JPS6227548A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPS6227548A
JPS6227548A JP60166314A JP16631485A JPS6227548A JP S6227548 A JPS6227548 A JP S6227548A JP 60166314 A JP60166314 A JP 60166314A JP 16631485 A JP16631485 A JP 16631485A JP S6227548 A JPS6227548 A JP S6227548A
Authority
JP
Japan
Prior art keywords
permanent magnet
temperature
rare earth
earth elements
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60166314A
Other languages
Japanese (ja)
Other versions
JPH0570700B2 (en
Inventor
Satoru Hirozawa
哲 広沢
Hitoshi Yamamoto
日登志 山本
Yutaka Matsuura
裕 松浦
Setsuo Fujimura
藤村 節夫
Masato Sagawa
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60166314A priority Critical patent/JPS6227548A/en
Publication of JPS6227548A publication Critical patent/JPS6227548A/en
Publication of JPH0570700B2 publication Critical patent/JPH0570700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a high-efficiency sintered permanent magnet with magnetic anisotropy excellent in temp. coefficient of magnetic properties by incorporating to Fe rare-earth elements consisting of light and heavy rare-earth elements in a specific ratio, B and Co each in a specific percentage. CONSTITUTION:The sintered permanent magnet with magnetic anisotropy which, when the sum of light rare-earth elements R1 and heavy rare-earth elements R2 is R (rare-earth elements), satisfies R2/R1<=2.3 by atomic ratio and consists of, by atomic percentage, 12.0-40% R, 4-20% B, <=18% Co and the balance Fe with inevitable impurities is prepared: where R1 means one element among Dy, Tb and Ho and is regulated to 30-80% based on R; R2 consists of >=80%, in total, of Nd and Pr and the balance constituted of at least one element among the rare earth elements other than R1, including Y. In this way, the high-efficiency magnet combining (BH) max of >= about 10MGOe with satisfactory stability represented by iHc of >= about 10kOe and moreover limiting the absolute value of the temp. coefficient of Br at -30-60 deg.C to <= about 0.05%/ deg.C can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高価で資源希少なコバルトを全く使用しない、
磁石特性の温度係数のすぐれた希土類・鉄系高性能永久
磁石材料に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention does not use cobalt, which is expensive and a scarce resource, at all.
Concerning rare earth/iron-based high-performance permanent magnet materials with excellent magnetic temperature coefficients.

〈従来の技術〉 現在の代表的な永久磁石材料はアルニコ、ハードフェラ
イトおよび希土類コバルト磁石である。
<Prior Art> Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets.

最近のコバルトの原料事情の不安定化にともない。Due to the recent instability in the raw material situation for cobalt.

コバルトを20〜30重量%含むアルニコ磁石の需要は
減り、鉄の酸化物を主成分とする安価なハードフェライ
トが磁石材料の主流を占めるようになった。一方、希土
類コバルト磁石は最大エネルギー積20MGOe以上を
有する高性能磁石であるが、コバルトを50〜65重量
%も含むうえ、希土類鉱石中にあまり含まれていないS
mを多量に使用するため大変高価である。しかし、他の
磁石に比べて、磁気特性が格段に高いため、主として小
型で、付加価値の高い磁気回路に多く使われるようにな
つた。
The demand for alnico magnets containing 20 to 30% by weight of cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. On the other hand, rare earth cobalt magnets are high-performance magnets with a maximum energy product of 20 MGOe or more, but they also contain 50 to 65% by weight of cobalt and S, which is not contained in rare earth ores.
It is very expensive because it uses a large amount of m. However, because their magnetic properties are much higher than that of other magnets, they have come to be used mainly in small, high-value-added magnetic circuits.

本出願人は先に高価なSm’PCoを含有しない新しい
高性能永久磁石としてFe−B−R系。
The present applicant has previously developed the Fe-B-R system as a new high-performance permanent magnet that does not contain expensive Sm'PCo.

Fe−B−R−M系(RはYを含む希土類元素のうち少
なくとも1種2Mは添加元素)永久磁石を提案した。(
特開昭59−46008号、特開昭59−89401号
) しかしながら、前記Fe−B−R系、Fe−B−R−M
系合金の残留磁化Brの室温附近での温度係数αは多く
のSm−Co系に比べて劣っていた。これは前記合金の
キュリ一点が一般に300℃前後〜370℃と低いため
であった。
We have proposed a permanent magnet of the Fe-BRM system (R is at least one rare earth element including Y and 2M is an additive element). (
However, the Fe-B-R system
The temperature coefficient α of residual magnetization Br of the system alloy near room temperature was inferior to many Sm-Co systems. This is because the Curie point of the alloy is generally as low as around 300°C to 370°C.

また本出願人は、前記合金のキュリ一点を上昇し、磁石
合金の磁石特性の温度係数改善のため。
The applicant also raised the Curie point of the alloy and improved the temperature coefficient of the magnetic properties of the magnet alloy.

Coを含有した磁石合金をも提案した(特開昭59−6
4733号、特開昭59−132104号)。
He also proposed a magnetic alloy containing Co (Japanese Patent Laid-Open No. 59-6
No. 4733, JP-A-59-132104).

更に本出願人は希土類の一部を重希土類(Tb。Furthermore, the applicant has selected heavy rare earths (Tb) as part of the rare earths.

Dy、Ho)で置換する事によって温度特性の飛躍的な
改善を実現できる事を示した(特開昭6O−61709
)。
It was shown that a dramatic improvement in temperature characteristics could be achieved by replacing Dy, Ho) (Japanese Patent Application Laid-Open No. 60-61709).
).

〈解決すべき問題点〉 しかしながら前記Co含有のFe−Co−B−R系、 
 Fe−Co−B−R−M系合金は磁石特性の温度係数
の安定化に有効であるが、Coの量を多くすると磁石特
性の劣化(特に保持力の減少)を招来するため、Co添
加によるBrの温度係数αの改善はα−−o、og%/
℃程度が限度であった。
<Problems to be solved> However, the Co-containing Fe-Co-BR system,
Fe-Co-B-RM-based alloys are effective in stabilizing the temperature coefficient of magnetic properties, but increasing the amount of Co leads to deterioration of magnetic properties (particularly a decrease in coercive force). The improvement in the temperature coefficient α of Br is α−-o, og%/
The limit was about ℃.

また2重希土類(Tb、Dy、Ho)で希土類の一部を
置換する方法によっては、高い保磁力を保ったままαの
値を一部、02%/℃程度にまで改善できるが、キュリ
一点が低いために使用しうる温度範囲は狭い事が問題で
あった。この事は使用温度が150℃前後にまで上昇す
る進行波管では致命的な欠点である。
Also, depending on the method of replacing a part of the rare earth element with a double rare earth element (Tb, Dy, Ho), it is possible to partially improve the value of α to about 0.2%/℃ while maintaining a high coercive force. The problem was that the usable temperature range was narrow because the temperature was low. This is a fatal drawback for traveling wave tubes whose operating temperature rises to around 150°C.

本発明は上述の高度な温度安定性の要求を充足するべく
さらに従来のFeBR系ないしFeBRM系磁石を改良
することを基本的目的とする。
The basic object of the present invention is to further improve conventional FeBR-based or FeBRM-based magnets in order to satisfy the above-mentioned requirements for high temperature stability.

〈問題点の解決手段〉 本発明によれば、上述の目的は下記の永久磁石(1)に
より達成される。
<Means for solving the problem> According to the present invention, the above-mentioned object is achieved by the following permanent magnet (1).

(1)下記R1と下記R2の和をR(希土類元素)とし
たとき原子比で0≦R2/R1≦2.3を満足し原子百
分比テR12,0〜40%、B4〜20%+ Co 1
8%以下、及び残部Fe及び不可避の不純物がら成る磁
気異方性焼結永久磁石(但し、R1はDy。
(1) When the sum of R1 below and R2 below is R (rare earth element), the atomic ratio satisfies 0≦R2/R1≦2.3, and the atomic percentage R12, 0-40%, B4-20% + Co 1
A magnetically anisotropic sintered permanent magnet consisting of 8% or less, and the balance being Fe and unavoidable impurities (however, R1 is Dy).

Tb、Hoの内一種以上でRの30%以上801%以下
、R2はNdとPrの合計が80%以上で、残りはR1
以外のYを包含する希土類元素の少なくとも一種)。
One or more of Tb and Ho is 30% to 801% of R, R2 is 80% or more of Nd and Pr in total, and the rest is R1
(at least one rare earth element containing Y other than Y).

さらに1本発明の第2の視点として、上記永久磁石(1
)において、Feに部分的に代わり下記の所定%以下の
添加元素Mの一種以上(但し1Mとして二種以上の前記
添加元素を含む場合は2M含量は当該の添加元素のうち
最大値を有するものの原子百分比以下)を含む磁気異方
性焼結永久磁石が提供される。
Furthermore, as a second aspect of the present invention, the permanent magnet (1
), one or more of the following additive elements M partially replaces Fe in a predetermined percentage or less (however, if 1M includes two or more of the above-mentioned additive elements, the 2M content is the one that has the maximum value among the said additive elements) magnetically anisotropic sintered permanent magnets are provided.

添加元素Mは下記の通りである: Ti   3  %、   Zr   3.3%。The additive element M is as follows: Ti 3%, Zr 3.3%.

Hf   3.3%、   Cr   4.5%。Hf 3.3%, Cr 4.5%.

Mn   5  %、   Ni   e  %。Mn 5%, Ni e%.

Ta   7%、   Ge   3.5%。Ta 7%, Ge 3.5%.

Sn’   1.5L   Sb   1%。Sn' 1.5L Sb 1%.

81  5  %、   No   5.2%。81 5%, No 5.2%.

Nb   9  %、  Al 5 %。Nb 9%, Al 5%.

v     5.5%、W      5  %。V 5.5%, W 5%.

St     5.0%、    Zn     0.
5% 。
St 5.0%, Zn 0.
5%.

〈好適な態様に基づ〈発明の開示及び作用〉以下に本発
明をさらに詳述する。
<Disclosure and operation of the invention> The present invention will be described in further detail below based on preferred embodiments.

航空機に用いられる進行波管や自動誘導装置用計器など
の用途には高い保磁力と残留磁化Brの高い温度安定性
が広い温度範囲に渡って要求される。従来のSmCo 
   磁石などではEr等で7〜8 Smを置換することによってBrをかなり犠牲にしても
αの値(絶対値)を小さくすることがはかられてきた。
For applications such as traveling wave tubes used in aircraft and instruments for automatic guidance systems, high coercive force and high temperature stability of residual magnetization Br are required over a wide temperature range. Conventional SmCo
In magnets, attempts have been made to reduce the value (absolute value) of α by replacing 7 to 8 Sm with Er or the like, even if Br is sacrificed considerably.

SmやCoを全く含まないFe−B−R系、Fe−B−
R−M系では磁気特性の温度係数が大きいため、そのす
ぐれた磁気特性にもかかわらず前記の用途には使用でき
なかった。
Fe-B-R system containing no Sm or Co, Fe-B-
Since the temperature coefficient of the magnetic properties of the RM system is large, it could not be used for the above-mentioned applications despite its excellent magnetic properties.

Co添加による方法(特開昭59−64733号。Method by adding Co (Japanese Patent Application Laid-Open No. 59-64733).

特開昭59−132104号)ではαの改善は−0,0
8%/℃が限度である上、保磁力がCoの量とともに減
少するので、Coを含む Fe−Co−B−R系、  
Fe−Co−B−R−M系でも前記の用途にはなお不十
分であった。
In JP-A-59-132104), the improvement of α is -0.0.
Since the limit is 8%/℃ and the coercive force decreases with the amount of Co, Fe-Co-B-R system containing Co,
Even the Fe-Co-BRM system was still insufficient for the above-mentioned applications.

本出願人は以上のことから出発しさらに改善をめざして
前記Fe−B−R系、Fe−B−R−M系磁石合金中の
主相であるR  Fe14B化合物(単結晶)の磁気的
性質を全てのRについて詳細に調べたところ、軽希土類
R2と重希土類R1を含む(RI   R2)  Fe
  Bを主相とし1−x   x  2  14 て含む合金を磁石化すれば、αの値を非常に小さくでき
ることがわかった。この方法はR1がTb。
Starting from the above, the present applicant aims to further improve the magnetic properties of the R Fe14B compound (single crystal) which is the main phase in the Fe-B-R and Fe-B-R-M magnet alloys. When we investigated all R in detail, we found that (RI R2) Fe, including light rare earth R2 and heavy rare earth R1
It has been found that by magnetizing an alloy containing 1-x x 2 14 B as a main phase, the value of α can be made extremely small. In this method, R1 is Tb.

Dy、Hoのうち少なくとも一種の場合にのみ可能であ
ることもわかった(特開昭6O−61709)。
It was also found that this is possible only in the case of at least one of Dy and Ho (Japanese Patent Laid-Open No. 60-61709).

しかし、キュリ一点が低いためにαを小さくできる温度
範囲が狭く、αの値の温度変化も大きかった。
However, because the Curie point is low, the temperature range in which α can be reduced is narrow, and the temperature change in the value of α is large.

そこで本出願人は、Co添加を併用する事によってキュ
リ一温度を上昇せしめ、より高い温度特性を実現せしめ
るべく検討を行ない、Co添加と重希土類(Tb、Dy
、Ho)添加とを併用する方法が極めて有効であ□る事
を知見した。その原理は以下のごとくである。
Therefore, the present applicant investigated the possibility of raising the Curie temperature and realizing higher temperature characteristics by combining Co addition and heavy rare earth (Tb, Dy).
, Ho) was found to be extremely effective. The principle is as follows.

図1は本発明による永久磁石組成を含む合金中にある主
成分であり、磁気的に硬い相の一例として1重希土類と
してHOを含む正方晶化合物の(Nd   Ho)  
 (Fe   Co)  Bの1−x   x  2 
  1−)’   y  14飽和磁束密度の規格化温
度(T / T c )に対する依存性を示す。Ho、
Coをともに添加しない系(x=y=o)では、永久磁
石の使用温度を一30℃〜60℃とした場合図1の温度
軸(T / T c )上ではAで示した部分に対応し
、第1図に示した磁束密度一温度(I−T)曲線上のa
−bの部分で動作する事になり、Brの温度係数αの値
はその絶対値が大きい。Coのみを添加した系ではキュ
リ一温度(Tc)の上昇のため、同じ温度範囲はBの部
分に移り対応する磁化一温度曲線はc −dで示した部
分となり、αの値が改善される。また、Hoのみを添加
すると1例えばx−0,4の時は磁石の動作温度範囲は
e−fであり、a−b。
Figure 1 shows the main components in an alloy containing a permanent magnet composition according to the present invention, and as an example of a magnetically hard phase, a tetragonal compound (NdHo) containing HO as a single rare earth element is shown.
(Fe Co) 1-x x 2 of B
1-)' y14 The dependence of the saturation magnetic flux density on the normalized temperature (T/Tc) is shown. Ho,
In a system in which Co is not added (x = y = o), when the operating temperature of the permanent magnet is -30°C to 60°C, it corresponds to the part indicated by A on the temperature axis (T / T c ) in Figure 1. and a on the magnetic flux density-temperature (IT) curve shown in Figure 1.
It will operate in the -b part, and the absolute value of the temperature coefficient α of Br is large. In the system in which only Co is added, the Curie temperature (Tc) increases, so the same temperature range shifts to part B, and the corresponding magnetization-temperature curve becomes the part shown by c - d, improving the value of α. . Further, when only Ho is added, the operating temperature range of the magnet is e-f and a-b when x-0,4, for example.

c−dの時に比べてαの値は飛躍的に改善される。The value of α is dramatically improved compared to the case of c-d.

更に、Hoを含む系にCOを合わせて添加すれば。Furthermore, if CO is added to the system containing Ho.

Tcの上昇によって温度領域はT / T c軸上でg
−eに移り、αの値が更に改善されるとともに。
Due to the increase in Tc, the temperature region becomes g on the T/Tc axis.
-e, and the value of α is further improved.

その使用温度範囲は拡大される。Its operating temperature range is expanded.

以上の効果は重希土類がHo以外の場合でも。The above effects can be obtained even when the heavy rare earth is other than Ho.

Tb、DY、 についても同様にあることが判った。It was found that the same holds true for Tb, DY, and so on.

またTb、Dy、Hoの3種を適当な比率で混合したも
のを用いる事もできる。
Furthermore, a mixture of Tb, Dy, and Ho in an appropriate ratio can also be used.

即ち、希土類元素RのうちDy、Tb、Hoの一種以」
二のR1と、Nd9Prなどの軽希土類元素R2を特定
比率に組み合わせ含有し、更にFeの一部をCoで置換
することによって、従来PeBR系磁石では得られなか
った高い保磁力とBrの温度係数の顕著な改善を達成す
ることができた。
That is, among the rare earth elements R, one or more of Dy, Tb, and Ho.
By containing a combination of R1 and light rare earth element R2 such as Nd9Pr in a specific ratio, and further substituting a part of Fe with Co, high coercive force and temperature coefficient of Br, which could not be obtained with conventional PeBR magnets, are achieved. We were able to achieve a significant improvement in

更に1本発明による特定のR及びCo含をの成分系では
、 1llcの増大のみならず、減磁曲線の角形性の改
善、即ち磁気回路中の動作点の変動に対する安定性を増
大する効果を具備することが判った。
Furthermore, the specific R and Co-containing component system according to the present invention has the effect of not only increasing 1llc but also improving the squareness of the demagnetization curve, that is, increasing the stability against fluctuations in the operating point in the magnetic circuit. It turned out to be equipped.

本発明の永久磁石材料の主相はFe−R−B正方品化合
物であり中心組成はR2Fe14Bであると考えられる
。また、主相の粒界相としてRリッチな非磁性相が有効
量存在することが重要である。
It is believed that the main phase of the permanent magnet material of the present invention is a Fe-R-B tetragonal compound, and the central composition is R2Fe14B. Further, it is important that an effective amount of an R-rich nonmagnetic phase exists as a grain boundary phase of the main phase.

非磁性相はわずかてもイ(効であり例えば1v01%は
十分な量である。
Even a small amount of the non-magnetic phase is effective; for example, 1v01% is a sufficient amount.

なおFeBR系磁石のiHcを増大させるために様々の
検討を行った結果、以下の方法が有効である。
In addition, as a result of various studies to increase the iHc of FeBR magnets, the following method is effective.

即ち。That is.

(1) R(R+R2)又はBの含有量を多くする(2
)R/R1の比率を特定範囲とする(3)Coを特定含
有量とする (4)添加元素Mを加える( I’eBRM系磁石)。
(1) Increase the content of R (R+R2) or B (2
) Setting the R/R1 ratio within a specific range (3) Setting Co in a specific content (4) Adding the additive element M (I'eBRM magnet).

しかしながら、R又はBの含有量を増加する方法は、各
々1llcを増大するが、含有量が多くなるにつれてB
rが低下し、その結果(Bll)maxの値も低くなる
However, the method of increasing the content of R or B increases 1llc each, but as the content increases, B
r decreases, and as a result, the value of (Bll)max also decreases.

R2/R1の値が大な程(BH)fflaxが大きくな
るがαの値もその絶対値が大となるので、R2/R1の
値は前記範囲内とする必要がある。
The larger the value of R2/R1 (BH), the larger the fflax becomes, but the absolute value of the value of α also becomes larger, so the value of R2/R1 needs to be within the above range.

また、Feの一部を特定量のCOにて置換することによ
りキュリ一点の上昇により、熱安定性を増すと同時にR
2の置換量を少なくすることができるが、Coの添加量
が多くなりすぎると、 iHcの低下をきたし、高い磁
気特性を保つことかできなくなる。
In addition, by replacing a part of Fe with a specific amount of CO, thermal stability is increased by one Curie point, and at the same time R
Although the amount of substitution of 2 can be reduced, if the amount of Co added is too large, iHc decreases and high magnetic properties cannot be maintained.

また、添加元素MもiHc増大の効果を有するが。Additionally, the additive element M also has the effect of increasing iHc.

添加量の増加につれて(BH)fflaxが低下し飛躍
的な改善効果には繋がらない。
As the amount added increases, (BH) fflax decreases and does not lead to a dramatic improvement effect.

本発明の永久磁石においては1重希土類元素R1として
+ DY r T b r Hoの少くとも1種を含有
することと、R2としてNd、Prを主体とすることと
、さらにR2/R1の比率を特定範囲とし、Coを特定
量倉荷しR,Bの所定範囲内の組成とに基づき、特に時
効処理を施した場合のBrの温度係数の安定化とl1l
cの増大が顕著である。即ち、上記特定の組成の合金か
らなる磁気異方性焼結体に時効処理を施すと、Brの値
を損ねることなく IHcを増大させ、さらに減磁曲線
の角形性改善の効果もあり、 (BH)fflaxは同
等かまたはそれ以上となり、その効果は顕著である。な
お。
In the permanent magnet of the present invention, the single rare earth element R1 contains at least one of + DY r T b r Ho, R2 is mainly composed of Nd and Pr, and the ratio of R2/R1 is Stabilization of the temperature coefficient of Br and l1l, especially when aging treatment is performed, based on a specific range, a specific amount of Co stored, and the composition of R and B within a predetermined range.
The increase in c is significant. That is, when a magnetically anisotropic sintered body made of an alloy with the above-mentioned specific composition is subjected to aging treatment, IHc is increased without impairing the Br value, and there is also the effect of improving the squareness of the demagnetization curve. BH) fflax is the same or higher, and the effect is significant. In addition.

R,B、Coの範囲と、Ho、Dy、Tbの少くとも1
種の含を量と(Nd+Pr)の量を規定することにより
2時効処理前においてもH1e約10kOe以北が達成
され、R内におけるR1の所定の含Hにより時効処理の
効果がさらに著しく付加される。
The range of R, B, Co and at least one of Ho, Dy, Tb
By specifying the content of seeds and the amount of (Nd+Pr), H1e of about 10 kOe or more can be achieved even before the aging treatment, and the effect of the aging treatment is further significantly added by the predetermined H content of R1 in R. Ru.

即ち1本発明によれば(Bt()max 10 MGO
e以上を保有したまま、 1ife 10 koe以上
で示される十分な安定性を兼ね備え、しかもBrの温度
係数を一30℃から60°Cの範囲で絶対値で0.05
%/’C以下におさえ、従来の高性能磁石よりも広範な
用途に適用し得る高性能磁石を提供する。
That is, according to the present invention, (Bt()max 10 MGO
It has sufficient stability as shown by 1 ife 10 koe or more while maintaining the temperature coefficient of Br of 0.05 in absolute value in the range of -30°C to 60°C.
%/'C or less, and provides a high-performance magnet that can be applied to a wider range of uses than conventional high-performance magnets.

(Bll)max 、 iHcの最大値は各々30.2
MGOe(後述第1表、 No、  1)、17. 0
kOe  (第1表、N0112)を示した。
The maximum values of (Bll)max and iHc are each 30.2
MGOe (Table 1 below, No. 1), 17. 0
kOe (Table 1, N0112).

本発明の永久磁石に用いるRは、RとR2の和より成る
が、RとしてYを包含し、Nd、Pr。
R used in the permanent magnet of the present invention is the sum of R and R2, and R includes Y, Nd, Pr.

La、Ce、Tb、Dy、Ho、Eu、Pm。La, Ce, Tb, Dy, Ho, Eu, Pm.

Luの希土類元素である。そのうちR1はDY。Lu is a rare earth element. Of these, R1 is DY.

Tb、Hoの3種のうち少なくとも1種を用いて。Using at least one of three types: Tb and Ho.

その含有量はRの30%以上80%以下でR2は上記3
種以外の希土類元素を示し、特に軽希土類の内N dと
Prの合;1゛を80%以上包含するもの(特に95%
以」二のもの)を用いる。
Its content is 30% or more and 80% or less of R, and R2 is the above 3
Indicates rare earth elements other than species, especially those containing 80% or more of the combination of Nd and Pr (particularly 95%) of light rare earths.
(2) shall be used.

これらRは必ずしも純希土類元素でなくてもよく、工業
上入手可能な範囲で製造上不可避な不純物(Sm、Gd
、E r、Tm、Yb、等の他の希土類元素Ca、Mg
、Fe、Ti、C,O等)を微慣含有するものでも差支
えない。なおSm。
These R do not necessarily have to be pure rare earth elements, but may contain impurities (Sm, Gd,
, Er, Tm, Yb, etc., other rare earth elements Ca, Mg
, Fe, Ti, C, O, etc.). Furthermore, Sm.

Er及びTmのR2Fe14Bは室温以下で一軸異方性
を示さない。
R2Fe14B of Er and Tm does not exhibit uniaxial anisotropy below room temperature.

B(ホウ素)としては、純ボロン又はフェロボロンを用
いることができ、不純物としてAI。
Pure boron or ferroboron can be used as B (boron), and AI can be used as the impurity.

Si、C等を含むものも用いることができる。Materials containing Si, C, etc. can also be used.

本発明の永久磁石は、既述のRをRとR2の合計として
原子比で0≦R2/R1≦ 2.3を満足し原子百分比
でR12,0〜40%、84〜20%、Co18%以下
、残部Feの組成においてαの絶対値が0.05%以下
、保磁力IHc約10 koe以上、残留磁束密度B 
r 8 kG以上、最大エネルギー積(BH)Bxl 
0MGOe以上の高保磁力、高いB「の温度安定性。
The permanent magnet of the present invention satisfies the atomic ratio of 0≦R2/R1≦2.3, where R is the sum of R and R2, and the atomic percentage is R12, 0-40%, 84-20%, Co18%. Below, in the composition of the remaining Fe, the absolute value of α is 0.05% or less, the coercive force IHc is about 10 koe or more, and the residual magnetic flux density B
r 8 kG or more, maximum energy product (BH) Bxl
High coercive force of 0MGOe or higher, high temperature stability of B.

高エネルギー積を示す。ここにαは一30℃以上60℃
以下の温度範囲について上記の値を満足できる。
Shows high energy product. Here α is -30℃ or more 60℃
The above values can be satisfied for the following temperature ranges.

0.86≦R2/ Rt≦ 0.88.R13〜19%
、8 5〜11%、Co15%〜20%、残部Feの組
成はαの絶対値が一30℃から60°Cの温度範囲で0
.02%/’C以下最大エネルギー積(BH)max 
12 MGOe以上を示し。
0.86≦R2/Rt≦0.88. R13-19%
, 8 5-11%, Co 15%-20%, balance Fe composition, the absolute value of α is 0 in the temperature range from 130°C to 60°C.
.. 02%/'C or less Maximum energy product (BH) max
12 Indicates MGOe or higher.

好ましい範囲である。This is a preferable range.

また、R1としてはHo、またはHOとDyの組み合せ
が特に望ましい。
Further, as R1, Ho or a combination of HO and Dy is particularly desirable.

Rの量を12,0%以上としたのは、Rがこの量よりも
少なくなると水系合金化合物中にFeが析出して保磁力
が急激に低下するためである。Rの上限を40%とした
のは、40%以上でも保磁力は10kOe以上の大きい
値を示すがBrが低下して(Bit)max 10 M
GOe以上を実現するために必要なりr(約7 kG)
が得られなくなるからである。
The reason why the amount of R is set to 12.0% or more is because if the amount of R is less than this amount, Fe will precipitate in the water-based alloy compound and the coercive force will drop sharply. The reason why the upper limit of R is set to 40% is that even if it is 40% or more, the coercive force shows a large value of 10 kOe or more, but the Br decreases (Bit) max 10 M
Required to achieve GOe or higher (approximately 7 kG)
This is because it becomes impossible to obtain.

R2/R1の比を2.3以下としたのは、Brの温度係
数αの絶対値がこの範囲で一30℃から60℃の温度範
囲で0,05%/℃を越えず、しかも(BH)max 
10 MGOe以上を得るために必要なりrの値が確保
されるためである。
The reason why the ratio of R2/R1 is set to 2.3 or less is that the absolute value of the temperature coefficient α of Br does not exceed 0.05%/℃ in the temperature range from -30℃ to 60℃ in this range, and (BH )max
This is because the value of r required to obtain 10 MGOe or more is secured.

本発明において、R/R1比の増大に伴い飽和磁束密度
Bsは温度の変化に従い第1図に示す如く変化する。第
1図において例えばx−0,4゜0.7は夫々R2/R
1比1.5,0.4に凡そ対応する。αの絶対値が最小
である温度範囲はXの値の増大と共に高7H側ヘシフト
する傾向がある。
In the present invention, as the R/R1 ratio increases, the saturation magnetic flux density Bs changes as shown in FIG. 1 as the temperature changes. In Figure 1, for example, x-0, 4°0.7 are R2/R, respectively.
1 ratio approximately corresponds to 1.5 and 0.4. The temperature range in which the absolute value of α is minimum tends to shift toward the high 7H side as the value of X increases.

また、第1図をベースとし所定の温度範囲内において最
小のαを達成するR  /R1比が適宜選択可能である
。なおR2/R1比は第1図では(1−x)/  で与
えられる。第1図は重希土類がHoの場合であるが2例
えばHoの代りにDyを用いればBsの温度変化は規格
化された温度に対し第2図のようになり、これにもとづ
いて同様の設計が可能である。
Furthermore, based on FIG. 1, the R/R1 ratio that achieves the minimum α within a predetermined temperature range can be selected as appropriate. Note that the R2/R1 ratio is given by (1-x)/ in FIG. Figure 1 shows the case where the heavy rare earth is Ho.2 For example, if Dy is used instead of Ho, the temperature change of Bs will be as shown in Figure 2 with respect to the normalized temperature, and based on this, similar designs can be made. is possible.

本発明の第2の視点によれば添加元素Mを所定量以下含
む。この添加元素MはiHcを増し、減磁曲線の角形性
を増す効果があるが、一方その添加量が増すに従い、N
iを除いて1本発明による永久磁石の主相であるR2F
814B化合物のキュリ一温度を下げる事によってBr
の温度係数の低下をきたすか、又は非磁性化合物の析出
を招いてBrを減少せしめることにより磁気エネルギー
積の低下をきたすか、更に或いは永久磁石の焼結組織に
影響を及ぼして抗磁力を劣化せしめるかのいずれか、又
はこれらの要因の複合した原因によって磁石特性の劣化
をきたす。従って、添加元素の各々の上限は下記の値以
下と定められる。
According to the second aspect of the present invention, the additive element M is contained in a predetermined amount or less. This additive element M has the effect of increasing iHc and increasing the squareness of the demagnetization curve, but on the other hand, as the amount added increases, N
R2F, which is the main phase of the permanent magnet according to the present invention, except for i
By lowering the Curie temperature of the 814B compound, Br
The temperature coefficient of the permanent magnet decreases, or the magnetic energy product decreases by inviting the precipitation of non-magnetic compounds and reducing Br, or the coercive force deteriorates by affecting the sintered structure of the permanent magnet. Deterioration of magnetic properties is caused by either one of these factors or a combination of these factors. Therefore, the upper limit of each additive element is determined to be less than or equal to the value below.

Tj   3  %、   Zr   3.3%。Tj 3%, Zr 3.3%.

I11’   3.3%、   Cr   4.5%。I11' 3.3%, Cr 4.5%.

Mn    5  %、   旧   6 %。Mn 5%, old 6%.

Ta   7  %、   Ge   3.5%。Ta 7%, Ge 3.5%.

Sn   1.5%、   Sb   L  %。Sn 1.5%, Sb L%.

Bi   5%、   Mo   5.2%。Bi 5%, Mo 5.2%.

Nb   9  %、  Al 5 %。Nb 9%, Al 5%.

■5.5%、W    5  %。■5.5%, W 5%.

St   5.0%、   Zn   0.5%但し、
2種以上のMを添加する場合のM合計の上限は、実際に
添加された当該のM元素の各上限値のうち最大値を有す
るものの値以下となる。例えばTi、N i、Nbを添
加した場合には、Nbの9%以下となる。Mとしては、
V、Nb、Ta。
St 5.0%, Zn 0.5%However,
When two or more types of M are added, the upper limit of the total M is less than or equal to the maximum value among the upper limit values of the M elements actually added. For example, when Ti, Ni, and Nb are added, the amount becomes 9% or less of Nb. As for M,
V, Nb, Ta.

Mo、W、Cr、A 1が好ましい。なおNi。Mo, W, Cr, and A1 are preferred. Furthermore, Ni.

M nの限度はi Hcから定められる。但し上記添加
元素Mの含e−2は一般にBrの所望値に応じて適宜上
記範囲内で選択でき、一部のM(Sb、Sn。
The limit of M n is determined from i Hc. However, the content e-2 of the additional element M can generally be selected appropriately within the above range depending on the desired value of Br, and may include some M (Sb, Sn, etc.).

Zn等)を除き一役に0.1〜3原子%以下(好ましく
は196以下、特に0.5%以下)が育効である。なお
これらの添加元素Mは母合金中に+S ’GITさせて
おくことができ、酸化物又は他の構成元素との混合酸化
物として母合金製造のための直接還元の際の出発原料中
に配合しておくこともできる。
A content of 0.1 to 3 atomic % or less (preferably 196 or less, especially 0.5% or less) is effective for growth, excluding Zn, etc.). These additional elements M can be left in the master alloy as +S'GIT, and can be incorporated into the starting materials during direct reduction for producing the master alloy as oxides or mixed oxides with other constituent elements. You can also leave it as is.

このMはまた。泣界相成分中に合金化して添加すること
もできる。この拉界柑成分は、R50原子%以上のR−
Fe合金もしくはR50原子%以上。
This M is again. It can also be added as an alloy to the phase component. This Lakaikan component contains R50 atomic% or more of R-
Fe alloy or R50 atomic% or more.

B40原子96以下、残部Feから成るR−B−Fe合
金の1以上、又はこれらと、金属コバルト;金属ホウ素
;フェロボロン;R15原子%以下。
One or more R-B-Fe alloys consisting of 96 atoms or less of B40 and the balance Fe, or together with metal cobalt; metal boron; ferroboron; and R15 atomic % or less.

B3g原子%以上、残部Feから成るBリッチB−Fe
−Co−R合金からなる群から選ばれた1以1−の粉末
との混合物から構成できるものである。
B-rich B-Fe consisting of 3g atomic % or more of B and the balance Fe
It can be composed of a mixture with one or more powders selected from the group consisting of -Co-R alloys.

本発明の永久磁石は焼結体として得られ、その平均結晶
粒径は、 FeBCoR系において1〜80μm。
The permanent magnet of the present invention is obtained as a sintered body, and its average crystal grain size is 1 to 80 μm in FeBCoR system.

PeBRCoM系において1〜90μmの範囲にあるこ
とが重要である(好ましくは夫々2〜40μm)。
In the PeBRCoM system it is important to have a range of 1 to 90 μm (preferably 2 to 40 μm respectively).

焼結は900〜1200℃の温度で行うことができる。Sintering can be carried out at a temperature of 900-1200°C.

時効処理は焼結後350℃以上当該焼結温度以下、好ま
しくは450〜800℃で行うことができる。さらに好
ましい時効処理は次の通りである。
The aging treatment can be carried out after sintering at a temperature of 350°C or higher and lower than the sintering temperature, preferably 450 to 800°C. A more preferable aging treatment is as follows.

即ち、焼結後750〜1000℃(好ましくは770〜
920℃)の温度で1次熱処理を行い。
That is, after sintering, the temperature is 750-1000°C (preferably 770-1000°C).
The first heat treatment was performed at a temperature of 920°C.

その後3〜2000℃/m1n(好ましくは20〜b 度まで冷却し、さらに480〜700℃(好ましくは5
50〜650℃)の温度で2次熱処理する。
Thereafter, it is cooled to 3 to 2000°C/m1n (preferably 20 to 20°C), and then further cooled to 480 to 700°C (preferably
A secondary heat treatment is performed at a temperature of 50 to 650°C.

熱処理は凡そ0.5〜12時間行う。The heat treatment is performed for approximately 0.5 to 12 hours.

焼結に供する合金粉末は0.3〜80μm(好ましくは
1〜40μm、特に好ましくは2〜20μm)の平均粒
度のものが適当である。これらの焼結条件等については
、すでに同一出願人の出願に係る特開昭59−2154
60号、59−219452号に開示されている。
The alloy powder used for sintering has an average particle size of 0.3 to 80 μm (preferably 1 to 40 μm, particularly preferably 2 to 20 μm). These sintering conditions, etc. have already been disclosed in Japanese Patent Application Laid-Open No. 59-2154 filed by the same applicant.
No. 60, No. 59-219452.

なお、特にαの値が0.05%/℃以下の高い磁気特性
の温度安定性を実現するためには、減磁曲線の角型性を
良好にするために酸素、炭素。
In addition, in order to achieve high temperature stability of magnetic properties with an α value of 0.05%/°C or less, oxygen and carbon are used to improve the squareness of the demagnetization curve.

Caの含有量を規制することが好ましい。即ち。It is preferable to regulate the content of Ca. That is.

本発明に用いる合金粉末の酸素含有量は6000ppm
以下、炭素含有量は1000 ppI11以下、’Ca
含有量は2000 ppm以下にすることが好ましい。
The oxygen content of the alloy powder used in the present invention is 6000 ppm
Below, the carbon content is 1000 ppI11 or less, 'Ca
The content is preferably 2000 ppm or less.

即ち1本発明に用いる合金粉末に含まれる酸素は最も酸
化しやすい希土類元素と結合して希土類酸化物を形成し
、酸素含有量が6000 ppmを越えると永久磁石中
に酸化物(R203)として4%以上残留することにな
り、磁石特性とくに保磁力が10kOe以下になるので
好ましくない。
That is, 1. The oxygen contained in the alloy powder used in the present invention combines with the rare earth element that is most easily oxidized to form a rare earth oxide, and when the oxygen content exceeds 6000 ppm, it is dissolved in the permanent magnet as an oxide (R203). % or more remains, which is not preferable because the magnetic properties, especially the coercive force, become less than 10 kOe.

含有炭素量が1000 ppmを越えると酸素の場合と
同様炭化物(RC2)として永久磁石中に残留し著しい
保磁力の低下を生ずる。
If the carbon content exceeds 1000 ppm, it remains in the permanent magnet as carbide (RC2), similar to the case with oxygen, resulting in a significant decrease in coercive force.

またカルシウム含有量が2000 pPfflを越える
と後続のこの合金粉末を用いて磁石化する途中の焼結工
程において還元性の極めて高いCa蒸気を多量に発生し
、熱処理炉をいちじるしく汚染することになって、場合
によっては熱処理炉の炉壁を損耗して工業的に安定な生
産が不可能となる。
Furthermore, if the calcium content exceeds 2000 pPffl, a large amount of highly reducing Ca vapor will be generated during the subsequent sintering process during which this alloy powder is used to create a magnet, which will seriously contaminate the heat treatment furnace. In some cases, the furnace wall of the heat treatment furnace may be damaged, making industrially stable production impossible.

また、でき上った永久磁石中に含まれる。Caff1も
多くなって磁石特性の劣化を生ずる。なお、上記の酸素
、炭素、(a含有量の条件は合金粉末(配合・混合を含
む)微粉末状態で達成することが好ましい。
It is also included in the finished permanent magnet. Caff1 also increases, causing deterioration of the magnet characteristics. Note that it is preferable that the above-mentioned oxygen, carbon, and (a) content conditions are achieved in the state of alloy powder (including blending and mixing) in a fine powder state.

なお最終製品中のMg、Pは各1.7原子%以下(Br
による)とし、S、Cuは各2原子%以下とする(Br
による)が、これらはいずれもBrの減少を招くので少
ない程よい。
Note that Mg and P in the final product are each 1.7 at% or less (Br
), and S and Cu are each 2 atomic % or less (Br
However, since both of these lead to a decrease in Br, the smaller the better.

〈実施例〉 以下本発明の態様及び効果について実施例に従って説明
する。試料はつぎの工程によって作成した。
<Examples> Aspects and effects of the present invention will be described below with reference to Examples. The sample was prepared by the following steps.

不純物について約1 kgの合金を高周波炉によっテ溶
解し、鉄ハース上に鋳造してインゴットを得た。出発原
料はFeとして純度99.9%の電解鉄、Bとしてフェ
ロボロン合金(19,38%B、5.32%AI、0.
74%Si、0.03%C2残部Fe)、Coとして純
度99.9%の電解Co、Rとして純度99.7%以上
(不純物は主として他の希土類金属)を使用。
Approximately 1 kg of the alloy containing impurities was melted in a high frequency furnace and cast on an iron hearth to obtain an ingot. The starting materials are electrolytic iron with a purity of 99.9% as Fe, and ferroboron alloy (19.38% B, 5.32% AI, 0.9% as B).
74% Si, 0.03% C2 balance Fe), electrolytic Co with a purity of 99.9% as Co, and purity 99.7% or more as R (impurities are mainly other rare earth metals).

このインゴットをショークラッシャーで粉砕し。Crush this ingot with a show crusher.

更にフロン中でボールミルにより微粉砕して粉末を得た
。この粉末の平均粒径はフィッシャーの粒度計にて約2
2μであった。粉末は約10kOeの磁場中で配向され
て磁場方向に垂直な方向から圧縮した。得られたグリー
ンコンパクトは充分な脱ガス処理の後、Ar雰囲気中で
約1080℃〜1120℃の温度で1.5時間焼結し、
更に熱処理をほどこした。磁石特性は通常のB−H及び
I−Hトレーサーを用い閉回路で行った。熱処理は80
0℃Xlhの後急冷し630℃xihの2次熱処理を行
った。
The mixture was further pulverized using a ball mill in Freon to obtain a powder. The average particle size of this powder is approximately 2
It was 2μ. The powder was oriented in a magnetic field of about 10 kOe and compressed from a direction perpendicular to the direction of the magnetic field. After sufficient degassing, the obtained green compact was sintered in an Ar atmosphere at a temperature of about 1080°C to 1120°C for 1.5 hours.
Further heat treatment was applied. Magnetic properties were measured in a closed circuit using conventional B-H and I-H tracers. Heat treatment is 80
After heating at 0°C xlh, it was rapidly cooled and subjected to a secondary heat treatment at 630°C xih.

得られた試料を加工研摩後、電磁石型の磁石特性試験に
よって磁石特性を調べた。
After processing and polishing the obtained sample, the magnetic properties were investigated by an electromagnetic type magnetic property test.

RとしてDy、Tb、Ho、R2としてNdl 又はPrを用いRとR2を組合せた合金を作り。Dy, Tb, Ho as R, Ndl as R2 Or make an alloy combining R and R2 using Pr.

上記の工程により磁石化した。その結果を比較例と共に
第1表に示す。
It was magnetized by the above steps. The results are shown in Table 1 along with comparative examples.

(以下余白) 第1表においてfile、B r 、 (Bll)ma
xの値は室温付近(25℃)での測定値を示しBrの温
度係数αの値は一30℃〜60℃での絶対値の最大値に
符号を付したものを示す。
(Margins below) In Table 1, file, B r , (Bll)ma
The value of x indicates the value measured near room temperature (25°C), and the value of the temperature coefficient α of Br indicates the maximum absolute value at -30°C to 60°C with a sign attached.

第3図に、第1表に示した実施例番号2,3゜4のBr
の温度変化を比較例21.22と比較して示す。
In Fig. 3, Br of Example No. 2,3゜4 shown in Table 1 is shown.
The temperature changes in Comparative Examples 21 and 22 are shown below.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は正方品化合物(NdHo) l−X   X  2 (Fe   Co  )  Bの飽和磁束密度をキュリ
1−y   y  14 一温度で規格化した温度T / T cに対して示した
ものであり、斜線で示した部分AはCOを含まない系の
実質的な使用温度範囲(−30℃から60℃とする)を
示し2部分BはCoを含む<y−0,20)系に対する
同じ温度範囲を示す。 第2図は正方晶化合物(N d   D y X) 2
−x (Fe   Co  )  Bの飽和磁束密度4yr■
s−yy14 の温度変化及び使用温度範囲を第1図と同様の方法で示
したものである。 第3図は本発明の実施例と比較例を示す。即ち実施例2
.3.4と比較例21.22におけるB「の温度変化を
示す。 出願人  住友特殊金属株式会社 代理人  弁理士 加藤朝道 (他1乙)図面の浄jF
(内容に変更なし) 第1図 T/Tc (ププ艷ルiイぴA、リヒ温)51〕 第2図 T/Tc 手続:?1市正書防式) 昭和60年11月22日
Figure 1 shows the saturation magnetic flux density of the tetragonal compound (NdHo)l-Xx2(FeCo)B versus temperature T/Tc normalized by Curie 1-yy14 temperature. , the shaded part A shows the practical operating temperature range (from -30°C to 60°C) for the system without CO, and the 2nd part B shows the same temperature range for the <y-0,20) system containing Co. Indicates a range. Figure 2 shows a tetragonal compound (N d D y X) 2
-x (Fe Co ) B saturation magnetic flux density 4yr■
The temperature change and operating temperature range of s-yy14 are shown in the same manner as in FIG. 1. FIG. 3 shows an example of the present invention and a comparative example. That is, Example 2
.. 3.4 and B in Comparative Example 21.22. Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Asamichi Kato (and 1 other B) Drawing cleaning
(No change in content) Figure 1 T/Tc (Pupu 艷Rui Iipia, Rihi On) 51] Figure 2 T/Tc Procedure:? 1 City Seishobo Ceremony) November 22, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)下記R_1と下記R_2の和をR(希土類元素)
としたとき原子比でR_2/R_1≦2.3を満足し原
子百分比でR12.0〜40%、B4〜20%、Co1
8%以下及び残部Fe及び不可避の不純物から成る磁気
異方性焼結永久磁石(但し、R_1はDy、Tb、Ho
の内一種以上でRの30%以上80%以下、R_2はN
dとPrの合計が80%以上で、残りはR_1以外のY
を包含する希土類元素の少なくとも一種)。
(1) The sum of R_1 below and R_2 below is R (rare earth element)
When the atomic ratio satisfies R_2/R_1≦2.3, the atomic percentage is R12.0-40%, B4-20%, Co1
Magnetic anisotropic sintered permanent magnet consisting of 8% or less and the balance Fe and unavoidable impurities (however, R_1 is Dy, Tb, Ho
One or more of the following, 30% or more and 80% or less of R, R_2 is N
The sum of d and Pr is 80% or more, and the rest is Y other than R_1
at least one rare earth element including
(2)下記R_1と下記R_2の和をR(希土類元素)
としたとき原子比でR_2/R_1≦2.3を満足し原
子百分比でR12.0〜40%、B4〜20%、Co1
8%以下、下記の所定%以下の添加元素Mの一種以上(
但し、Mとして二種以上の前記添加元素を含む場合は、
M含量は当該の添加元素のうち最大値を有するものの原
子百分比以下)、及び残部Fe及び不可避の不純物から
成る磁気異方性焼結永久磁石:(但し、R_1はDy、
Tb、Ho、の内一種以上でRの30%以上80%以下
、R_2はNdとPrの合計が80%以上で、残りがR
_1以外のYを包含する希土類元素の少なくとも一種で
あり、添加元素Mは下記の通り: Ti3%、Zr3.3%、 Hf3.3%、Cr4.5%、 Mn5%、Ni6%、 Ta7%、Ge3.5%、 Sn1.5%、Sb1%、 Bi5%、Mo5.2%、 Nb9%、Al5%、 V5.5%、W5%、 Si5.0%、Zn0.5% )。
(2) The sum of R_1 below and R_2 below is R (rare earth element)
When the atomic ratio satisfies R_2/R_1≦2.3, the atomic percentage is R12.0-40%, B4-20%, Co1
8% or less, one or more of the following specified percentages of additive elements M (
However, if M contains two or more of the above additive elements,
A magnetically anisotropic sintered permanent magnet consisting of M content (the atomic percentage of which has the maximum value among the added elements), and the remainder being Fe and unavoidable impurities: (However, R_1 is Dy,
One or more of Tb, Ho, 30% to 80% of R, R_2 is 80% or more of Nd and Pr in total, and the rest is R.
At least one kind of rare earth element including Y other than _1, and the additive elements M are as follows: Ti3%, Zr3.3%, Hf3.3%, Cr4.5%, Mn5%, Ni6%, Ta7%, Ge3.5%, Sn1.5%, Sb1%, Bi5%, Mo5.2%, Nb9%, Al5%, V5.5%, W5%, Si5.0%, Zn0.5%).
JP60166314A 1985-07-27 1985-07-27 Permanent magnet alloy Granted JPS6227548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60166314A JPS6227548A (en) 1985-07-27 1985-07-27 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60166314A JPS6227548A (en) 1985-07-27 1985-07-27 Permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS6227548A true JPS6227548A (en) 1987-02-05
JPH0570700B2 JPH0570700B2 (en) 1993-10-05

Family

ID=15829049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60166314A Granted JPS6227548A (en) 1985-07-27 1985-07-27 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS6227548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395625A2 (en) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Process of Manufacturing a Permanent Magnet or Permanent Magnet Material
EP0425469A2 (en) * 1989-10-25 1991-05-02 BÖHLER YBBSTALWERKE Ges.m.b.H. Permanent magnet (material) and production process
US20110062372A1 (en) * 2009-09-15 2011-03-17 Qing Gong Rare earth magnetic materials and methods thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395625A2 (en) * 1989-04-28 1990-10-31 BÖHLER YBBSTALWERKE Ges.m.b.H. Process of Manufacturing a Permanent Magnet or Permanent Magnet Material
EP0425469A2 (en) * 1989-10-25 1991-05-02 BÖHLER YBBSTALWERKE Ges.m.b.H. Permanent magnet (material) and production process
US20110062372A1 (en) * 2009-09-15 2011-03-17 Qing Gong Rare earth magnetic materials and methods thereof
EP2478528A1 (en) * 2009-09-15 2012-07-25 BYD Company Limited Rare earth permanent magnetic material and preparation method thereof
JP2013504881A (en) * 2009-09-15 2013-02-07 ビーワイディー カンパニー リミテッド Rare earth permanent magnetic material and preparation method thereof
EP2478528A4 (en) * 2009-09-15 2013-06-26 Byd Co Ltd Rare earth permanent magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JPH0570700B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US7618497B2 (en) R-T-B based rare earth permanent magnet and method for production thereof
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
WO2013191276A1 (en) Sintered magnet
US10083783B2 (en) Rare earth based magnet
JP2001189206A (en) Permanent magnet
JP2015119130A (en) Rare earth magnet
JP2000114017A (en) Permanent magnet and material thereof
JP5999080B2 (en) Rare earth magnets
JPH0316761B2 (en)
JP2015119131A (en) Rare earth magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JPS61221353A (en) Material for permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JPS6223959A (en) High-efficiency permanent magnet material
JPS6227548A (en) Permanent magnet alloy
JP6255977B2 (en) Rare earth magnets
JPS6247455A (en) Permanent magnet material having high performance
JPS59163803A (en) Permanent magnet
JPS62170455A (en) Permanent magnet alloy
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JP2983902B2 (en) Ultra low temperature permanent magnet material
JPH0536494B2 (en)
JPH02259038A (en) Rare earth magnetic alloy
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JPH089756B2 (en) Permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term