JPS62276082A - Carbon fiber material for holding aqueous solvent - Google Patents

Carbon fiber material for holding aqueous solvent

Info

Publication number
JPS62276082A
JPS62276082A JP61118170A JP11817086A JPS62276082A JP S62276082 A JPS62276082 A JP S62276082A JP 61118170 A JP61118170 A JP 61118170A JP 11817086 A JP11817086 A JP 11817086A JP S62276082 A JPS62276082 A JP S62276082A
Authority
JP
Japan
Prior art keywords
carbon fiber
aqueous solvent
fiber material
carbon
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61118170A
Other languages
Japanese (ja)
Inventor
彰 古市
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61118170A priority Critical patent/JPS62276082A/en
Publication of JPS62276082A publication Critical patent/JPS62276082A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野)  ・ 本発明は水系溶媒保持炭素繊維材料に関するものである
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) - The present invention relates to an aqueous solvent-retaining carbon fiber material.

(従来の技術) 従来、電解液を使用する2次電池、例えば、硫酸を電解
液とする鉛電池1.苛性カリを電解液とするニッケルカ
ドミウム電池や1亜鉛電池等においては、使用時に傾け
ても電解液の漏洩のない、メインテナンスフリーの密閉
型:の電池が望まれている。
(Prior Art) Conventionally, secondary batteries using an electrolyte, for example, lead batteries using sulfuric acid as the electrolyte.1. BACKGROUND ART For nickel-cadmium batteries, 1-zinc batteries, etc. that use caustic potassium as an electrolyte, maintenance-free, sealed batteries that do not leak electrolyte even when tilted during use are desired.

この1つの方法として、電解、液をゲル化させたり、電
解液を繊維状物や粉末または多孔性材料に保持させたり
することが行なわれている。電解液を保持させる材料と
して要求される性能は、電解液に対して化学的に安定で
あり、単位重量当たりできるだけ多くの電解液保持が可
能であること、さらに導電性に優れること等が挙げられ
る。従来の電解液の保持材としては、ポリプロピレン等
からなる織布、不織布を使用したり、カーボンブラック
や炭素繊維を使用したりされているが、電解保持量が少
なかったりすることから電解液が偏在したり、容量を大
きくできなかったり、または使用サイクルに対する容量
低下が大きかったりする欠点を有していた。
One method for this is electrolysis, gelling the solution, or holding the electrolyte in a fibrous material, powder, or porous material. The properties required for a material to hold an electrolyte include being chemically stable with respect to the electrolyte, being able to hold as much electrolyte as possible per unit weight, and having excellent conductivity. . Conventional electrolyte retention materials include woven or nonwoven fabrics made of polypropylene, etc., or carbon black or carbon fiber, but because the amount of electrolyte retention is small, the electrolyte is unevenly distributed. However, the disadvantages are that the capacity cannot be increased, or the capacity decreases significantly over the usage cycle.

一方、我々は特願昭5−9−253552号において、
易黒鉛化性の極細径の炭素繊維からなるみかけ密度の小
さい炭素繊維塊状物を開示し、その用途として電解液の
浸透性がよく電池電極材として適すると述べた0本発明
者らは先願発明の炭素繊維塊状物のうちある特定された
範囲内のものに水系溶媒を保持させた材料が例えば2次
電池用の電解液保持材料として極めて優れた性能を有す
ることを発見し、本発明に到達したものである。
On the other hand, in our patent application No. 5-9-253552,
The present inventors have disclosed a carbon fiber mass with a low apparent density consisting of easily graphitized carbon fibers with an ultra-thin diameter, and stated that its use is suitable as a battery electrode material due to its good permeability to an electrolyte. It has been discovered that a material in which an aqueous solvent is retained within a specified range of the carbon fiber aggregates of the invention has extremely excellent performance as, for example, an electrolyte retaining material for secondary batteries, and the present invention It has been reached.

(発明が解決しようとする問題点) 、   本発明の目的は、導電性に優れた、径の小さい
炭素繊維からなる水系溶媒保持材料を提供することにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide an aqueous solvent-retaining material made of carbon fibers having excellent conductivity and having a small diameter.

(問題点を解決するための手段) 本発明の水系溶媒保持炭素繊維材料は、気相法による直
径が4μm以下、みかけ密度0.3g/cd以下の炭素
繊維材料に水系溶媒を該炭素繊維材料1g当たり7g以
上保持させてなるものである。
(Means for Solving the Problems) The aqueous solvent-retained carbon fiber material of the present invention is obtained by applying an aqueous solvent to a carbon fiber material having a diameter of 4 μm or less and an apparent density of 0.3 g/cd or less by a vapor phase method. It holds 7g or more per 1g.

本発明に使用される炭素繊維材料を構成する炭素繊維と
しては、その直径が4μm以下、特に1μm以下のもの
が好ましく用いられる。さらに好ましくは0.5μm以
下、特に0.3μm以下(通常0.1〜0.2μm程度
)のものが用いられる。この直径が4μmを超えると水
系溶媒の保持性に劣ったものとなる。繊維の長さは、特
に臨界的ではなく、おおむね1〜1000μm程度、取
扱い易さの点から好ましくは10〜500μm程度のも
のが用いられる。
The carbon fibers constituting the carbon fiber material used in the present invention preferably have a diameter of 4 μm or less, particularly 1 μm or less. More preferably, it is 0.5 μm or less, particularly 0.3 μm or less (usually about 0.1 to 0.2 μm). If this diameter exceeds 4 μm, the retention of aqueous solvents will be poor. The length of the fibers is not particularly critical, and is generally about 1 to 1000 μm, preferably about 10 to 500 μm from the viewpoint of ease of handling.

前記の炭素繊維が集合して構成される材料としては、そ
のみかけ密度が0.3g/cd以下、特に0゜1g/c
J以下のものが好ましく用いられる。さらに、好ましは
0.05g/−以下、特に0.02g/d以下のものが
用いられる。みかけ密度が0.3g/cdを超えると、
水系溶媒の保持量が劣ってくる。
The material composed of the above-mentioned carbon fibers has an apparent density of 0.3 g/cd or less, particularly 0.1 g/c
J or less is preferably used. Furthermore, preferably 0.05 g/- or less, particularly 0.02 g/d or less is used. When the apparent density exceeds 0.3 g/cd,
The amount of aqueous solvent retained becomes poor.

本発明に使用される前記の炭素繊維としては、炭素化原
料を触媒の存在化に熱分解せしめて得られる、いわゆる
気相法による炭素繊維である。気相法によって得られる
繊維は極めて紺<、高結晶性、配向性のために電気伝導
性に優れており、熱処理によっては黒鉛単結晶に近い電
気伝導性が発現される。また、この熱処理した$4!i
維は硫酸等と容易に眉間化合物を形成し、金属に近い電
気伝導性を発揮する。したがって、比表面積が大きく、
電気伝導性に優れる点において、損失の少ない極めて効
率のよい電池材料が形成される。この炭素繊維の構造的
な特徴は、黒鉛または黒鉛に容易に転化する炭素の層が
、長手軸に実質的に平行に年輪状に配列して形成されて
いることである。
The carbon fiber used in the present invention is a carbon fiber obtained by thermally decomposing a carbonization raw material in the presence of a catalyst, which is a so-called gas phase method. The fibers obtained by the vapor phase method have excellent electrical conductivity due to their extremely deep blue color, high crystallinity, and orientation, and depending on heat treatment, they can develop electrical conductivity close to that of single crystal graphite. Also, this heat treated $4! i
Fibers easily form compounds with sulfuric acid, etc., and exhibit electrical conductivity close to that of metals. Therefore, the specific surface area is large,
In terms of excellent electrical conductivity, an extremely efficient battery material with low loss is formed. A structural feature of this carbon fiber is that layers of graphite or carbon easily converted to graphite are formed in annual ring-like arrangements substantially parallel to the longitudinal axis.

本発明における炭素繊維材料を所定のみかけ密度に形成
するには、例えば前記した極めて細い炭素繊維を使用す
ることが重要な条件であり、短繊維状、綿状で得られた
ものをそのまま、またはプレス、ニードルパンチング等
の機械力により繊維量子を絡合させ、フェルト状、シー
ト状に形成する方法が挙げられる。炭素繊維同士が互い
に予め絡合しているようなものはJ賦形し易くより好ま
しい。さらに、必要に応してこれらの炭素繊維同士を各
種のバインダーで互いに固着させてもよい。
In order to form the carbon fiber material in the present invention to a predetermined apparent density, it is important to use, for example, the extremely thin carbon fibers described above, and the carbon fibers obtained in the form of short fibers or flocs may be used as they are, or Examples include a method of entangling fiber particles using mechanical force such as pressing or needle punching to form a felt or sheet shape. Carbon fibers in which carbon fibers are entangled with each other in advance are more preferable because they are easier to shape. Furthermore, if necessary, these carbon fibers may be bonded to each other with various binders.

ノ<イングーとしては、例えばエポキシ、フェノール等
の熱硬化性樹脂やポリエステル、ポリアミド等の熱可塑
性樹脂等が用いられる。この場合、適当な発泡剤を含有
させたり、□成形後に除去可能な樹脂をさらに混合して
成形した後除去したりして、できるだけみかけ密度を小
′すくすることが好ましい。また、前記バインダーを必
要に応じて焼成炭化させてもよい。また必要に応じて、
炭素繊維織布等の基体と共に成形したり、これらと共に
積層させてもよい。
As the resin, for example, thermosetting resins such as epoxy and phenol, thermoplastic resins such as polyester and polyamide, etc. are used. In this case, it is preferable to reduce the apparent density as much as possible by incorporating a suitable foaming agent or by further mixing a resin that can be removed after molding and removing it after molding. Further, the binder may be fired and carbonized as necessary. Also, if necessary,
It may be molded together with a base material such as carbon fiber woven fabric, or may be laminated together with these materials.

本発明でいうみかけ密度は、短繊維状、綿状のごとく形
状が不定形の場合、10mm!のメスシリンダーに炭素
繊維100■を入れ、荷重150gをかけてその体積を
測定し、繊維重量をその体積で除した値によらて定義さ
れる。また、例えばフェルト状、シート状物については
、そのものの°重量を体積で除した値をい゛うものとす
る。
In the present invention, the apparent density is 10 mm when the shape is irregular, such as short fibers or cotton. It is defined by putting 100 square meters of carbon fiber into a graduated cylinder, measuring its volume by applying a load of 150 g, and dividing the fiber weight by its volume. For example, for felt-like or sheet-like objects, the value is the weight divided by the volume.

本発明に使用される前述の炭素繊維は、水系溶媒を維持
するために、その表面に酸性官能基を有していることが
必要である。酸性官能基としては、例えばJE−C−O
H,−COOH,−C=O,ミC−0−C=、EC−0
−OH,−NO等が挙げられ、その量としては、1μs
q、7g以上、好ましくは2μsq、7g以上、さらに
好ましくは5μeq、7g以上、特に10μsq、7g
以上が好ましい。前記酸性官能基量は次のようにして測
定される。炭素繊維を所定の量(おおむね1〜20g程
度)採取し、1/100N(7)NaOH水溶液中に約
12hr浸漬した後、フェノールフタレイン溶液を加え
て、1720 ONのHCIt溶液を滴下し、酸性官能
基と反応してNa塩を形成している以外のNaOHを中
和滴定し、逆に残量からNa塩を形成した酸性官能基量
を求める。
The above-mentioned carbon fiber used in the present invention needs to have acidic functional groups on its surface in order to maintain an aqueous solvent. As the acidic functional group, for example, JE-C-O
H, -COOH, -C=O, MiC-0-C=, EC-0
-OH, -NO, etc., and the amount thereof is 1 μs
q, 7g or more, preferably 2μsq, 7g or more, more preferably 5μeq, 7g or more, especially 10μsq, 7g
The above is preferable. The amount of acidic functional groups is measured as follows. A predetermined amount of carbon fiber (approximately 1 to 20 g) was collected and immersed in a 1/100N (7) NaOH aqueous solution for about 12 hours, then a phenolphthalein solution was added, and a 1720 ON HCIt solution was added dropwise to make it acidic. NaOH other than those that have reacted with functional groups to form Na salts is neutralized and titrated, and conversely, the amount of acidic functional groups that have formed Na salts is determined from the remaining amount.

このような酸性官能基を導入する方法としては、硝酸、
過マンガン酸/硫酸、クロム酸塩、次亜塩素酸塩などの
薬液で処理する方法、酸、アルカリ、塩などの電解質で
電解処理する方法、空気、酸素、オゾン、窒素酸化物、
ハロゲンガス、プラズマなどにより気相下に処理する方
法等が挙げられる。
Methods for introducing such acidic functional groups include nitric acid,
Methods of treatment with chemicals such as permanganic acid/sulfuric acid, chromates, hypochlorites, electrolytic treatment with electrolytes such as acids, alkalis, and salts, air, oxygen, ozone, nitrogen oxides,
Examples include a method of processing in a gas phase using halogen gas, plasma, etc.

本発明の炭素繊維材料は、炭素繊維材料1g当たり水系
溶媒を10g以上、好ましくは20g以上、さらに好ま
しくは30g以上、特に40g以上保持させたものであ
る。本発明でいう水系溶媒とは、例えば、H2so4、
HNO3、HC4l。
The carbon fiber material of the present invention retains an aqueous solvent of 10 g or more, preferably 20 g or more, more preferably 30 g or more, particularly 40 g or more per gram of carbon fiber material. The aqueous solvent referred to in the present invention includes, for example, H2so4,
HNO3, HC4l.

NaOH,KOH等の酸および塩基を含む電解液、H,
O、アルコール、それらの混合物をいい、水または分子
内部に固定的に電気双極子を持つ液体または固体溶液を
意味する。さらに、これらにはLi、Mn、Zn等の各
種の塩を含有していてもよい。
Electrolytes containing acids and bases such as NaOH and KOH, H,
It refers to O, alcohol, and mixtures thereof, and refers to water or a liquid or solid solution that has an electric dipole fixed inside the molecule. Furthermore, these may contain various salts such as Li, Mn, and Zn.

水系溶媒の保持量は、該溶剤を含浸せしめた炭素材料を
メスシリンダーまたはビーカー等のストレートな円筒形
容器に入れ、45度に傾けて3分間保持し、溶媒が流出
してこない限界の量をいう。
To determine the amount of aqueous solvent that can be retained, place the carbon material impregnated with the solvent in a straight cylindrical container such as a graduated cylinder or beaker, tilt it at a 45 degree angle, and hold it for 3 minutes. say.

本発明により得られる水系溶媒保持炭素繊維材料は極め
て導電性が高く、また、径の小さい炭素繊維からなるた
め、みかけ密度が小さく、優れた水系溶媒保持性を示す
ために、酸またはアルカリ電解液の保持材として有用で
ある。
The aqueous solvent-retaining carbon fiber material obtained by the present invention has extremely high conductivity, and since it is made of carbon fibers with a small diameter, it has a low apparent density and exhibits excellent aqueous solvent retention properties. It is useful as a holding material.

以下、本発明を実施例にて詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例) 実施例1〜4 原料としてベンゼン、触媒としてアセチルアセトン鉄(
ベンゼンの1wt%)を、それぞれ水素ガス1.5jl
/minと共に総量0.5 g / m i nで、1
160℃の炉内に供給し、反応時間を変えて直径の異な
る気相法炭素繊維を製造した。それぞれの径は0.1.
0.4.1および4μmであった。それぞれの繊維をミ
ル(柴田科学製)により1分間粉砕した。これらをそれ
ぞれ、800℃空気中で1分間熱処理した後の酸性官能
基濃度を滴定により測定した。また、それぞれのみかけ
密度を測定し、これらの炭素繊維を1gずつ採取し、1
00伐のメスシリンダーに入れ、40%硫酸水溶液の保
持量を調べた。その結果を第1表に示す。
(Example) Examples 1 to 4 Benzene as a raw material, iron acetylacetone as a catalyst (
1 wt% of benzene) and 1.5 jl of hydrogen gas, respectively.
/min with a total amount of 0.5 g/min, 1
The carbon fibers were supplied into a furnace at 160° C., and vapor-grown carbon fibers with different diameters were produced by changing the reaction time. Each diameter is 0.1.
They were 0.4.1 and 4 μm. Each fiber was pulverized for 1 minute using a mill (manufactured by Shibata Kagaku). Each of these was heat treated in air at 800° C. for 1 minute, and then the acidic functional group concentration was measured by titration. In addition, the apparent density of each carbon fiber was measured, and 1 g of each of these carbon fibers was collected.
The amount of 40% sulfuric acid aqueous solution retained was examined by placing it in a graduated cylinder. The results are shown in Table 1.

比較例I PAN系炭素炭素繊維径?、am、3n長)(旭日本カ
ーボン社製)を1g採取した、実施例1と同様の方法で
みかけ密度、酸性官能基濃度、40%硫酸水溶液の保持
量を調べた結果を第1表に示した。
Comparative Example I PAN-based carbon carbon fiber diameter? , am, 3n length) (manufactured by Asahi Nippon Carbon Co., Ltd.) was collected, and the apparent density, acidic functional group concentration, and amount of 40% sulfuric acid aqueous solution retained were investigated in the same manner as in Example 1. The results are shown in Table 1. Indicated.

比較例2 粉末状活性炭(和光純薬(株)製)Igを採取し、比較
例1と同様の性能評価を行なったところ、第1表に示す
結果を得た。
Comparative Example 2 Powdered activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) Ig was collected and subjected to the same performance evaluation as in Comparative Example 1, and the results shown in Table 1 were obtained.

比較例3 メルトプロー法によって得られたポリプロピレン不織布
(単糸径1.5μm)について比較例1と同様の性能評
価を行なったところ、第1表に示す結果を得た。
Comparative Example 3 The same performance evaluation as in Comparative Example 1 was performed on a polypropylene nonwoven fabric (single yarn diameter: 1.5 μm) obtained by the melt blow method, and the results shown in Table 1 were obtained.

第   1   表 実施例5 実施例1で得られた炭素繊維を2700”C110分間
、A「ガス下に熱処理を行なった。その後、実施例1と
同様にミル粉砕した後、6o%HNOi水溶液中でlh
rリフランクスさせた。この繊維の酸性官能基濃度は8
9μsq、/gであった。
Table 1 Example 5 The carbon fiber obtained in Example 1 was heat-treated at 2700"C for 110 minutes under A" gas. Thereafter, it was milled in the same manner as in Example 1, and then treated in a 60% HNOi aqueous solution. lh
r reflux. The acidic functional group concentration of this fiber is 8
It was 9 μsq/g.

さらに50mX20mX3mの型枠に前記繊維を詰め、
100kir/cdGで常温下圧縮成形し、次にエポキ
シ樹脂(DER383、ダウ社製)/硬化剤(DEH2
4、ダウ社製)を110.1357−混合し、アセトン
中に5wt%となるよう溶解せしめた。そして、減圧乾
燥後に前述した型枠に押込み、1 kg / cn! 
Gで80℃にて3hr硬化せしめた。
Furthermore, the fibers are packed into a 50m x 20m x 3m formwork,
Compression molding was performed at room temperature at 100 kir/cdG, and then epoxy resin (DER383, manufactured by Dow)/curing agent (DEH2)
110.1357 (manufactured by Dow) were mixed and dissolved in acetone to a concentration of 5 wt%. Then, after drying under reduced pressure, it was pressed into the above-mentioned formwork and weighed 1 kg/cn!
It was cured at 80° C. for 3 hours.

その結果、得られた炭素繊維材料のみかけ密度は0.0
4g/cJであった。また、そのエタノールの保持量は
15gであった。
As a result, the apparent density of the obtained carbon fiber material was 0.0
It was 4g/cJ. Further, the amount of ethanol retained was 15 g.

(発明の効果) 本発明の水系溶媒保持炭素繊維材料は、単位重量当たり
の水系溶媒保持量が極めて大きく、導電性に優れ、例え
ば酸、アルカリ等の電解液保持材等に有効に使用される
。また、主に炭素繊維で構成されることから、電解液に
対して安定である利点もある。
(Effects of the Invention) The aqueous solvent-retaining carbon fiber material of the present invention has an extremely large amount of aqueous solvent retained per unit weight, has excellent conductivity, and is effectively used, for example, as a material for retaining electrolytes such as acids and alkalis. . Furthermore, since it is mainly composed of carbon fibers, it has the advantage of being stable against electrolytes.

Claims (1)

【特許請求の範囲】[Claims] (1)気相法による直径が4μm以下、みかけ密度0.
3g/cm^3以下の炭素繊維材料に水系溶媒を該炭素
繊維材料1g当たり7g以上保持させてなる水系溶媒保
持炭素繊維材料。
(1) Diameter measured by vapor phase method is 4 μm or less, apparent density is 0.
An aqueous solvent-retaining carbon fiber material obtained by retaining an aqueous solvent of 7 g or more per 1 g of the carbon fiber material in a carbon fiber material of 3 g/cm^3 or less.
JP61118170A 1986-05-22 1986-05-22 Carbon fiber material for holding aqueous solvent Pending JPS62276082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61118170A JPS62276082A (en) 1986-05-22 1986-05-22 Carbon fiber material for holding aqueous solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118170A JPS62276082A (en) 1986-05-22 1986-05-22 Carbon fiber material for holding aqueous solvent

Publications (1)

Publication Number Publication Date
JPS62276082A true JPS62276082A (en) 1987-11-30

Family

ID=14729850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118170A Pending JPS62276082A (en) 1986-05-22 1986-05-22 Carbon fiber material for holding aqueous solvent

Country Status (1)

Country Link
JP (1) JPS62276082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965470A (en) * 1989-05-15 1999-10-12 Hyperion Catalysis International, Inc. Composites containing surface treated carbon microfibers
US6248478B1 (en) 1989-09-28 2001-06-19 Hyperion Catalysis International, Inc. Battery
US7410628B2 (en) 1992-01-15 2008-08-12 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965470A (en) * 1989-05-15 1999-10-12 Hyperion Catalysis International, Inc. Composites containing surface treated carbon microfibers
US6248478B1 (en) 1989-09-28 2001-06-19 Hyperion Catalysis International, Inc. Battery
US7410628B2 (en) 1992-01-15 2008-08-12 Hyperion Catalysis International, Inc. Surface treatment of carbon microfibers
US7862794B2 (en) 1992-01-15 2011-01-04 Hyperion Cataylsis International, Inc. Surface treatment of carbon microfibers

Similar Documents

Publication Publication Date Title
Qin et al. Flexible and wearable all‐solid‐state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode
Guo et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor
CN110158200B (en) Porous carbon nanofiber, preparation method thereof and lithium-sulfur battery
Kim et al. Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes
Liu et al. Evaluation of electrospun fibrous mats targeted for use as flow battery electrodes
US6631073B1 (en) Electrode material and method for producing the same
CN107134582B (en) High-activity electrode material and modification method thereof
JP6617464B2 (en) Carbon electrode material for redox batteries
CN107431195B (en) Acrylic fiber for electrode, electrode comprising the fiber, and lead-acid battery comprising the electrode
KR950703212A (en) Battery electrode, secondary battery using same and method for manufacturing electrode for battery ("Electrode for Battery, Secondary Battery Using the Same and Process for producing Electrode for Battery")
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
CN113135568A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
JP3012240B2 (en) Manufacturing method of polarizable electrode material
JP2007302512A (en) Active carbon and electric double layer capacitor using the same
JPS62276082A (en) Carbon fiber material for holding aqueous solvent
CN111962183B (en) Preparation method of hollow carbon sphere fiber
CN112086642B (en) Graphitized carbon-coated high-specific-surface-area porous carbon sphere and preparation method and application thereof
JPH111316A (en) Active carbon molded form and its production
JP3187123B2 (en) Electrode materials and electrodes for metal-halogen secondary batteries
CN114220668B (en) Carbon fiber electrode material suitable for super capacitor and preparation method and application thereof
JP3084793B2 (en) Solid electrode composition
JP2001122607A (en) Activated carbon powder and method of menufacturing the same
JPS63151010A (en) Electric double-layer capacitor
CN111900313A (en) Diaphragm and application thereof
JP2841387B2 (en) Electrode materials for metal-halogen secondary batteries