸蔵合金粉末を溶媒中に懸濁させてス
ラリー状として使用するものであるが、この溶媒として
は、合金と反応するものは不可であるので、有機溶媒を
使用する。この中で炭素と水素で構成された飽和炭化水
素、芳香族炭化水素、脂環式飽和炭化水素示選定できる
In the present invention, the hydrogen-absorbing alloy powder is suspended in a solvent and used in the form of a slurry, but since the solvent cannot react with the alloy, an organic solvent is used. Among these, saturated hydrocarbons composed of carbon and hydrogen, aromatic hydrocarbons, and alicyclic saturated hydrocarbons can be selected.

更にC!a、 Mg、 Li 、 Atを含まない合金
に対してはアルコール類(例えばポリエチレングリコー
ル)も使用できるo (” r Mg + Li HA
Zはアルコールと反応して金属アルコキシドを生成し易
いので、このような金rjj4ヲ含む合金の場合、アル
コール類は溶媒として使用できない。)本発明では、上
記したように、水素吸蔵合金粉末を溶媒中に懸濁させて
スラリー状として使用するものであるから、ポンプ輸送
が可能となシ連続的に高温熱を取り出せるヒートポンプ
システムが完成する。また、溶媒が熱媒体となり、熱伝
導性が向上し、その上、合金の膨張による支障や飛散に
よる支障が無い作用効果を奏する。
More C! a, Alcohols (e.g. polyethylene glycol) can also be used for alloys that do not contain Mg, Li, At ("r Mg + Li HA
Since Z tends to react with alcohol to produce metal alkoxides, alcohols cannot be used as a solvent in the case of such alloys containing gold. ) As mentioned above, in the present invention, since the hydrogen-absorbing alloy powder is suspended in a solvent and used as a slurry, a heat pump system that can be pumped and continuously extracts high-temperature heat has been completed. do. In addition, the solvent becomes a heat medium, improving thermal conductivity, and moreover, there are no problems caused by expansion or scattering of the alloy.

〔実施例] 第1図に基づいて本発明の詳細な説明する。〔Example] The present invention will be explained in detail based on FIG.

第1図は本発明の詳細な説明するための図であって、ヒ
ートポンプの概略全体図である。また、本発明における
水素吸蔵合金ムとしてLaNi5を用い、これを懸濁さ
せるための溶媒として平均分子Ji400のポリエチレ
ングリコール(以下PEGと略記する。)を使用し、一
方、水素吸蔵合金BとしてnmNt、 CMm はミツ
シュメタルを表わし、希土類金属の混合したメタルを示
す。)を用い、これを懸濁させるための溶媒としてプロ
ピルベンゼン(以下FBと略記する。)を使用する。そ
して、LaN1g / PROス2リーとMmN 1.
 / P E  スラリー(各々スラリー濃度30 w
tl ) f用いたヒートポンプ列(昇温モード)を第
1図に基づいて説明する。
FIG. 1 is a diagram for explaining the present invention in detail, and is a schematic overall view of a heat pump. In addition, LaNi5 is used as the hydrogen storage alloy B in the present invention, and polyethylene glycol (hereinafter abbreviated as PEG) with an average molecular weight of Ji400 is used as the solvent for suspending it.On the other hand, as the hydrogen storage alloy B, nmNt, CMm stands for mitshu metal, which is a metal mixed with rare earth metals. ), and propylbenzene (hereinafter abbreviated as FB) is used as a solvent for suspending this. And LaN1g/PRO33 and MmN1.
/ P E slurry (each slurry concentration 30 w
A heat pump array (temperature raising mode) using tl)f will be explained based on FIG.

第1図において、1は高温熱回収槽で、熱交換エレメン
ト2により高温の熱を取り出す。この高温熱回収槽1に
はライン(イ)を介して水素ガスが、またライン(ロ)
を介して一1!LNI5/FKGスラリーが供給され、
次式によりLaNi5の水素化物が生成し反応熱を出す
In FIG. 1, reference numeral 1 denotes a high-temperature heat recovery tank, from which high-temperature heat is extracted by a heat exchange element 2. Hydrogen gas is supplied to this high-temperature heat recovery tank 1 via line (a) and line (b).
11 through! LNI5/FKG slurry is supplied,
According to the following formula, a hydride of LaNi5 is generated and heat of reaction is generated.

LaNi5+  3H2−+ LaN15H@    
−ΔHt (発熱)LaN 15Hj / P E G
スラリーはライン(ハ)?介して熱回収槽3に導かれ、
ラインに)から供給される75℃の熱源によって加熱さ
れ、次式釦より水素を放出する。
LaNi5+ 3H2-+ LaN15H@
-ΔHt (Heat generation) LaN 15Hj / P E G
Is the slurry line (ha)? is led to the heat recovery tank 3 through
It is heated by a 75°C heat source supplied from the line), and hydrogen is released from the next button.

LaN i5 H6→LaN i5 +S H!   
  ΔHt (吸熱)baN1s/pxaスラリーはポ
ンプ4によシライン(ロ)ヲ介して高温熱回収槽1へ再
循環させる。
LaN i5 H6→LaN i5 +S H!
The ΔHt (endothermic) baN1s/pxa slurry is recirculated to the high temperature heat recovery tank 1 by the pump 4 via the cylinder (b).

発生し九水素はライン(ホ)を介して水素貯槽5へ導か
れ、MmNi5/ P Bスラリーに次式により水素が
貯蔵される。
The generated hydrogen is led to the hydrogen storage tank 5 through the line (e), and hydrogen is stored in the MmNi5/PB slurry according to the following equation.

MmNig + 3H! →MmNi5H4−ΔHI(
発見)この時の発熱を吸収し、尿素の貯蔵を進行させる
ためライン(へ)から0℃の熱源が供給される。
MmNig+3H! →MmNi5H4−ΔHI(
Discovery) A heat source at 0°C is supplied from the line to absorb the heat generated at this time and promote storage of urea.

Mm N i5114 / P B  スラリーはライ
ン(ト)ヲ介して水素発生槽6へ導入され、ライン(7
)から供給される45′cの熱源により加熱され、次式
により水素を放出する。
The Mm Ni5114/P B slurry is introduced into the hydrogen generation tank 6 through line (7), and then through line (7).
) and releases hydrogen according to the following equation.

MmN 1,4−+ MmN is + 3 N2  
   ΔH!(吸熱)MmN i@ / P B  ス
ラリーはポンプ7によりライン(1ハを介して水素貯槽
5へ再循環され発生水素はライン(イ)を介して高温熱
回収槽1へ導入される。
MmN 1,4-+ MmN is + 3 N2
ΔH! The (endothermic) MmN i@ /P B slurry is recirculated to the hydrogen storage tank 5 via line (1) by pump 7, and the generated hydrogen is introduced to high temperature heat recovery tank 1 via line (A).

水素発生槽6を40℃に保持したところ、発生水素圧力
は30 atmでちった。この水素をライン(イ)を介
して高温熱回収槽1に供給した。高温熱回収槽1の温度
は1(M1℃となるよう熱交換エレメント2の操作条件
を調整した。高温熱回収槽1内の圧力は25 atmで
あつ念。熱回収槽3の温度’1−70℃に維持したとこ
ろ発生水素圧力は10 atmであった。この水素を水
素貯槽5に供給した。この水素貯槽5を1℃に維持した
ところ、水素貯槽5内の圧力は8 atmとなった。こ
のようにして75℃の熱源から高温熱回収槽1内に10
0Cの熱源を得ることができた。
When the hydrogen generation tank 6 was maintained at 40° C., the generated hydrogen pressure dropped to 30 atm. This hydrogen was supplied to the high temperature heat recovery tank 1 via line (A). The operating conditions of the heat exchange element 2 were adjusted so that the temperature of the high temperature heat recovery tank 1 was 1 (M1°C).The pressure inside the high temperature heat recovery tank 1 was 25 atm.The temperature of the heat recovery tank 3 was '1- When the temperature was maintained at 70°C, the generated hydrogen pressure was 10 atm. This hydrogen was supplied to the hydrogen storage tank 5. When the hydrogen storage tank 5 was maintained at 1°C, the pressure inside the hydrogen storage tank 5 was 8 atm. .In this way, 10
We were able to obtain a 0C heat source.

このようなヒートポンプ列は既に公知であるが、本発明
ではスラリーを使用することにより(第1図と第4図の
比較)連続的に熱を取り出すことが可能となった。また
第1図において蓄熱の場合は、水素発生槽6を昇温せず
ライン(()を介しての水素の供給を停止してMmNi
5H@のPBスラリーを水素貯槽5および水素発生槽6
に貯蔵することにより目的を達することができる。
Although such a heat pump array is already known, in the present invention, by using slurry (compare FIG. 1 and FIG. 4), it has become possible to extract heat continuously. In addition, in the case of heat storage in FIG.
PB slurry of 5H@ is transferred to hydrogen storage tank 5 and hydrogen generation tank 6.
You can achieve your goal by storing it in.

更に第5図、第6図に示した熱増幅モードや冷凍モード
も本発明において合金の組合せや加熱、冷却の温度条件
を変えることKよシ、また、熱の取り出し場所を変える
ことにより容易に実施できることは言うまでもなく、こ
れらも本発明に包含されるものである。
Furthermore, the heat amplification mode and freezing mode shown in FIGS. 5 and 6 can also be easily achieved by changing the combination of alloys, heating and cooling temperature conditions, and by changing the heat extraction location. Needless to say, these methods are also included in the present invention.

〔発明の効果〕 本発明は、以上詳記したように、水素吸蔵合金をスラリ
ー化し、水素を吸・脱蔵する際の反応熱を利用してヒー
トポンプシステムや蓄熱システムに利用することができ
るものであり、この際水素吸蔵合金粉末の飛散が防止で
き、また、この合金の膨張、収縮による障害がなく、そ
の上、連続的な熱回収プロセスを組むことができ、しか
も、金属水素化物に対する熱伝導性が向上するなど顕著
な効果が生ずる。
[Effects of the Invention] As detailed above, the present invention is a hydrogen storage alloy that can be used in a heat pump system or a heat storage system by making a slurry and utilizing the reaction heat when absorbing and devolatilizing hydrogen. In this case, scattering of the hydrogen storage alloy powder can be prevented, and there is no problem due to expansion and contraction of this alloy.Furthermore, a continuous heat recovery process can be set up, and the heat recovery process for metal hydrides can be prevented. Remarkable effects such as improved conductivity occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施列でちるヒートポンプシステムを
示す概略の全体図である。第2図は従来のヒートポンプ
システムを示す概略の全体図である。第3〜第6図は、
水素化物の分解平衡水素圧と温度との関係図であって、
ヒートポンプの作動モードを示す図であり、この内温3
図、第4図は昇温モードを示す図、第5図は熱増幅モー
ドを示す図、第6図は冷凍モード?示す図である。 第5図 1/T
FIG. 1 is a schematic overall view showing a heat pump system in accordance with the present invention. FIG. 2 is a schematic overall view showing a conventional heat pump system. Figures 3 to 6 are
It is a relationship diagram between decomposition equilibrium hydrogen pressure and temperature of hydride,
It is a diagram showing the operation mode of the heat pump, and this internal temperature 3
Figure 4 shows the heating mode, Figure 5 shows the heat amplification mode, and Figure 6 shows the freezing mode. FIG. Figure 5 1/T

Claims (1)

【特許請求の範囲】[Claims] 炭素と水素のみで構成された飽和炭化水素、芳香族炭化
水素、および脂環式飽和炭化水素からなる群およびアル
コール類からなる群から選ばれた溶媒に水素吸蔵合金A
を懸濁したスラリーと水素を接触させ、水素吸蔵合金A
の水素化物(AH)スラリーを得る第1工程と、第1工
程から送られたAHスラリーをAと水素に分解してAの
スラリーを第1工程に循環させる第2工程と、該溶媒に
水素吸合金Bを懸濁したスラリーと第2工程で発生した
水素とを接触させ、水素吸蔵合金Bの水素化物(BH)
スラリーを得る第3工程と、第3工程から送られた(B
H)スラリーをBと水素に分解してBのスラリーを第3
工程に循環させる第4工程から成り、第4工程で発生し
た水素を第1工程へ循環させることを特徴とする熱回収
方法。
Hydrogen storage alloy A in a solvent selected from the group consisting of saturated hydrocarbons composed only of carbon and hydrogen, aromatic hydrocarbons, and alicyclic saturated hydrocarbons, and the group consisting of alcohols.
Hydrogen storage alloy A is made by contacting hydrogen with a slurry in which
a first step of obtaining a hydride (AH) slurry; a second step of decomposing the AH slurry sent from the first step into A and hydrogen and circulating the slurry of A to the first step; A slurry in which hydrogen absorbing alloy B is suspended is brought into contact with the hydrogen generated in the second step to form a hydride (BH) of hydrogen absorbing alloy B.
The third step to obtain the slurry and the sent from the third step (B
H) Decompose the slurry into B and hydrogen and convert the slurry of B into the third
A heat recovery method comprising a fourth step of circulating hydrogen to the first step, the hydrogen generated in the fourth step being circulated to the first step.
JP61119141A 1986-05-26 1986-05-26 Heat recovery method using hydrogen storage alloy Expired - Lifetime JPH0820142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61119141A JPH0820142B2 (en) 1986-05-26 1986-05-26 Heat recovery method using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61119141A JPH0820142B2 (en) 1986-05-26 1986-05-26 Heat recovery method using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS62276374A true JPS62276374A (en) 1987-12-01
JPH0820142B2 JPH0820142B2 (en) 1996-03-04

Family

ID=14753939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61119141A Expired - Lifetime JPH0820142B2 (en) 1986-05-26 1986-05-26 Heat recovery method using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0820142B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658687A (en) * 1992-08-05 1994-03-04 Mitsui Eng & Shipbuild Co Ltd Discharge method for metallic hydride and metallic hydride container
JPH06234502A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Energy storing method using hydrogen occluding alloy slurry
JPH06234501A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Hydrogen feeding method
EP3540337A4 (en) * 2016-11-09 2020-06-03 Toyo Engineering Corporation Chemical heat pump system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208474A (en) * 1985-03-12 1986-09-16 東京農工大学長 High-temperature chemical heat pump system by hydrogenation and dehydrogenation reaction of organic compound and hydrogen occluding alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208474A (en) * 1985-03-12 1986-09-16 東京農工大学長 High-temperature chemical heat pump system by hydrogenation and dehydrogenation reaction of organic compound and hydrogen occluding alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658687A (en) * 1992-08-05 1994-03-04 Mitsui Eng & Shipbuild Co Ltd Discharge method for metallic hydride and metallic hydride container
JPH06234502A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Energy storing method using hydrogen occluding alloy slurry
JPH06234501A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Hydrogen feeding method
EP3540337A4 (en) * 2016-11-09 2020-06-03 Toyo Engineering Corporation Chemical heat pump system

Also Published As

Publication number Publication date
JPH0820142B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US7124790B2 (en) System and method for storing and discharging hydrogen
KR101042299B1 (en) Hydrogen storing system for fuel cell vehicle
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
US4829772A (en) Method of and device for storing and transforming heat and generating cold
CN108981201A (en) Supercritical CO2The amino thermochemical energy storage reactor of solar heat power generation system
JPS62276374A (en) Heat recovery method using hydrogen occluded alloy
CN214093991U (en) Vehicle-mounted solid hydrogen storage and supply system
CN106524809A (en) Gradient energy storage and energy release system and method based on reversible chemical reaction
US3967676A (en) Transport of heat as chemical energy
JP2002104811A (en) Reduction apparatus of carbon dioxide
JPS6046901A (en) Method for releasing stored hydrogen gas
Malleswararao et al. Experimental investigations on a coupled metal hydride based thermal energy storage system
JPS6033239B2 (en) Portable heating and cooling device
US20230045434A1 (en) Metal Hydride-Hydrogen Tank System With A Frost-Start Capability
JPH0227387B2 (en)
US20040013921A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
JPH0634230A (en) Cold generator
JPS6037395B2 (en) Portable heating or cooling device
JPS60114672A (en) Heat pump method by metallic hydride
JPS59125367A (en) Portable cooling device
JPH0325393A (en) Nuclear fusion fuel element, production thereof and nuclear fusion power plant
JPH0214600B2 (en)
JPH01210768A (en) Regenerating type heat pump
Gruen Method and apparatus for thermal energy storage.[Patent application]