JPS62275182A - Ultraviolet screening agent - Google Patents

Ultraviolet screening agent

Info

Publication number
JPS62275182A
JPS62275182A JP15000886A JP15000886A JPS62275182A JP S62275182 A JPS62275182 A JP S62275182A JP 15000886 A JP15000886 A JP 15000886A JP 15000886 A JP15000886 A JP 15000886A JP S62275182 A JPS62275182 A JP S62275182A
Authority
JP
Japan
Prior art keywords
powder
temperature
industrial
zinc
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15000886A
Other languages
Japanese (ja)
Inventor
Kenji Saida
健二 才田
Hideyo Fujii
秀世 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Publication of JPS62275182A publication Critical patent/JPS62275182A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ultraviolet screening agent comprising a composite oxide of specific metals and Zn, excellent in ultraviolet screening characteristics and visible light and near-ultraviolet light transmission, without having any catalytic activity and deteriorating coexisting organic materials. CONSTITUTION:A Zn salt [e.g., Zn(NO3)2] and at least one salt selected from among salts of Al, Fe, Cr, Ce, Zr and Ti (e.g., aluminum polychloride) as dissolved in an aqueous alcohol solution of a concentration of at least 5vol% so that the atomic ratios of each metal to 1 part of Zn in the solution are Al: 0.001-0.5, Fe: 0.0001-0.5, Cr: 0.005-0.3, Ce: 0.00005-2, Zr: 0.0005-0.5 and Ti: 0.01-0.5. Said solution is hydrolyzed in the presence of a hydrolysis precipitating medium comprising urea and/or hexamethylenetetramine at a room temperature - 100 deg.C for 3-6hr to obtain a product. After said product is dried at a room temperature - 200 deg.C, calcined at 350-1,100 deg.C for 1-3hr to obtain an ultraviolet screening agent comprising a composite oxide of Zn and the above-mentioned metals having an average particle diameter of 0.001-0.5mum.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は波長260nm〜400nmの紫外線を遮蔽し
、可視光線及び近赤外線i3過能を有する特定の金属の
複合酸化物粉末から成る紫外線遮蔽剤に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention <Industrial Application Field> The present invention is a complex oxidation method of a specific metal that blocks ultraviolet rays with a wavelength of 260 nm to 400 nm and has visible light and near-infrared i3 performance. The present invention relates to an ultraviolet shielding agent made of powder.

〈従来の技術〉 紫外線遮蔽剤は、紫外線を散乱或いは吸収して紫外線を
遮蔽するもので、サリチル酸、パラアミノ安息香酸、け
い皮酸及びこれらのエステル類、或いはヘンヅフエノン
類などの有機物、酸化チタン、酸化亜鉛、酸化鉄などの
金属酸化物粉末などが用いられており、金属酸化物粉末
による光線の遮蔽能は、粉末の粒径/光線波長の比が1
/2の所が最大であることが知られている。
<Prior art> Ultraviolet screening agents scatter or absorb ultraviolet rays to block ultraviolet rays, and include salicylic acid, para-aminobenzoic acid, cinnamic acid and their esters, organic substances such as hendphenones, titanium oxide, oxidized Metal oxide powders such as zinc and iron oxide are used, and the light shielding ability of metal oxide powders is determined when the ratio of powder particle size/light wavelength is 1.
It is known that the maximum value is /2.

金属酸化物粉末は、酸化反応用触媒としても用いられ、
その製造方法として、金属の塩化物や硫酸塩にアンモニ
ア水或いは尿素を加えて加水分解し、得られる水酸化物
と焼成する方法、チタンのi−プロポキシド、硝酸亜鉛
をそれぞれ加水分解して得られたT i Ot  ・n
H2oとZn(OH)zを混練し焼成する方法等(以上
「触媒JVo1.19.No、5.1977゜350〜
352頁、触媒学会誌)が知られている。
Metal oxide powder is also used as a catalyst for oxidation reactions,
Its production methods include adding aqueous ammonia or urea to metal chloride or sulfate and hydrolyzing the resulting hydroxide, and calcining the resulting hydroxide, and hydrolyzing titanium i-propoxide and zinc nitrate. T i Ot ・n
A method of kneading and firing H2o and Zn(OH)z, etc.
352 pages, Catalysis Society Journal) is known.

また、ケイ素とチタンのフルコキソドの混合物を加水分
解し、その加水分解生成物を焼成する方法及びその生成
物を紫外線遮蔽能を有する化粧品用添加剤とすること(
特開昭59−227813号)も知られている。
In addition, a method for hydrolyzing a mixture of silicon and titanium flucoxod and baking the hydrolyzed product, and using the product as a cosmetic additive having ultraviolet shielding ability (
JP-A-59-227813) is also known.

この他、微細な粒子のものを得る方法として、チタンの
塩化物を昇華させ、酸素または水茎気で酸化分解、加水
分解を行なわす方法があり、これによると粒径約0.0
02μm〜0.05μmのものが得られる。
In addition, there is a method to obtain fine particles by sublimating titanium chloride and oxidatively decomposing and hydrolyzing it with oxygen or water vapor. According to this method, the particle size is about 0.0
02 μm to 0.05 μm can be obtained.

酸化亜鉛では、金属亜鉛の蒸気を気相酸化させる方法が
あり、これによると粒径約0.5μm〜1μmのものが
得られる。
For zinc oxide, there is a method of vapor-phase oxidation of metal zinc vapor, and by this method, particles having a particle size of about 0.5 μm to 1 μm can be obtained.

〈発明が解決しようとする問題点) このような方法で得られた酸化亜鉛、酸化チタン、酸化
鉄の粉末は、その粒径を適度に選択すれば良好な紫外線
遮蔽能を発揮するが可視光線及び近赤外線の透過性に劣
り、他方、可視光線及び近赤外線の透過性の大きい粒径
のものは紫外線遮蔽能が充分でない。
<Problems to be Solved by the Invention> The zinc oxide, titanium oxide, and iron oxide powders obtained by this method exhibit good ultraviolet shielding ability if the particle size is appropriately selected, but they do not protect against visible light. On the other hand, those having a large particle size and having a large transmittance to visible light and near infrared rays do not have sufficient ultraviolet shielding ability.

また、これらの金属酸化物粉末は、酸化触媒能を有し、
用途によっては、共存する有機物を変質させる問題点が
ある。
In addition, these metal oxide powders have oxidation catalytic ability,
Depending on the application, there is a problem that coexisting organic substances may be altered.

複数の金属塩を水溶液中でアンモニア水等で加水分解し
、複合酸化物を得る方法では、複合酸化物が不均一で粒
径も大きくなり、紫外線遮蔽能の充分でかつ可視光線及
び近赤外線の透過性の良好なものが得られない。
In the method of obtaining a composite oxide by hydrolyzing multiple metal salts in an aqueous solution with aqueous ammonia, etc., the composite oxide is non-uniform and has a large particle size. A product with good transparency cannot be obtained.

(問題点を解決するための手段) かかる事情下に鑑み、本発明者らは紫外線遮蔽能に優れ
、可視光線及び近赤外線の透過性が大きく、また共存す
る有機物変質等の問題のない紫外線遮蔽剤を見出すべく
鋭意検討した結果、遂に本発明を完成するに至った。
(Means for Solving the Problems) In view of the above circumstances, the present inventors have developed an ultraviolet shielding method that has excellent ultraviolet shielding ability, high transmittance of visible light and near-infrared rays, and is free from problems such as alteration of coexisting organic substances. As a result of intensive studies to find a new agent, the present invention was finally completed.

すなわち、本発明は平均粒子径が約o、ootμm〜約
0.5μmである、アルミニウム、鉄、クロム、セリウ
ム、ジルコニウム及びチタンから選ばれた1種以上の金
属と亜鉛との複合酸化物から成る紫外線遮蔽剤を提供す
るものである。
That is, the present invention consists of a composite oxide of zinc and one or more metals selected from aluminum, iron, chromium, cerium, zirconium, and titanium, with an average particle size of about 0.00 μm to about 0.5 μm. The present invention provides an ultraviolet shielding agent.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明に於ける紫外線遮蔽剤とは、アルミニウム、鉄、
クロム、セリウム、ジルコニウム及びチタン(以下、A
jl、  Fe、 Cr、 Ce、  Zr、Tiと表
現する場合もある。)よりなる群から選ばれる少くとも
1種以上の金属と亜鉛(以下、Znと表現する場合もあ
る。)の複合酸化物であり、より具体的にはZn−Af
f、Zn−Fe、Zn−Cr、、Zn−Ce、Zn−Z
r。
The ultraviolet screening agent in the present invention includes aluminum, iron,
Chromium, cerium, zirconium and titanium (hereinafter referred to as A
It may also be expressed as jl, Fe, Cr, Ce, Zr, or Ti. ) is a composite oxide of at least one metal selected from the group consisting of zinc (hereinafter sometimes referred to as Zn), more specifically Zn-Af
f, Zn-Fe, Zn-Cr, Zn-Ce, Zn-Z
r.

Zn−Tiよりなる二成分系複合酸化物、Zn−Ajl
−Fe、  Zn−A 7!−Cr S Zn−A 1
−Ce、Zn−Al−Zr、Zn−Ajl−Ti。
Binary composite oxide consisting of Zn-Ti, Zn-Ajl
-Fe, Zn-A 7! -Cr S Zn-A 1
-Ce, Zn-Al-Zr, Zn-Ajl-Ti.

Zn−Fe−Cr、Zn−Fe−Ce、Zn−Fe−Z
r、Zn−Fe−Ti、、Zn−Cr−Ce5Zn−C
r−Zr、Zn−Cr−Ti。
Zn-Fe-Cr, Zn-Fe-Ce, Zn-Fe-Z
r, Zn-Fe-Ti, , Zn-Cr-Ce5Zn-C
r-Zr, Zn-Cr-Ti.

Zn−Ce−Zr、Zn−Ce−Ti、、Zn−Zr−
Tiよりなる三成分系複合酸化物、Zn−A1−Fe−
Cr、Zn−Al−Fe−Ce、Zn−A/−Fe−Z
r、Zn−AA−Fe −Ti、Zn−Af−Cr−C
e、Zn−Affi−Cr−Zr、、Zn−Ajl−C
r−TiSZn −Affi−Ce−Zr、Zn−Al
−Ce−Ti。
Zn-Ce-Zr, Zn-Ce-Ti, Zn-Zr-
Ternary composite oxide consisting of Ti, Zn-A1-Fe-
Cr, Zn-Al-Fe-Ce, Zn-A/-Fe-Z
r, Zn-AA-Fe-Ti, Zn-Af-Cr-C
e, Zn-Affi-Cr-Zr, , Zn-Ajl-C
r-TiSZn-Affi-Ce-Zr, Zn-Al
-Ce-Ti.

Zn−A 1−Zr−Ti 、 Zn−Fe−Cr−C
e、、Zn−Fe−Ce−Zr、Zn−Fe−Zr−T
i+Zn−Fe−Cr−Zr、Zn−Fe−Cr−Ti
、  Zn−Fe−Ce−Ti 、Zn−Cr−Ce−
Zr5 Zn−Cr−Zr −。
Zn-A 1-Zr-Ti, Zn-Fe-Cr-C
e, , Zn-Fe-Ce-Zr, Zn-Fe-Zr-T
i+Zn-Fe-Cr-Zr, Zn-Fe-Cr-Ti
, Zn-Fe-Ce-Ti, Zn-Cr-Ce-
Zr5Zn-Cr-Zr-.

Ti、  Zn−Ce−Zr−Ti、  Zn−Cr 
−Ce −T i 、よりなる四成分系複合酸化物、Z
n−Af−Fe−Cr−Ce、 Zn−Affi−Fe
−Cr−Zr、 Zn−Al2−Fe−Cr −Ti、
Zn−Fe−Cr−Ce−Zr、Zn−Fe−Cr−C
e−Ti、 Zn−Cr−Ce−Zr−Ti、Zn−A
f−Ce−Zr−Ti、Zn−Al−Fe−Ce−Zr
、、Zn−Al−Fe−Ce−Ti5 Zn−Af−’
Fe−Zr −Ti、、 Z n  A I  Cr 
−Ce  Z r −Z n −Al−Cr−Ce−T
i、 Zn−Al−Cr−Zr−Ti、Zn−Fe−C
e−Zr−Ti、Zn−Fe−Cr−Zr−Tiよりな
る三成分系複合酸化物、Zn−Al−Fe−Cr−Ce
 −ZrSZn−AR−Fe−Cr−Ce−Ti、Zn
−A 1−Fe−Cr−Zr−Ti 、 Zn−Aff
−Fe−Ce−Zr−Ti、、Zn−An −Cr−C
e−Zr−Ti  、、 Zn−Fe−Cr  −Ce
−Zr−Tiよりなる六成分系複合酸化物、及びZn−
Al−Fe−Cr−Ce−Zr −Tiよりなる七成分
系複合酸化物等が挙げられる。
Ti, Zn-Ce-Zr-Ti, Zn-Cr
-Ce -T i , a quaternary composite oxide consisting of Z
n-Af-Fe-Cr-Ce, Zn-Affi-Fe
-Cr-Zr, Zn-Al2-Fe-Cr-Ti,
Zn-Fe-Cr-Ce-Zr, Zn-Fe-Cr-C
e-Ti, Zn-Cr-Ce-Zr-Ti, Zn-A
f-Ce-Zr-Ti, Zn-Al-Fe-Ce-Zr
,,Zn-Al-Fe-Ce-Ti5 Zn-Af-'
Fe-Zr-Ti, ZnAICr
-Ce Z r -Z n -Al-Cr-Ce-T
i, Zn-Al-Cr-Zr-Ti, Zn-Fe-C
Ternary composite oxide consisting of e-Zr-Ti, Zn-Fe-Cr-Zr-Ti, Zn-Al-Fe-Cr-Ce
-ZrSZn-AR-Fe-Cr-Ce-Ti, Zn
-A 1-Fe-Cr-Zr-Ti, Zn-Aff
-Fe-Ce-Zr-Ti, , Zn-An -Cr-C
e-Zr-Ti, Zn-Fe-Cr-Ce
-Six-component complex oxide consisting of Zr-Ti, and Zn-
Examples include seven-component composite oxides made of Al-Fe-Cr-Ce-Zr-Ti.

これら複合酸化物は単独で使用しても良く、勿論2種以
上を混合して使用しても良い。
These composite oxides may be used alone or in combination of two or more.

本発明の実施に際し、複合酸化物を構成する亜鉛とTi
、Aj!、Fe、Cr5Ce、、Zrの群より選ばれる
他の金属の構成割合は金属により異なり、例えば亜鉛と
チタンの組合せではそれらの原子比は亜鉛1に対しチタ
ンが0.01〜0.25、好ましくは0.05〜0.1
、亜鉛とアルミニウムは亜鉛lに対しアルミニウムが0
.001〜0.5、好ましくは0.01〜0.4、亜鉛
と鉄は亜鉛lに対し鉄が0.0001〜0.5、好まし
くはo、oooi〜0゜2、亜鉛とクロムは亜鉛1に対
しクロムが0゜0005〜0.5、好ましくは0.00
05〜0.3、亜鉛とセリウムは亜鉛lに対しセリウム
が0.00005〜2、好ましくは0.00005〜0
.5、亜鉛とジルコニウムは亜鉛1に対しo、ooos
〜0.5、好ましくは0゜0005〜0.3である。
When implementing the present invention, zinc and Ti constituting the composite oxide
,Aj! The composition ratio of other metals selected from the group of , Fe, Cr5Ce, and Zr varies depending on the metal. For example, in the case of a combination of zinc and titanium, the atomic ratio of titanium to 1 part of zinc is preferably 0.01 to 0.25. is 0.05-0.1
, zinc and aluminum are zinc 1 and aluminum 0
.. 001 to 0.5, preferably 0.01 to 0.4, iron to 1 zinc, preferably 0.0001 to 0.5, preferably o, oooi to 0°2, zinc and chromium, 1 to 1 zinc chromium is 0°0005 to 0.5, preferably 0.00
05-0.3, zinc and cerium are 0.00005-2, preferably 0.00005-0 for 1 zinc
.. 5. Zinc and zirconium are o, ooos to 1 zinc
-0.5, preferably 0°0005-0.3.

亜鉛1原子比に対する金属の構成割合が、上記範囲外で
は紫外線遮蔽能が劣り、鉄に於いては亜鉛l原子比に対
し0.5を越える場合には可視光線及び近赤外線の透過
性が低下するので好ましくない。
If the ratio of metal to 1 atomic ratio of zinc is outside the above range, the UV shielding ability will be poor, and for iron, if the ratio of metal to 1 atomic ratio of zinc exceeds 0.5, the transmittance of visible light and near infrared rays will decrease. Therefore, it is not desirable.

また、亜鉛と複数の金属よりなる複合酸化物に於ける金
属の添加量は二成分系に於ける亜鉛と他金属の各々の添
加量範囲が適用され、好ましくは亜鉛と他金属の二成成
系に於ける各々の金属の好ましい範囲が適用される。
In addition, the amount of metal added in a composite oxide consisting of zinc and multiple metals is determined by the amount range of each of zinc and other metals in a two-component system. Preferred ranges for each metal in the system apply.

本発明に於いて複合酸化物とは出発原料として用いた亜
鉛とA1、Fe、Cr、Ce、Zr、Tiから選ばれた
1種以上の金属すべてが反応し複合酸化物を形成してい
る必要はなく、反応生成物が少なくとも複合酸化物を構
成し、かつその生成物が90%以上の紫外線遮蔽能、6
0%以上の可視光線及び近赤外線透過能を有するもので
あれば、金属酸化物等を一部含有する複合酸化物であっ
てもよい。
In the present invention, a composite oxide is defined as a compound in which zinc used as a starting material and one or more metals selected from A1, Fe, Cr, Ce, Zr, and Ti all react to form a composite oxide. No, the reaction product constitutes at least a composite oxide, and the product has an ultraviolet shielding ability of 90% or more, 6
A composite oxide partially containing a metal oxide or the like may be used as long as it has visible light and near-infrared transmittance of 0% or more.

本発明の紫外線遮蔽剤用複合酸化物は酸素原子を介して
金属が結合している構造を持っている。
The composite oxide for ultraviolet screening agents of the present invention has a structure in which metals are bonded via oxygen atoms.

例えば亜鉛原子が酸素原子を介して他の金属と−Zn−
0−Ti4、−Zn−〇−Al<、>Af−0−Zn−
0−Ti(、−Zn−0−Fe<、  Zn−0−Ce
そ、>Fe−0−Zn−0−Ce4−5−Zn−0−Z
r(−1−Zn−o−c r <、>Cr −0−Zn
−0−Zrそ等の結合を含んでいるもので、望ましくは
Zn原子の全てが、上記の如く酸素を介して他の金属と
結合していることが好ましい。このような構造はJIS
KO1)7に示される如く、赤外スペクトルにより確認
できる。
For example, a zinc atom interacts with another metal via an oxygen atom -Zn-
0-Ti4, -Zn-〇-Al<,>Af-0-Zn-
0-Ti(,-Zn-0-Fe<, Zn-0-Ce
So,>Fe-0-Zn-0-Ce4-5-Zn-0-Z
r(-1-Zn-o-c r <,>Cr -0-Zn
-0-Zr and the like, preferably all Zn atoms are bonded to other metals via oxygen as described above. This kind of structure is JIS
As shown in KO1)7, it can be confirmed by infrared spectrum.

Zn原子がAR−0−Zn−0−RA、 −Zn−0−
RA(RはA j! s F e s Z r −T 
i 1Ce、Crより選ばれた金属原子、Aは結合手で
あり、Rの価数−1を示す。)等の結合を含まないもの
は単に酸化亜鉛と上記金属の酸化物粉末の混合であり、
本発明の目的とする紫外線遮蔽能に優れ、かつ可視光線
、及び近赤外線透過能に優れた粉末は得られない。
Zn atoms are AR-0-Zn-0-RA, -Zn-0-
RA (R is A j! s Fe s Z r −T
i A metal atom selected from 1Ce and Cr, A is a bond, and the valence of R is -1. ) etc., which do not contain any bonds, are simply a mixture of zinc oxide and oxide powder of the above metals,
It is not possible to obtain a powder that has excellent ultraviolet shielding ability and excellent visible light and near-infrared transmission ability, which is the objective of the present invention.

本発明の紫外線遮蔽剤の大きさは平均粒径約0.5μm
以下、好ましくは0.2μm以下である。
The average particle size of the ultraviolet screening agent of the present invention is approximately 0.5 μm.
The thickness is preferably 0.2 μm or less.

粒径の大きいものは紫外線遮蔽能が若干低く、加えて化
粧品とした場合の肌ざわりが悪くまた農業用マルチフィ
ルム、食品包装用フィルムへの適用では分散性が劣るの
で好ましくない。
Large particle sizes are not preferred because they have slightly low ultraviolet shielding ability, have a poor texture when used in cosmetics, and have poor dispersibility when applied to agricultural mulch films and food packaging films.

他方粒径の微細なものは、紫外線遮蔽能は充分であるも
のの取扱い難くなること及び酸化触媒能が発現してくる
ことなどから平均粒径約0.001μm以上、より好ま
しくは0.005μm以上である。
On the other hand, particles with a fine particle size have an average particle size of about 0.001 μm or more, more preferably 0.005 μm or more, because although they have sufficient ultraviolet shielding ability, they become difficult to handle and develop oxidation catalytic ability. be.

このような複合酸化物の製造方法としては、亜鉛塩と、
アルミニウム塩、鉄塩、クロム塩、セリウム塩、ジルコ
ニウム塩、及びチタン塩の中から選ばれる一種或いは二
種以上の金属塩とを、アルコール水?8液中で尿素及び
ヘキサメチレンテトラミンから選ばれる、少なくとも一
種の加水分解沈澱剤の存在下、加水分解し、次いで加水
分解生成物を焼成する方法が挙げられる。
As a method for producing such a composite oxide, zinc salt and
Alcohol water and one or more metal salts selected from aluminum salts, iron salts, chromium salts, cerium salts, zirconium salts, and titanium salts. A method may be mentioned in which hydrolysis is carried out in an 8-liquid solution in the presence of at least one hydrolysis precipitant selected from urea and hexamethylenetetramine, and then the hydrolysis product is calcined.

ここで原料の亜鉛塩、アルミニウム塩、鉄塩、クロム塩
、セリウム塩、ジルコニウム塩及びチタン塩は水に可溶
な性質の無機酸塩、有機酸塩、例えば、塩化物、硫酸塩
、硝酸塩、酢酸塩等である。
Here, the raw materials zinc salt, aluminum salt, iron salt, chromium salt, cerium salt, zirconium salt, and titanium salt are water-soluble inorganic acid salts, organic acid salts, such as chlorides, sulfates, nitrates, Acetate, etc.

アルミニウム塩については、ポリ塩化アルミニウムなど
も使用可能である。
As for the aluminum salt, polyaluminum chloride and the like can also be used.

また、チタン塩に代えて、チタンアルコキシドも好適に
用いることができる。
Moreover, titanium alkoxide can also be suitably used in place of titanium salt.

次にアルコール水溶液は、アルコール濃度で約5容量%
以上、好ましくは10容量%以上のものが用いられる。
Next, the alcohol aqueous solution has an alcohol concentration of approximately 5% by volume.
Above, preferably 10% by volume or more is used.

アルコール濃度が、約5容量%未満では生成する複合酸
化物の平均粒径を0.5μm以下にすることが困難とな
ることと、粒径分布が広がり大粒径のものが混在して出
来るので好ましくない。
If the alcohol concentration is less than about 5% by volume, it will be difficult to reduce the average particle size of the composite oxide to 0.5 μm or less, and the particle size distribution will expand and large particles will be mixed together. Undesirable.

他方、アルコールが過剰でも可能であるが多くしでもそ
れだけの効果は出ない。
On the other hand, it is possible to use too much alcohol, but even if there is too much alcohol, the effect will not be as great.

アルコールの種類としては、水への溶解度が1容量%以
上であればよく、例えば、メタノール、エタノール、イ
ソプロパツール、ノルマルプロパツールなどの1価のア
ルコール類、エチレングリコール、ジエチレングリコー
ル、プロピレングリコール、グリセリンなどの多価アル
コール類である。
The type of alcohol only needs to have a solubility in water of 1% by volume or more, such as monohydric alcohols such as methanol, ethanol, isopropanol, normal propazol, ethylene glycol, diethylene glycol, propylene glycol, and glycerin. Polyhydric alcohols such as

加水分解沈澱剤は、尿素及びヘキサメチレンテトラミン
の何れか、或いは両者の混合物を水溶液として用いるの
が望ましい。
As the hydrolysis precipitant, it is desirable to use either urea or hexamethylenetetramine, or a mixture of both in the form of an aqueous solution.

加水分解沈澱剤の量は、金属塩が加水分解して生成する
酸を中和するに必要な理論量の2倍以上、好ましくは3
倍量〜5倍量を用いる。
The amount of the hydrolysis precipitant is at least twice the theoretical amount necessary to neutralize the acid generated by hydrolysis of the metal salt, preferably 3 times or more.
Use twice to 5 times the amount.

加水分解反応は、撹拌下で、温度を常温から100℃、
より好ましくは70℃以上の温度で3時間〜6時間程度
行う。反応終了は、反応液のpHが上昇し、7附近にな
ったことで確認すればよい。
The hydrolysis reaction is carried out under stirring at a temperature ranging from room temperature to 100°C.
More preferably, it is carried out at a temperature of 70°C or higher for about 3 to 6 hours. The completion of the reaction can be confirmed when the pH of the reaction solution increases to around 7.

加水分解生成物は次いでf過、デカンテーションなどの
慣用の固−液分離操作で取り出し、水洗を行った後室温
ないし200℃程度で充分乾燥し、350℃〜1)00
℃程度の温度で約1〜3時間焼成を行う。
The hydrolyzed product is then removed by conventional solid-liquid separation operations such as filtration and decantation, washed with water, thoroughly dried at room temperature to about 200°C, and dried at 350°C to 1)00°C.
Firing is performed at a temperature of approximately 1 to 3 hours.

焼成の前後で、二次凝集粒子を粉砕(解砕)するのが望
ましく、該粉砕は、ハンマーミル、措潰機、ボールミル
、振動ミルなど慣用手段で行えばよい。
It is desirable to crush (disintegrate) the secondary agglomerated particles before and after firing, and the crushing may be carried out by a conventional means such as a hammer mill, crusher, ball mill, or vibration mill.

本発明の紫外線遮蔽剤の具体的用途としては、化粧品、
塗料、農業用フィルム、食品包装用フィルムや食品容器
被覆用フィルム等への添加剤が挙げられる。勿論、本発
明の紫外線遮蔽剤はその効果を失わない範囲で、例えば
酸化チタン、酸化亜鉛、酸化鉄等の既に公知の紫外線遮
蔽剤と併用して用いる事も可能である。
Specific uses of the ultraviolet screening agent of the present invention include cosmetics,
Examples include additives for paints, agricultural films, food packaging films, food container coating films, and the like. Of course, the ultraviolet screening agent of the present invention can also be used in combination with already known ultraviolet screening agents such as titanium oxide, zinc oxide, iron oxide, etc., as long as the effect is not lost.

〈発明の効果〉 以上、詳述した本発明の平均粒子径0.001μm〜0
.5μmの複合酸化物より成る紫外線遮蔽剤は波長40
0nm以下の紫外線遮蔽能が90%以上と優れ、しがも
可視光線及び近赤外線の透過性く波長400nm〜30
00nm)が60%以上で、かつ触媒活性が殆んど無く
、共存する有機物を変質しないため紫外線遮蔽を目的と
したあらゆる分野に於いて使用し得るものでその工業的
価値は頗る大なるものである。
<Effects of the Invention> The average particle diameter of the present invention detailed above is 0.001 μm to 0.
.. The UV shielding agent made of 5 μm composite oxide has a wavelength of 40
Excellent UV shielding ability of 90% or more below 0 nm, and transparent to visible light and near infrared rays with wavelengths of 400 nm to 30 nm.
00nm) of 60% or more, has almost no catalytic activity, and does not alter the coexisting organic substances, so it can be used in all fields for the purpose of blocking ultraviolet rays, and its industrial value is extremely large. be.

〈実施例〉 以下、本発明の紫外線遮蔽剤を実施例及び比較例に基づ
き詳述するが、実施例は本発明の一実施態様を示すもの
であり、何ら本発明範囲を制限するものではない。
<Example> Hereinafter, the ultraviolet screening agent of the present invention will be described in detail based on Examples and Comparative Examples, but the Example shows one embodiment of the present invention and is not intended to limit the scope of the present invention in any way. .

尚、本発明の実施例、比較例で用いた各測定方法は以下
の如くである。
The measurement methods used in the Examples and Comparative Examples of the present invention are as follows.

金属原子比 : 原子吸光分析法 酸化物の粒径 : 走査電子顕微鏡写真法複合酸化物の
原子結合状B = 複合酸化物粉末0.03gを低密度ポリエチレン粉末0
.47gと混合し、2本ロール(温度100℃〜160
°C)でt1練7容融し厚み約50μmのフィルムを製
作する。
Metal atomic ratio: Atomic absorption spectrometry Oxide particle size: Scanning electron microscopy Atomic bond type of composite oxide B = 0.03 g of composite oxide powder mixed with low density polyethylene powder 0
.. Mix with 47g of
°C) to produce a film with a thickness of approximately 50 μm.

対照フィルムとして複合酸化物を含まない低密度ポリエ
チレンの厚み約50μmのフィルムを製作する。
As a control film, a film of about 50 μm thick made of low density polyethylene containing no composite oxide was produced.

両フィルムについてJISKO1)7に従って赤外スペ
クトルを測定し、特性吸収から分析した。
Infrared spectra of both films were measured according to JIS KO1) 7 and analyzed based on characteristic absorption.

分光透過率 : 上記複合酸化物の結合状態を調べるのに用いたと同じフ
ィルムをJ[5KO1)5に従い分光々変針にて測定し
た。
Spectral transmittance: The same film used to examine the bonding state of the above-mentioned composite oxide was measured using a spectral variable needle according to J[5KO1)5.

実施例1 工業用97%硝酸アルミニウム9水塩0. 45g及び
工業用95%硝酸亜鉛6水塩362gをエタノール12
00ml中に入れ、これを30分間撹拌混合して溶解し
た。
Example 1 Industrial 97% aluminum nitrate nonahydrate 0. 45g and 362g of industrial 95% zinc nitrate hexahydrate in ethanol 12
00ml and stirred and mixed for 30 minutes to dissolve.

続いて99%のへキサメチレンテトラミン283gを水
1600mj!に溶かした水?8液を加えて、更に撹拌
した。
Next, add 283g of 99% hexamethylenetetramine to 1600mj of water! Water dissolved in? 8 liquid was added and further stirred.

これを加熱し、温度約80℃にて撹拌下5時間続いて温
度約100 ’Cで1時間、加水分解反応を行い加水分
解反応生成物を得た。
This was heated and hydrolyzed at a temperature of about 80° C. for 5 hours with stirring, followed by a hydrolysis reaction at a temperature of about 100° C. for 1 hour to obtain a hydrolysis reaction product.

これをデ過し、水1000mj!で洗浄し、l温度15
0℃で乾燥後、振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at l temperature 15
After drying at 0°C, it was pulverized using a vibration mill.

次いで温度約700℃にて1時間焼成して平均粒径0,
01μmの微粉末91.8gを得た。
Then, it was fired at a temperature of about 700°C for 1 hour to obtain an average particle size of 0.
91.8 g of fine powder with a diameter of 0.01 μm was obtained.

この製品粉末の組成は分析の結果Zn/Al原子比が1
0010.1であった。
As a result of analysis, the composition of this product powder has a Zn/Al atomic ratio of 1.
It was 0010.1.

分光透過率の測定結果を第1図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例2 工業用97%硝酸アルミニウム9水塩44゜7g及び工
業用95%硝酸亜鉛6水塩362gをエタノール120
0m1中に入れ、これを30分間撹拌混合して溶解した
Example 2 44.7 g of industrial 97% aluminum nitrate nonahydrate and 362 g of industrial 95% zinc nitrate hexahydrate were added to 120 g of ethanol.
0ml and stirred and mixed for 30 minutes to dissolve.

続いて99%のへキサメチレンテトラミン283gを水
1600mi!に溶かした水溶液を加えて、さらに撹拌
した。
Next, add 283g of 99% hexamethylenetetramine to 1600ml of water! An aqueous solution dissolved in was added and further stirred.

これを加熱し、温度約80℃にて撹拌下5時間、続いて
温度約100℃で1時間加水分解を行い加水分解生成物
を得た。
This was heated and hydrolyzed at a temperature of about 80° C. for 5 hours with stirring, and then at a temperature of about 100° C. for 1 hour to obtain a hydrolyzed product.

これをデ過し、水1000mff1で洗浄し、°温度1
50℃で乾燥後、振動ミルで粉砕した。
This was defiltered, washed with 1000 mff1 of water, and heated to 1 °C.
After drying at 50°C, it was pulverized using a vibration mill.

次いで温度約700℃にて1時間焼成した。Then, it was fired at a temperature of about 700°C for 1 hour.

平均粒径約0.01μmの微粉末97.1gを得た。97.1 g of fine powder with an average particle size of about 0.01 μm was obtained.

この製品粉末の組成は分析の結果Zn/Al原子比は1
00/l Oであった。
The composition of this product powder was analyzed and the Zn/Al atomic ratio was 1.
00/lO.

生成粉末の原子結合状態を測定したところ、−Zn−0
−Al<結合(特性吸収650Cm−1)が認められた
When the atomic bonding state of the produced powder was measured, it was found that -Zn-0
-Al<bond (characteristic absorption 650 Cm-1) was observed.

上記フィルムについて、分光透過率を測定した結果を第
1図に示す。
The results of measuring the spectral transmittance of the above film are shown in FIG.

実施例3 97%硝酸アルミニウム9水塩193g及び99%硝酸
亜鉛2水塩222gを、1so−プロパツール1200
m1に入れ、これを30分間撹拌混合し、99%へキサ
メチレンテトラミン367gと水1600mj!水溶液
を添加して撹拌し、これを温度約80℃にて5時間、続
いて温度約100℃で1時間加水分解反応を行い、加水
分解生成物を得た。
Example 3 193 g of 97% aluminum nitrate nonahydrate and 222 g of 99% zinc nitrate dihydrate were added to 1so-propatool 1200
ml and stirred and mixed for 30 minutes, 367 g of 99% hexamethylenetetramine and 1600 mj of water! An aqueous solution was added and stirred, followed by a hydrolysis reaction at a temperature of about 80° C. for 5 hours and then at a temperature of about 100° C. for 1 hour to obtain a hydrolyzed product.

これをデ過し、水1000mj!で洗浄し、温度150
℃で乾燥後、振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at a temperature of 150
After drying at °C, it was ground in a vibrating mill.

次いで温度約700℃、1時間焼成して約1μmより大
なる粒子を全く含まない、平均粒径約0.05μmの微
粉末103gを得た。
The mixture was then calcined at a temperature of about 700° C. for 1 hour to obtain 103 g of fine powder containing no particles larger than about 1 μm and having an average particle size of about 0.05 μm.

この粉末の組成は分析の結果Zn/A+原子比がl O
O150であった。
As a result of analysis, the composition of this powder was found to be Zn/A+ atomic ratio l O
It was O150.

生成粉末の結合状態を測定したところ−Zn−0−A+
<結合(特性吸収650 cm−’)を確認した。
When the bonding state of the produced powder was measured, it was -Zn-0-A+
<Bonding (characteristic absorption 650 cm-') was confirmed.

分光透過率を測定した結果を第1図に示す。The results of measuring the spectral transmittance are shown in FIG.

実施例4 四塩化チタン2.19g及び95%硝酸亜鉛6水塩36
2gをn−プロパツール1200m1に加え、これを3
0分間撹拌混合して溶解した。
Example 4 2.19 g of titanium tetrachloride and 36 g of 95% zinc nitrate hexahydrate
Add 2g to 1200ml of n-proper tool and add 3g of this to 1200ml of n-proper tool.
The mixture was stirred and mixed for 0 minutes to dissolve.

次に工業用尿素250gと水1600mfとの水溶液を
添加して混合した。
Next, an aqueous solution of 250 g of industrial urea and 1600 mf of water was added and mixed.

これを温度約90℃にて4時間、続いて温度約100°
Cで1時間加水分解反応を行い、加水分解生成物を得た
This was carried out at a temperature of about 90°C for 4 hours, and then at a temperature of about 100°C.
A hydrolysis reaction was carried out at C for 1 hour to obtain a hydrolysis product.

これをデ過し、水1000mj!で洗浄し、温度150
℃で乾燥後、振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at a temperature of 150
After drying at °C, it was ground in a vibrating mill.

次いで温度約850℃、1時間焼成して、約1μmより
大なる粒子を全く含まない平均粒径約0.08μmの微
粉末92.7gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 92.7 g of fine powder with an average particle size of about 0.08 μm and containing no particles larger than about 1 μm.

この粉末の組成は分析の結果Z n / T i原子比
が100/1であった。
As a result of analysis, the composition of this powder was found to have a Z n /Ti atomic ratio of 100/1.

分光透過率の測定結果を第1図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例5 四塩化チタン21.9及び95%硝酸亜鉛6水塩362
gをn−プロパツール1200mfに加え、これを30
分間撹拌混合して溶解した。
Example 5 Titanium tetrachloride 21.9 and 95% zinc nitrate hexahydrate 362
g to n-proper tool 1200mf and add this to 30
Stir and mix for a minute to dissolve.

次に尿素250gを水1600mlに溶した水溶液を添
加して、混合した。
Next, an aqueous solution of 250 g of urea dissolved in 1,600 ml of water was added and mixed.

これを温度約90℃で撹拌下4時間、続いて温度約10
0℃で1時間加水分解反応を行い、加水分解生成物を得
た。
This was stirred at a temperature of about 90°C for 4 hours, followed by a temperature of about 10°C.
A hydrolysis reaction was carried out at 0°C for 1 hour to obtain a hydrolysis product.

これを′濾過1水1000mfで洗浄し、温度150℃
で乾燥後、振動ミルで粉砕した。
This was washed with 1000 mf of filtered water at a temperature of 150°C.
After drying, it was pulverized using a vibrating mill.

次いで温度約850°C,1時間焼成して、約1μmよ
り大なる粒子を全く含まない平均粒径約0.2μmの微
粉末101gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 101 g of fine powder having an average particle size of about 0.2 μm and containing no particles larger than about 1 μm.

この粉末の組成は分析の結果、Z n / T i原子
比が100/10であった。
As a result of analysis, the composition of this powder was found to have a Z n /Ti atomic ratio of 100/10.

この粉末の原子結合状態は、−Zn−0−Ti(−(特
性吸収740cm−)であることを確認した。
The atomic bonding state of this powder was confirmed to be -Zn-0-Ti (-(characteristic absorption 740 cm-)).

分光透過率を測定した結果を第1図に示す。The results of measuring the spectral transmittance are shown in FIG.

実施例6 日本曹達製チタンイソプロポキシド32.9g、95%
硝酸亜鉛6水塩362gをn−プロパツール1200m
nに熔解し、これを30分間攪拌混合して溶解した。
Example 6 Nippon Soda titanium isopropoxide 32.9g, 95%
Zinc nitrate hexahydrate 362g to n-propatool 1200m
This was stirred and mixed for 30 minutes to dissolve.

これに尿素278gを水1600m1に溶解した水溶液
を添加して混合した。
An aqueous solution of 278 g of urea dissolved in 1,600 ml of water was added and mixed.

これを温度約90℃で撹拌下5時間加水分解を行い、加
水分解生成物を得た。
This was hydrolyzed at a temperature of about 90° C. for 5 hours with stirring to obtain a hydrolyzed product.

これをデ過し、水1000mlで洗浄し、温度150℃
乾燥後、振動ミルで粉砕した。
This was filtered and washed with 1000ml of water at a temperature of 150°C.
After drying, it was ground in a vibrating mill.

次いで温度約850℃、1時間焼成して約0.5μmよ
り大なる粒子を全く含まない、平均粒径約0.1μmの
微粉末101gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 101 g of a fine powder containing no particles larger than about 0.5 μm and having an average particle size of about 0.1 μm.

この製品粉末の組成は分析の結果Z n / Ti原子
比が100/I Oであった。
As a result of analysis, the composition of this product powder was found to have a Z n /Ti atomic ratio of 100/I 2 O.

この粉末の原子結合状態は、−Zn−0−T1そである
ことを確認した。
It was confirmed that the atomic bonding state of this powder was -Zn-0-T1.

分光透過率を測定した結果を第1図に示す。The results of measuring the spectral transmittance are shown in FIG.

実施例7 日本曹達製チタンイソプロポキシド65.8&、959
A硝酸亜鉛6水塩362gと1so−プロパツール12
00mlに溶解し、これを30分間撹拌混合して溶解し
た。
Example 7 Titanium isopropoxide 65.8 & 959 manufactured by Nippon Soda
A Zinc nitrate hexahydrate 362g and 1so-propatool 12
00 ml and stirred and mixed for 30 minutes to dissolve.

これに工業用尿素278gと水1600mj!との水溶
液を添加して混合した。
This includes 278g of industrial urea and 1600mj of water! An aqueous solution of was added and mixed.

これを温度約80℃で撹拌下5時間、続いて温度約10
0℃で1時間加水分解反応を行い、加水分解生成物を得
た。
This was stirred at a temperature of about 80°C for 5 hours, followed by a temperature of about 10°C.
A hydrolysis reaction was carried out at 0°C for 1 hour to obtain a hydrolysis product.

これを濾過し、水1000mj!で洗浄し、温度150
℃乾燥後、振動ミルで粉砕した。
Filter this and get 1000mj of water! Wash at a temperature of 150
After drying at °C, it was pulverized using a vibrating mill.

次いで温度約850℃、1時間焼成して約0.5μmよ
り大なる粒子を全く含まない、平均粒径0.1μmの微
粉末1)0gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 0 g of fine powder 1) having an average particle size of 0.1 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Z n / T i原
子比が100/20であった。
As a result of analysis, the composition of this product powder was found to have a Z n /Ti atomic ratio of 100/20.

この粉末の原子結合状態は、−Zn−0−Tiく結合(
特性吸収740 c m−’)であることを確認した。
The atomic bonding state of this powder is -Zn-0-Ti bond (
It was confirmed that the characteristic absorption was 740 cm-').

分光i3過率を測定した結果を第1図に示す。The results of measuring the spectral i3 pass rate are shown in FIG.

実施例8 工業用99%硝酸第2鉄9水塩0.052g及び工業用
95%硝酸亜鉛6水塩392gをノルマルプロパツール
1200mj!に入れ、これを30分間撹拌混合し、工
業用尿素262gと水1600m1との水溶液を添加し
て撹拌し、これを温度約90℃にて4時間、続いて温度
約100℃で1時間加水分解反応を行い、加水分解生成
物を得た。
Example 8 0.052 g of industrial 99% ferric nitrate nonahydrate and 392 g of industrial 95% zinc nitrate hexahydrate were added to 1200 mj of normal propatool! This was stirred and mixed for 30 minutes, and an aqueous solution of 262 g of industrial urea and 1,600 ml of water was added and stirred, and this was hydrolyzed at a temperature of about 90°C for 4 hours, and then at a temperature of about 100°C for 1 hour. The reaction was carried out to obtain a hydrolysis product.

これをデ過し、水1000mffで洗浄し、温度150
℃で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered, washed with 1000 mff of water, and heated to 150 ml of water.
After drying at °C, it was ground in a hammer mill and a vibration mill.

次いで温度600℃、1時間焼成して約1μmより大な
る粒子を全く含まない平均粒径約0.06μmの微粉末
97.4gを得た。
The mixture was then calcined at a temperature of 600° C. for 1 hour to obtain 97.4 g of fine powder with an average particle size of about 0.06 μm and no particles larger than about 1 μm.

この製品粉末の組成は分析の結果Z n / F e原
子比が10010.01であった。
Analysis of the composition of this product powder revealed that the Z n /Fe atomic ratio was 10010.01.

分光透過率の測定結果を第1図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例9 実施例8において、原料鉄塩量を51gに、尿素量を3
02gに代えた他は同一処理することで、約1μmより
大なる粒子を全く含まない平均粒径約0.08μmの微
粉末1)0gを得た。
Example 9 In Example 8, the amount of raw material iron salt was changed to 51 g, and the amount of urea was changed to 3.
By performing the same treatment except that 0.02 g was used, 0 g of fine powder 1) having an average particle size of about 0.08 μm and containing no particles larger than about 1 μm was obtained.

この製品粉末の組成は分析の結果Z n / F e原
子比が100/l Oであった。
Analysis of the composition of this product powder revealed that the Zn/Fe atomic ratio was 100/lO.

生成粉末の結合状態を測定したところ−Zn−O−Fe
<結合(特性吸収530 cm−’)を確認した。
When the bonding state of the produced powder was measured, it was found that -Zn-O-Fe
<Bonding (characteristic absorption 530 cm-') was confirmed.

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例10 工業用95%硝酸亜鉛6水塩392g及び硝酸第1セリ
ウム6水塩0.027gをイソブタノール1200mf
に入れ、これを30分間撹拌混合し、工業用尿素262
gと水1600m1との水溶液を添加して撹拌し、これ
を温度約90℃にて約4時間、続いて温度約100℃で
1時間加水分解反応を行い、加水分解生成物を得た。
Example 10 392 g of industrial 95% zinc nitrate hexahydrate and 0.027 g of cerous nitrate hexahydrate were mixed with 1200 mf of isobutanol.
The mixture was stirred and mixed for 30 minutes, and industrial urea 262
An aqueous solution of g and 1600 ml of water was added and stirred, and the mixture was subjected to a hydrolysis reaction at a temperature of about 90° C. for about 4 hours, and then at a temperature of about 100° C. for 1 hour to obtain a hydrolyzed product.

これをデ過し、水1000m/で洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered and washed with 1000 m/s of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度600℃、1時間焼成して約1μmより大な
る粒子を全く含まない平均粒径約0゜01μmの微粉末
97.5gを得た。
The mixture was then calcined at a temperature of 600° C. for 1 hour to obtain 97.5 g of fine powder having an average particle size of about 0.01 μm and containing no particles larger than about 1 μm.

この製品粉末の組成は分析の結果Z n / Ce原子
比が10010.005であった。
As a result of analysis, the composition of this product powder was found to have a Z n /Ce atomic ratio of 10010.005.

分光通過率の測定結果を第2図に示す。The measurement results of the spectral transmission rate are shown in FIG.

実施例1) 工業用95%硝酸亜鉛6水塩392g及び硝酸第1セリ
ウム6水塩0.055gをイソブタノール1200m1
に入れ、これを30分間撹拌混合し、工業用尿素262
gと水1600mβとの水?8液を添加して撹拌し、こ
れを温度約90℃にて約4時間、続いて温度約100 
’Cで1時間加水分解反応を行い、加水分解生成物を得
た。
Example 1) 392 g of industrial 95% zinc nitrate hexahydrate and 0.055 g of cerous nitrate hexahydrate were added to 1200 ml of isobutanol.
The mixture was stirred and mixed for 30 minutes, and industrial urea 262
g and water 1600mβ? 8 liquid was added and stirred, and this was heated at a temperature of about 90°C for about 4 hours, and then at a temperature of about 100°C.
A hydrolysis reaction was carried out at C for 1 hour to obtain a hydrolysis product.

これを′fiff、、、水1000mIT:?’!c浄
L、温度150℃で乾燥後、ハンマーミル及び振動ミル
で粉砕した。
This is 'fiff..., water 1000 mIT:? '! After drying at a temperature of 150° C., it was pulverized using a hammer mill and a vibration mill.

次いで温度600℃、1時間焼成して約1μmより大な
る粒子を全く含まない平均粒径約0゜01μmの微粉末
97.5gを得た。
The mixture was then calcined at a temperature of 600° C. for 1 hour to obtain 97.5 g of fine powder having an average particle size of about 0.01 μm and containing no particles larger than about 1 μm.

この製品粉末の組成は分析の結果Z n / c6原子
比が10010.01であった。
As a result of analysis, the composition of this product powder was found to have a Z n /c6 atomic ratio of 10010.01.

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例12 実施例1)において、原料亜鉛塩量を72゜1gに原料
セリウム塩量を200gに代えた他は同一処理すること
で、約1μmより大なる粒子を全く含まない平均粒径内
0.03μmの微粉末97.1gを得た。
Example 12 By carrying out the same treatment as in Example 1) except that the amount of raw material zinc salt was changed to 72°1 g and the amount of raw material cerium salt was changed to 200 g, the average particle size was 0.000, containing no particles larger than about 1 μm. 97.1 g of fine powder of .03 μm was obtained.

この製品粉末の組成は分析の結果Z n / Ce原子
比が100/200であった。
As a result of analysis, the composition of this product powder was found to have a Z n /Ce atomic ratio of 100/200.

生成粉末の結合状態を測定したところ−Zn−0−Ce
そ結合(特性吸収410 am−’)を確認した。
When the bonding state of the produced powder was measured, it was found that -Zn-0-Ce
The bond (characteristic absorption 410 am-') was confirmed.

分光通過率の測定結果を第2図に示す。The measurement results of the spectral transmission rate are shown in FIG.

実施例13 工業用95%硝酸第2クロム9水塩0.264g及び工
業用95%硝酸亜鉛6水塩392gをノルマルブタノー
ル1200m1に入れ、これを30分間撹拌混合し、工
業用99%へキサメチレンテトラミン266gと水16
00m1との水溶液を添加して撹拌し、これを温度約9
0℃にて5時間加水分解反応を行い、加水分解生成物を
得た。
Example 13 0.264 g of industrial 95% chromic nitric acid nonahydrate and 392 g of industrial 95% zinc nitrate hexahydrate were added to 1200 ml of n-butanol, and the mixture was stirred and mixed for 30 minutes to produce 99% industrial hexamethylene. 266g of tetramine and 16g of water
00 ml of aqueous solution was added and stirred, and the temperature was about 9
A hydrolysis reaction was carried out at 0°C for 5 hours to obtain a hydrolysis product.

これをデ過し、水1000m+2で洗浄し、温度150
℃で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered, washed with water 1000m+2, and heated to a temperature of 150m.
After drying at °C, it was ground in a hammer mill and a vibration mill.

次いで温度600℃、1時間焼成して杓0゜5μmより
大なる粒子を全く含まない平均粒径約0.01μmの微
粉末97.6gを得た。
The mixture was then calcined at a temperature of 600° C. for 1 hour to obtain 97.6 g of fine powder with an average particle size of about 0.01 μm and containing no particles larger than 0.5 μm.

この製品粉末の組成は分析の結果Z n / Cr原子
比が10010.05であった。
As a result of analysis, the composition of this product powder was found to have a Z n /Cr atomic ratio of 10010.05.

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例14 工業用95%硝酸第2クロム9水塩0.527g及び工
業用95%硝酸亜鉛6水塩392gをノルマルブタノー
ル1200m++に入れ、これを30分間撹拌混合し、
工業用99%へキサメチレンテトラミン266gと水1
600mj!との水溶液を添加して攪拌し、これを温度
約90℃にて5時間加水分解反応を行い、加水分解生成
物を得た。
Example 14 0.527 g of industrial 95% chromic nitric acid nonahydrate and 392 g of industrial 95% zinc nitrate hexahydrate were added to 1200 m++ of n-butanol, and the mixture was stirred and mixed for 30 minutes.
Industrial grade 99% hexamethylenetetramine 266g and water 1
600mj! An aqueous solution of was added and stirred, and a hydrolysis reaction was carried out at a temperature of about 90° C. for 5 hours to obtain a hydrolyzed product.

これをデ過し、水1000mj!で洗浄し、温度150
℃で乾燥後、ハンマーミル及び振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at a temperature of 150
After drying at °C, it was ground using a hammer mill and a vibration mill.

次いで温度600℃、1時間焼成して約0゜5μmより
大なる粒子を全く含まない平均粒径約0.01μmの微
粉末97.6gを得た。
The mixture was then calcined at a temperature of 600° C. for 1 hour to obtain 97.6 g of fine powder having an average particle size of about 0.01 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Zn/Cr原子比が1
0010.1であった。
As a result of analysis, the composition of this product powder has a Zn/Cr atomic ratio of 1.
It was 0010.1.

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例15 実施例14において、原料亜鉛塩量を313gに原料ク
ロム塩量を21)gに、ヘキサメチレンテトラミン量を
372gに代えた他は同一処理することで、約1μmよ
り大なる粒子を全く含まない平均粒径約0.04μmの
微粉末126gを得た。
Example 15 By performing the same treatment as in Example 14 except that the amount of raw material zinc salt was changed to 313 g, the amount of raw material chromium salt was changed to 21) g, and the amount of hexamethylenetetramine was changed to 372 g, particles larger than about 1 μm were completely removed. 126 g of fine powder with an average particle diameter of about 0.04 μm was obtained.

この製品粉末の組成は分析の結果Z n / Cr原子
比が100150であった。
As a result of analysis, the composition of this product powder was found to have a Z n /Cr atomic ratio of 100,150.

生成粉末の結合状態を測定したところ−Zn−〇−Cr
く結合(特性吸収610 cm−’)を確認した。
When the bonding state of the produced powder was measured, it was found that -Zn-〇-Cr
A strong bond (characteristic absorption 610 cm-') was confirmed.

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例16 オキシ塩化ジルコニウム8水塩0.201g及び工業用
959A硝酸亜鉛6水塩392gをエタノール500m
j!に入れ、これを30分間攪拌混合し、工業用尿素2
25gと水2300meとの水78液を添加して撹拌し
、これを温度約80℃にて5時間、続いて温度約【00
°Cで1時間加水分解反応を行い、加水分解生成物を得
た。
Example 16 0.201 g of zirconium oxychloride octahydrate and 392 g of industrial grade 959A zinc nitrate hexahydrate were added to 500 m of ethanol.
j! The mixture was stirred and mixed for 30 minutes, and industrial urea 2
Add 78 liquids of 25g and 2300me of water, stir, and heat at a temperature of about 80°C for 5 hours, then at a temperature of about 00°C.
A hydrolysis reaction was carried out at °C for 1 hour to obtain a hydrolysis product.

これをデ過し、水1000mj!で洗浄し、温度150
℃で乾燥後、ハンマーミル及び振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at a temperature of 150
After drying at °C, it was ground in a hammer mill and a vibration mill.

次いで温度650℃、1時間焼成して約0゜5μmより
大なる粒子を全く含まない平均粒径約0,01μmの微
粉末981gを得た。
The mixture was then calcined at a temperature of 650° C. for 1 hour to obtain 981 g of fine powder having an average particle size of about 0.01 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Z n / Z r原
子比が10010.05であった。
Analysis of the composition of this product powder revealed that the Zn/Zr atomic ratio was 10010.05.

分光透過率の測定結果を第3図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例17 実施例16において、原料ジルコニウム塩量を4.03
gに、加水分解沈澱剤として尿素をヘキサメチレンテト
ラミン310gに代えて使用する他は同一処理すること
により約0.5μmより大なる粒子を全く含まない平均
粒径約0.01μmの微粉末101gを得た。この製品
粉末の組成は分析の結果、Z n / Z r原子比が
100/1であった。
Example 17 In Example 16, the amount of raw material zirconium salt was 4.03
g, 101 g of fine powder with an average particle size of about 0.01 μm containing no particles larger than about 0.5 μm was obtained by the same treatment except that 310 g of hexamethylenetetramine was replaced with urea as a hydrolysis precipitant. Obtained. Analysis of the composition of this product powder revealed that the Zn/Zr atomic ratio was 100/1.

分光透過率の測定結果を第 図に示す。The measurement results of spectral transmittance are shown in Figure.

実施例18 実施例16において、原料亜鉛塩量を313gに、原料
ジルコニウム塩量を129gに、尿素量を270gに代
えた他は同一処理することで、約0.5μmより大なる
粒子を全く含まない平均粒径約0.02μmの微粉末1
27gを得た。
Example 18 By carrying out the same treatment as in Example 16 except that the amount of raw material zinc salt was changed to 313 g, the amount of raw material zirconium salt was changed to 129 g, and the amount of urea was changed to 270 g, no particles larger than about 0.5 μm were contained. Fine powder 1 with an average particle size of approximately 0.02 μm
27g was obtained.

この製品粉末の組成は分析の結果Zn/Z「原子比が1
00/40であった。
As a result of analysis, the composition of this product powder was found to be Zn/Z with an atomic ratio of 1.
It was 00/40.

生成粉末の結合状態を測定してところ−Zn−0−Zr
4結合(特性吸収640 c m−’)を確認した。
When the bonding state of the produced powder was measured -Zn-0-Zr
4 bonds (characteristic absorption 640 cm-') were confirmed.

分光透過率の測定結果を第3図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例19 四基チタン18.7gを97%硝酸アルミニウム9水塩
152g及び95%硝酸亜鉛6水塩308gをエチレン
グリコール200mj!に溶解した。
Example 19 18.7 g of quaternary titanium, 152 g of 97% aluminum nitrate nonahydrate, and 308 g of 95% zinc nitrate hexahydrate were mixed with 200 mj of ethylene glycol! dissolved in.

これに尿素319gを水2600mj!に溶解した水溶
液を添加し、混合した。
Add 319g of urea and 2600mj of water! was added and mixed.

これを温度約100℃にて、攪拌下3時間加水分解を行
い、加水分解生成物を得た。
This was hydrolyzed at a temperature of about 100°C for 3 hours with stirring to obtain a hydrolyzed product.

これをデ過し、水1000mj+で洗浄、温度150℃
で乾燥後、振動ミルで粉砕した。
This was defiltered and washed with 1000 mj+ of water at a temperature of 150°C.
After drying, it was pulverized using a vibrating mill.

次いで温度850℃、1時間焼成して約1μmより大な
る粒子を全く含まない、平均粒径約0.2μmの微粉末
108gを得た。
The mixture was then calcined at a temperature of 850° C. for 1 hour to obtain 108 g of fine powder containing no particles larger than about 1 μm and having an average particle size of about 0.2 μm.

この粉末の組成は、分析の結果Z n / A 1 /
Ti原子比が100/40/l Oであった。
As a result of analysis, the composition of this powder is Z n / A 1 /
The Ti atomic ratio was 100/40/lO.

この粉末の原子結合状態を測定したところ)Ti −0
−Zn−0−A1<結合(特性吸収650 c m−’
、740 c m−’)を確認した。
When the atomic bonding state of this powder was measured) Ti -0
-Zn-0-A1<bond (characteristic absorption 650 cm m-'
, 740 cm-').

分光透過率を測定した結果を第3図に示す。The results of measuring the spectral transmittance are shown in FIG.

実施例20 工業用四塩化チタン21.9g、硫酸第1セリウム8水
塩2.06g及び工業用95%硝酸亜鉛6水塩362g
をジエチレングリコール1200mIlに入れ30分間
撹拌混合した。
Example 20 21.9 g of industrial titanium tetrachloride, 2.06 g of ceric sulfate octahydrate, and 362 g of industrial 95% zinc nitrate hexahydrate
was added to 1200 ml of diethylene glycol and mixed with stirring for 30 minutes.

次に工業用尿素252gと水1600mj!との水溶液
を添加して混合した。
Next, 252g of industrial urea and 1600mj of water! An aqueous solution of was added and mixed.

これを撹拌下に温度約100℃、3時間加水分解反応を
行い、加水分解生成物を得た。
This was subjected to a hydrolysis reaction at a temperature of about 100° C. for 3 hours while stirring to obtain a hydrolysis product.

これをデ過し、水10100Oで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered, washed with 10,100O water, and heated to 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度約850℃、1時間焼成して約0.5μmよ
り大なる粒子を全く含まない平均粒径約0.02μmの
微粉末104gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 104 g of fine powder having an average particle size of about 0.02 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Z n / Ce/ 
T i原子比が10010.5/10であった。
As a result of analysis, the composition of this product powder is Z n / Ce /
The Ti atomic ratio was 10010.5/10.

この粉末の原子結合状態は−Zn−0−Ti(−結合(
特性吸収600cm6’、740 c m−’)である
ことを認めた。
The atomic bonding state of this powder is -Zn-0-Ti (- bond (
It was found that the characteristic absorption was 600 cm6', 740 cm-').

分光透過率の測定結果を第1図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例21 工業用97%硝酸アルミニウム9水塩44゜7g、工業
用95%硝酸亜鉛6水塩362g及び硝酸第2鉄9水塩
4.72gをエタノール1200−に入れ、これを30
分間攪拌混合して溶解した。続いて工業用99%へキサ
メチレンテトラミン286gを水160(ldに?容か
した水溶液を加えて、更に攪拌した。
Example 21 44.7 g of industrial 97% aluminum nitrate nonahydrate, 362 g of industrial 95% zinc nitrate hexahydrate, and 4.72 g of ferric nitrate nonahydrate were added to 1200 g of ethanol, and
Dissolved by stirring and mixing for a minute. Subsequently, an aqueous solution of 286 g of industrial grade 99% hexamethylenetetramine in 160 ml of water was added and further stirred.

これを撹拌下に加熱し、温度約80℃にて5時間、続い
て温度約lOO℃で1時間加水分解反応を行い、加水分
解生成物を得た。これを濾過し、水1000−で洗浄し
、温度150℃で乾燥後、ハンマーミル及び振動ミルで
粉砕した。
This was heated with stirring to carry out a hydrolysis reaction at a temperature of about 80° C. for 5 hours and then at a temperature of about 100° C. for 1 hour to obtain a hydrolyzed product. This was filtered, washed with 1,000 ml of water, dried at a temperature of 150°C, and then ground with a hammer mill and a vibration mill.

次いで温度約700℃1時間後、焼成して、約1μmよ
り大なる粒子を全く含まない平均粒径約0.01μmの
肌ざわりの良好な微粉末である淡黄色の製品98.5g
を得た。
Then, after 1 hour at a temperature of about 700°C, it was fired to give 98.5 g of a pale yellow product, which is a fine powder with a good texture and an average particle size of about 0.01 μm, containing no particles larger than about 1 μm.
I got it.

この製品粉末の組成は分析の結果Zn/Aff/Fe原
子比が100/l O/1であった。
As a result of analysis, the composition of this product powder was found to have a Zn/Aff/Fe atomic ratio of 100/l O/1.

生成粉末の原子結合状態を測定したところ、−Zn−o
−Af<結合(特性吸収650 c m−’)が認めら
れた。
When the atomic bonding state of the produced powder was measured, it was found that -Zn-o
-Af<binding (characteristic absorption 650 cm-') was observed.

分光透過率の測定結果を第3図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例22 工業用97%硝酸アルミニウム9水塩44゜7g、工業
用95%硝酸亜鉛6水塩362g及び硝酸第1セリウム
6水塩5.02gをエチレングリコール1200−に入
れ、30分間攪拌l昆合した。
Example 22 44.7 g of industrial grade 97% aluminum nitrate hexahydrate, 362 g of industrial grade 95% zinc nitrate hexahydrate, and 5.02 g of cerous nitrate hexahydrate were added to 1200 g of ethylene glycol and stirred for 30 minutes. It matched.

次いで、工業用99%へキサメチレンテトラミン286
gと水1600−との水溶液を天下混合した。
Then, industrial 99% hexamethylenetetramine 286
An aqueous solution of 1,600 g of water and 1,600 g of water was mixed together.

これを撹拌下に、温度約100℃、3時間加水分解反応
を行い加水分解生成物を得た。これを濾過し、水100
0−で洗浄し、温度150℃で乾燥後、ハンマーミル及
び振動ミルで粉砕した。
While stirring, a hydrolysis reaction was carried out at a temperature of about 100° C. for 3 hours to obtain a hydrolysis product. Filter this and add 100% water
After washing at 0- and drying at a temperature of 150°C, it was pulverized using a hammer mill and a vibration mill.

次いで、温度約700℃、1時間焼成して約0.5μm
より大なる粒子を全く含まない平均粒径0.02μmの
微粉末98.7gを得た。
Next, it is baked at a temperature of about 700°C for 1 hour to obtain a thickness of about 0.5 μm.
98.7 g of a fine powder with an average particle size of 0.02 μm, containing no larger particles, was obtained.

生成粉末の原子結合状態を測定したところ、−Zn−0
−Al<結合(特性吸収650 cm−’)が認められ
た。
When the atomic bonding state of the produced powder was measured, it was found that -Zn-0
-Al<bond (characteristic absorption 650 cm-') was observed.

この製品粉末の組成は分析の結果Z n / A 1/
Ce原子比が100/10/lであった。
The composition of this product powder is the result of analysis Z n / A 1 /
The Ce atomic ratio was 100/10/l.

分光透過率の測定結果を第3図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例23 工業用四塩化チタン21.9g、工業用99%硝酸第2
鉄9水塩4.72g及び工業用95%硝酸亜鉛6水塩3
62gを、ノルマルプロパツール1200mに入れ、こ
れを30分間撹拌混合した。
Example 23 21.9 g of industrial titanium tetrachloride, 21.9 g of industrial 99% nitric acid
Iron nonahydrate 4.72g and industrial 95% zinc nitrate hexahydrate 3
62 g was placed in a normal propatool 1200 m, and the mixture was stirred and mixed for 30 minutes.

次に工業用尿素253gと水1600mとの水溶液を添
加混合した。
Next, an aqueous solution of 253 g of industrial urea and 1600 m of water was added and mixed.

これを攪拌下、温度約90℃5時間加水分解反応を行い
、加水分解生成物を得た。これを濾過し、水1000−
で洗浄し、温度150℃乾燥後、ハンマーミル及び、振
動ミルで粉砕した。
This was subjected to a hydrolysis reaction at a temperature of about 90° C. for 5 hours while stirring to obtain a hydrolyzed product. Filter this and water 1000-
After washing with water and drying at a temperature of 150°C, the powder was pulverized with a hammer mill and a vibration mill.

次いで温度約850℃1時間焼成して約0゜5μmより
大なる粒子を全く含まない平均粒径約0.03pmの微
粉末104gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 104 g of fine powder having an average particle size of about 0.03 pm and containing no particles larger than about 0.5 μm.

この粉末の組成は分析の結果、Z n / F e /
T1原子比が100/1/10であった。
As a result of analysis, the composition of this powder was found to be Z n / Fe /
The T1 atomic ratio was 100/1/10.

この粉末の原子結合状態は−Zn−〇−Tiそ結合(特
性吸収600cm−’、740 c m−’)であるこ
とを認めた。
It was confirmed that the atomic bonding state of this powder was -Zn-〇-Ti bond (characteristic absorption 600 cm-', 740 cm-').

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例24 工業用99%酢酸亜鉛2水塩277g、工業用97%硝
酸アルミニウム9水塩4B、3g工業用99%硝酸第2
鉄9水塩5.1g及び硫酸第1セリウム8水塩2.24
gをエタノール300mlに入れ、30分間攪拌混合し
た。
Example 24 277 g of industrial 99% zinc acetate dihydrate, 3 g of industrial 97% aluminum nitrate nonahydrate 4B, 3 g of industrial 99% nitric acid dihydrate
Iron nonahydrate 5.1g and ceric sulfate octahydrate 2.24g
g was added to 300 ml of ethanol and stirred and mixed for 30 minutes.

次に工業用尿素264gと水2500mj+との水溶液
を添加してt1合した。
Next, an aqueous solution of 264 g of industrial urea and 2500 mj+ of water was added and combined for t1.

これを撹拌下に温度約80℃、5時間続いて温度約10
0℃、1時間加水分解反応を行い、加水分解生成物を得
た。
This was stirred at a temperature of about 80°C for 5 hours, and then heated at a temperature of about 10°C for 5 hours.
A hydrolysis reaction was carried out at 0°C for 1 hour to obtain a hydrolysis product.

これをデ過し、水1000mj!で洗浄し、温度150
℃で乾燥後、ハンマーミル及び振動ミルで粉砕した。
I passed this and got 1000mj of water! Wash at a temperature of 150
After drying at °C, it was ground using a hammer mill and a vibration mill.

次いで温度750℃、1時間焼成して約0゜5μmより
大なる粒子を全く含まない平均粒径約0201μmの微
粉末1)0gを得た。
The mixture was then calcined at a temperature of 750° C. for 1 hour to obtain 0 g of fine powder 1) having an average particle size of about 0.201 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Zn/Az/ F e
 / Ce原子比が100/10/1)0゜5であった
As a result of analysis, the composition of this product powder is Zn/Az/Fe
/Ce atomic ratio was 100/10/1)0°5.

この粉末の原子結合状態は−Zn−0−All<結合(
特性吸収650Cm−’)であることを認めた。
The atomic bond state of this powder is -Zn-0-All<bond (
It was confirmed that the characteristic absorption was 650 Cm-').

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例25 工業用95%硝酸亜鉛6水塩308 g’−工業用97
%硝酸アルミニウム9水塩152g、工業用99%硝酸
第2鉄9水塩2.01g及び工業用四塩化チタン18.
7gをプロピレングリコール400mj!に入れ、30
分間攪拌混合した。
Example 25 Industrial 95% zinc nitrate hexahydrate 308 g'-Industrial 97
% aluminum nitrate nonahydrate 152 g, industrial 99% ferric nitrate nonahydrate 2.01 g and industrial titanium tetrachloride 18.
7g of propylene glycol 400mj! Put it in, 30
Mix by stirring for a minute.

次に工業用尿素320gと水1600mfとの水?8液
を添加して混合した。
Next, 320g of industrial urea and 1600mf of water? 8 liquids were added and mixed.

これを攪拌下に、温度約lOO°C13時間加水分解反
応を行い、加水分解生成物を得た。
While stirring, a hydrolysis reaction was carried out at a temperature of about 100° C. for 13 hours to obtain a hydrolyzed product.

これをデ過し、水1000mlで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was filtered and washed with 1000ml of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度約850℃、1時間焼成して約1μmより大
なる粒子を全く含まない平均粒径約0.04μmの微粉
末108 gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 108 g of a fine powder having an average particle size of about 0.04 μm and containing no particles larger than about 1 μm.

この製品粉末の組成は分析の結果Z n / A R/
 F e / T i原子比が100/4010.5/
10であった。
The composition of this product powder is based on the analysis result Z n / A R /
Fe/Ti atomic ratio is 100/4010.5/
It was 10.

この粉末の原子結合状態は−)Ti −0−Zn−O−
Al<結合(特性吸収650cm−’、740 Cm−
’)であることを認めた。
The atomic bonding state of this powder is -)Ti -0-Zn-O-
Al< bond (characteristic absorption 650 cm-', 740 Cm-
').

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例26 工業用95%硝酸亜鉛6水塩308g、工業用97%硝
酸アルミニウム9水塩t52g、IX?酸第1セリウム
8水塩2.24g及び工業用四塩化チタン18.7gを
イソプロパツール12Q Qmffiに入れ、30分間
攪拌混合した。
Example 26 308 g of industrial 95% zinc nitrate hexahydrate, 52 g of industrial 97% aluminum nitrate nonahydrate, IX? 2.24 g of ceric acid octahydrate and 18.7 g of industrial titanium tetrachloride were placed in an isopropanol 12Q Qmffi and stirred and mixed for 30 minutes.

次に工業用尿素320gと水1600mj!との水溶液
を添加して混合した。
Next, 320g of industrial urea and 1600mj of water! An aqueous solution of was added and mixed.

これを攪拌下に、温度約80℃、4時間、続いて温度約
100℃、1時間加水分解反応を行い、加水分解生成物
を得た。
This was subjected to hydrolysis reaction at a temperature of about 80° C. for 4 hours and then at a temperature of about 100° C. for 1 hour while stirring to obtain a hydrolyzed product.

これをデ過し、水1000mlで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was filtered and washed with 1000ml of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度約850℃、1時間焼成して約0.5μmよ
り大なる粒子を全く含まない平均粒径約0.05μmの
微粉末109gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 109 g of fine powder having an average particle size of about 0.05 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果Z n / A 1/
 Ce / T i原子比がtoo/4010.5/1
0であった。
The composition of this product powder is the result of analysis Z n / A 1 /
Ce/Ti atomic ratio is too/4010.5/1
It was 0.

この粉末の原子結合状態は−>Ti −0−Zn−o−
Ae<結合(特性吸収650cm−’、740 Cm6
’)であることを認めた。
The atomic bonding state of this powder is ->Ti -0-Zn-o-
Ae<bond (characteristic absorption 650 cm-', 740 Cm6
').

分光透過率の測定結果を第2図に示す。The measurement results of the spectral transmittance are shown in FIG.

実施例27 工業用95%硝酸亜鉛6水塩362g、工業用99%硝
酸第2鉄9水塩4.72g、硫酸第1セリウム日水塩2
.24g及び日本曹達製チタンイソプロポキシド3’2
.9gをイソプロパツール1200mlに入れ、30分
間攪拌混合した。
Example 27 362 g of industrial 95% zinc nitrate hexahydrate, 4.72 g of industrial 99% ferric nitrate nonahydrate, 2 ceric sulfate dihydrate
.. 24g and Nippon Soda titanium isopropoxide 3'2
.. 9 g was added to 1200 ml of isopropanol and stirred and mixed for 30 minutes.

次に工業用尿素255gと水1600mj!との水溶液
を添加して混合した。
Next, 255g of industrial urea and 1600mj of water! An aqueous solution of was added and mixed.

これを攪拌下に、温度約80℃、4時間、続いて温度約
100℃、1時間加水分解反応を行い、加水分解生成物
を得た。
This was subjected to hydrolysis reaction at a temperature of about 80° C. for 4 hours and then at a temperature of about 100° C. for 1 hour while stirring to obtain a hydrolyzed product.

これをデ過し、水1000mfで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered and washed with 1000mf of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度850℃、1時間焼成して約0゜5μmより
大なる粒子を全く含まない平均粒径約0.03μmの微
粉末105gを得た。
The mixture was then calcined at a temperature of 850° C. for 1 hour to obtain 105 g of a fine powder with an average particle size of about 0.03 μm and containing no particles larger than about 0.5 μm.

この製品粉末の組成は分析の結果、Z n / Fe 
/ Ce / T i原子比が100/1)0.5/1
0であった。
As a result of analysis, the composition of this product powder was found to be Zn/Fe
/ Ce / Ti atomic ratio is 100/1) 0.5/1
It was 0.

この粉末の原子結合状態は−Zn−〇−Tiく結合(特
性吸収600cm”、74 Q cm−’)であること
を認めた。
It was confirmed that the atomic bond state of this powder was -Zn-〇-Ti bond (characteristic absorption 600 cm'', 74 Q cm-').

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例28 工業用95%硝酸亜鉛6水塩308g、工業用97%硝
酸アルミニウム9水塩152g、工業用99%硝酸第2
鉄9水塩2.01g、硝酸第1セリウ6水塩2.14g
及び工業用四塩化チタン18.7gをグリセリン400
mlに入れ、30分間攪拌混合した。
Example 28 308 g of industrial 95% zinc nitrate hexahydrate, 152 g of industrial 97% aluminum nitrate nonahydrate, 99% industrial nitric acid 2
Iron nonahydrate 2.01g, Serium nitric acid hexahydrate 2.14g
and 18.7 g of industrial titanium tetrachloride in 400 g of glycerin.
ml and stirred and mixed for 30 minutes.

次に工業用尿素322gと水1600mff1との水溶
液を添加して混合した。
Next, an aqueous solution of 322 g of industrial urea and 1600 mff1 of water was added and mixed.

これを撹拌下に、温度約100℃、3時間加水分解反応
を行い、加水分解生成物を得た。
While stirring, a hydrolysis reaction was carried out at a temperature of about 100° C. for 3 hours to obtain a hydrolyzed product.

これをデ過し、水1000mJで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered and washed with 1000mJ of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次い、で温度約850℃、1時間焼成して約1μmより
大なる粒子を全く含まない平均粒径約0.05μmの微
粉末109gを得た。
The mixture was then calcined at a temperature of about 850° C. for 1 hour to obtain 109 g of fine powder with an average particle size of about 0.05 μm and no particles larger than about 1 μm.

この製品粉末の組成は分析の結果Z n / A 1F
 e / Ce / T j原子比が100/4010
゜510.5/10であった。
The composition of this product powder is the result of analysis Z n / A 1F
e / Ce / T j atomic ratio is 100/4010
It was 510.5/10.

この粉末の原子結合状態は)Ti −0−Zn−O−A
1<結合(特性吸収650cm−’、740 Cm−’
)であることを認めた。
The atomic bonding state of this powder is )Ti-0-Zn-O-A
1< bond (characteristic absorption 650 cm-', 740 Cm-'
).

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例29 工業用95%硝酸亜鉛6水塩62.6g、工業用97%
硝酸アルミニウム18水塩34,4g1工業用99%硝
酸第2鉄9水塩8.15g、工業用95%硝酸第2クロ
ム9水塩25.3g、硫酸第1セリウム日水塩143g
及び工業用硫酸チタニル6.4gを水500mj!に入
れ30分間攪拌混合した。
Example 29 62.6 g of industrial 95% zinc nitrate hexahydrate, 97% industrial
Aluminum nitrate 18 hydrate 34.4 g 1 Industrial 99% ferric nitrate nonahydrate 8.15 g, Industrial 95% chromic nitric acid nonahydrate 25.3 g, Ceric sulfate dihydrate 143 g
And 6.4g of industrial titanyl sulfate and 500mj of water! and stirred and mixed for 30 minutes.

次いでエタノール1200m1並びに工業用尿素280
gと水1)00mj!との水溶液を添加混合した。
Then 1200 ml of ethanol and 280 ml of industrial urea
g and water 1) 00mj! An aqueous solution of was added and mixed.

これを攪拌下に、温度約80℃、5時間次いで温度約1
00℃、1時間加水分解反応を行い加水分解生成物を得
た。
This was stirred at a temperature of about 80°C for 5 hours, and then at a temperature of about 1°C.
A hydrolysis reaction was carried out at 00°C for 1 hour to obtain a hydrolysis product.

これをデ過し、水1000mfで洗浄し、温度150℃
で乾燥後、ハンマーミル及び振動ミルで粉砕した。
This was defiltered and washed with 1000mf of water at a temperature of 150°C.
After drying, it was pulverized using a hammer mill and a vibration mill.

次いで温度850℃、1時間焼成して約1μmより大な
る粒子を全く含まない平均粒径約0.08μmの微粉末
101gを得た。
The mixture was then calcined at a temperature of 850° C. for 1 hour to obtain 101 g of fine powder with an average particle size of about 0.08 μm and containing no particles larger than about 1 μm.

生成粉末の原子結合状態を測定したところ、−Zn−0
−AI<結合、−Zn−0−Fe<結合、 Zn−0−
Cr<結合、−Zn−○−Ceそ結合及び−Zn−○−
Ti(−結合を確認した。
When the atomic bonding state of the produced powder was measured, it was found that -Zn-0
-AI<bond, -Zn-0-Fe<bond, Zn-0-
Cr< bond, -Zn-○-Ce bond and -Zn-○-
Ti(- bond was confirmed.

この製品粉末の組成は分析の結果、Z n / A1 
/ F e / Cr / Ce / T i原子比が
100150/10/30/200/20であった。
As a result of analysis, the composition of this product powder is Z n / A1
/ Fe / Cr / Ce / Ti atomic ratio was 100150/10/30/200/20.

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

実施例30 実施例29における各原料塩とオキシ塩化ジルコニウム
8水塩32.2gを水500m1に入れ30分間撹拌混
合した。
Example 30 Each raw material salt in Example 29 and 32.2 g of zirconium oxychloride octahydrate were added to 500 ml of water and mixed with stirring for 30 minutes.

次いでエタノール1200mj!並びに工業用尿素31
0gと水1)00mlとの水溶液を添加混合した。
Next, 1200 mj of ethanol! and industrial urea 31
An aqueous solution of 0 g and 1) 00 ml of water was added and mixed.

以下、実施例29と同様に、反応、デ過、洗浄、乾燥、
粉砕、焼成して約0.5μmより大なる粒子を全く含ま
ない平均粒径0.01μmの微粉末1)1gを得た。
Hereinafter, in the same manner as in Example 29, reaction, filtration, washing, drying,
The powder was crushed and calcined to obtain 1 g of fine powder 1) having an average particle size of 0.01 μm and containing no particles larger than about 0.5 μm.

生成粉末の原子結合状態を測定したところ、−Zn−0
−AI<結合、−Zn−0−Fe<結合、−Zn−0−
Cr<結合、−Zn−0−Ce(結合、−Zn−0−T
i(−結合及び−Zn−0−Zr(−結合を確認した。
When the atomic bonding state of the produced powder was measured, it was found that -Zn-0
-AI<bond, -Zn-0-Fe<bond, -Zn-0-
Cr<bond, -Zn-0-Ce (bond, -Zn-0-T
i(- bond and -Zn-0-Zr(- bond) were confirmed.

この製品粉末の組成は分析の結果、Zn/AI / F
 e / Cr / Ce / T i / Z r原
子比が1であった。
As a result of analysis, the composition of this product powder is Zn/AI/F.
The e/Cr/Ce/Ti/Zr atomic ratio was 1.

分光透過率の測定結果を第4図に示す。The measurement results of spectral transmittance are shown in FIG.

比較例1 和光純薬工業製工業用酸化アルミニウム粉末23.9g
及び山田薬品製工業用酸化亜鉛76.1gをボールミル
で6時間粉砕混合した後、温度約700℃で1時間焼成
した。
Comparative Example 1 Wako Pure Chemical Industries industrial aluminum oxide powder 23.9g
After pulverizing and mixing 76.1 g of industrial zinc oxide manufactured by Yamada Pharmaceutical Co., Ltd. in a ball mill for 6 hours, the mixture was fired at a temperature of about 700° C. for 1 hour.

得られた粉末のZ n / A 1原子比は10015
0で平均粒径は約0.2μmであった。
The Z n /A 1 atomic ratio of the obtained powder was 10015
0 and the average particle size was about 0.2 μm.

この粉末の原子結合状態を測定したところ、−Zn−o
−A1<結合は認められず、単なる酸化亜鉛と酸化アル
ミニウムの混合粉末であることが確認された。
When the atomic bonding state of this powder was measured, it was found that -Zn-o
-A1< No bond was observed, and it was confirmed that the powder was simply a mixed powder of zinc oxide and aluminum oxide.

分光透過率を測定した結果を第5図に示す。The results of measuring the spectral transmittance are shown in FIG.

比較例2 和光純薬工業製工業用酸化チタン粉末9.24g及び山
田薬品製工業用酸化亜鉛粉末94゜1gをボールミルで
6時間粉砕混合した後、温度約850℃1時間焼成した
Comparative Example 2 9.24 g of industrial titanium oxide powder manufactured by Wako Pure Chemical Industries, Ltd. and 94° 1 g of industrial zinc oxide powder manufactured by Yamada Pharmaceutical were pulverized and mixed in a ball mill for 6 hours, and then fired at a temperature of about 850° C. for 1 hour.

得られた粉末のZ n / T i原子比は100/1
0で、平均粒径は約0.2μmであった。
The Z n / Ti atomic ratio of the obtained powder was 100/1
0, the average particle size was approximately 0.2 μm.

この粉末の原子結合状態を測定したところ、−Zn−〇
−T i 4結合は認められず、単なる酸化亜鉛と酸化
チタンの混合粉末であることが確認された。
When the atomic bonding state of this powder was measured, no -Zn-〇-Ti4 bond was observed, and it was confirmed that the powder was simply a mixed powder of zinc oxide and titanium oxide.

分光i3過率を測定した結果を第5図に示す。The results of measuring the spectral i3 pass rate are shown in FIG.

比較例3 和光純薬工業製工業用酸化チタン粉末9.24g及び同
酸化アルミニウム粉末23.6及び山田薬品製工業用酸
化亜鉛粉末94.1gをボールミルで6時間粉砕混合し
た後、温度約850℃、1時間焼成した。
Comparative Example 3 After pulverizing and mixing 9.24 g of industrial titanium oxide powder manufactured by Wako Pure Chemical Industries, Ltd. and 23.6 g of the same aluminum oxide powder and 94.1 g of industrial zinc oxide powder manufactured by Yamada Pharmaceutical Co., Ltd. for 6 hours in a ball mill, the temperature was about 850°C. , baked for 1 hour.

得られた粉末のZ n / Aβ/Ti原子比は100
/40/10で、平均粒径は約0.2pm以下であった
The Zn/Aβ/Ti atomic ratio of the obtained powder was 100
/40/10, and the average particle size was about 0.2 pm or less.

この粉末の原子結合状態を測定したところ、−)Ti 
−0−Zn−0−Aj!<結合は認められず単なる酸化
亜鉛、酸化アルミニウム及び酸化チタンの混合粉末であ
ることが確認された。
When the atomic bonding state of this powder was measured, it was found that -)Ti
-0-Zn-0-Aj! <No bond was observed, and it was confirmed that the powder was simply a mixed powder of zinc oxide, aluminum oxide, and titanium oxide.

分光透過率を測定した結果を第5図に示す。The results of measuring the spectral transmittance are shown in FIG.

比較例4 日本べんから工業製酸化鉄粉末32.9g及び山田薬品
製工業用酸化亜鉛67.1gをボールミルで6時間粉砕
混合した後、温度約600℃、1時間焼成した。
Comparative Example 4 32.9 g of iron oxide powder manufactured by Nippon Benkara Kogyo and 67.1 g of industrial zinc oxide manufactured by Yamada Pharmaceutical were pulverized and mixed in a ball mill for 6 hours, and then fired at a temperature of about 600° C. for 1 hour.

得られた粉末のZ n / F e原子比は100/5
0で平均粒径は約0.2μmであった。
The Zn/Fe atomic ratio of the obtained powder was 100/5
0 and the average particle size was about 0.2 μm.

この粉末の原子結合状態を測定したところ、−Zn−0
−Fe<結合は認められず、酸化亜鉛と酸化鉄の単なる
混合粉末であることが確認された。
When the atomic bonding state of this powder was measured, it was found that -Zn-0
-Fe< bond was not observed, and it was confirmed that the powder was simply a mixed powder of zinc oxide and iron oxide.

分光透過率の測定結果を第5図に示す。The measurement results of the spectral transmittance are shown in FIG.

比較例5 和光純薬製酸化セリウム0.022g及び山田薬品製工
業用酸化亜鉛102gをボールミルで6時間粉砕混合し
た後、温度約600℃、1時間焼成した。
Comparative Example 5 0.022 g of cerium oxide manufactured by Wako Pure Chemical Industries, Ltd. and 102 g of industrial zinc oxide manufactured by Yamada Pharmaceutical were pulverized and mixed in a ball mill for 6 hours, and then baked at a temperature of about 600° C. for 1 hour.

得られた粉末のZ n / Ce原子比は10010.
01で平均粒径は約0.2μmであった。
The Z n /Ce atomic ratio of the obtained powder was 10010.
01, the average particle size was about 0.2 μm.

分光透過率の測定結果を第5図に示す。The measurement results of the spectral transmittance are shown in FIG.

比較例6 日本ぺんから工業製酸化鉄粉末1g、和光純薬製酸化ア
ルミニウム6.37g及び山田薬品製工業用酸化亜鉛粉
末102gをボールミルで6時間粉砕混合した後、温度
約600℃、1時間焼成した。
Comparative Example 6 1 g of iron oxide powder manufactured by Nippon Penkara, 6.37 g of aluminum oxide manufactured by Wako Pure Chemical Industries, and 102 g of industrial zinc oxide powder manufactured by Yamada Pharmaceutical were ground and mixed in a ball mill for 6 hours, and then baked at a temperature of about 600°C for 1 hour. did.

得られた粉末のZ n / A!/ F e原子比はI
Q O/l G/lで、平均粒径は約0.2pmであっ
た。
Zn/A! of the obtained powder! / Fe atomic ratio is I
Q O/l G/l, and the average particle size was approximately 0.2 pm.

分光透過率の測定結果を第5図に示す。The measurement results of the spectral transmittance are shown in FIG.

比較例7,8,9,10.1).12 比較例1〜6で使用された市pFi酸化アルミニウム、
酸化亜鉛、同酸化チタン、日本べんがら工業製酸化鉄、
デグッサ製超微粒子酸化チタン及び酸化セリウムの各粉
末の分光透過率を測定した結果を第5図に示す。
Comparative Examples 7, 8, 9, 10.1). 12 City pFi aluminum oxide used in Comparative Examples 1 to 6,
Zinc oxide, titanium oxide, iron oxide manufactured by Nippon Bengara Industries,
The results of measuring the spectral transmittance of each powder of ultrafine titanium oxide and cerium oxide manufactured by Degussa are shown in FIG.

本比較例で使用した各酸化物の粒度を第1表に示す。Table 1 shows the particle size of each oxide used in this comparative example.

第1表 比較例13 実施例1のエタノール1200m1に代えて、水120
0rr+lを用いた以外は同様に加水分解を行い続いて
乾燥、焼成を行った。
Table 1 Comparative Example 13 Instead of 1200ml of ethanol in Example 1, 120ml of water
Hydrolysis was carried out in the same manner except that 0rr+l was used, followed by drying and firing.

その結果、平均粒径約1μmの粉末98.2gを得た。As a result, 98.2 g of powder with an average particle size of about 1 μm was obtained.

この製品粉末の組成はZ n / Aβ原子比が100
/10であった。
The composition of this product powder is that the Zn/Aβ atomic ratio is 100.
/10.

この粉末の原子結合状態を測定したところ、−Zn−0
−AJ<結合(特性吸収650 Cm−1)が認められ
た。
When the atomic bonding state of this powder was measured, it was found that -Zn-0
-AJ<bonding (characteristic absorption 650 Cm-1) was observed.

分光透過率を測定した結果を第5図に示す。The results of measuring the spectral transmittance are shown in FIG.

尚、得られた微粒子複合酸化物及び比較例で用、いた原
料酸化物粉末の触媒活性を調べた結果、デグフサ製超微
粒子酸化チタンのみが触媒活性が高く、フィルム化は困
難でたんざ(状になったが、他は特に触媒活性能は認め
られなかった。
In addition, as a result of examining the catalytic activity of the obtained fine particle composite oxide and the raw material oxide powder used in the comparative example, only the ultrafine particle titanium oxide made by Degufusa had a high catalytic activity, and it was difficult to form into a film. However, no particular catalytic activity was observed in the others.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、実施例1〜30で得られた複合金属酸化
物粉末の紫外線〜可視光線域における分光透過率曲線図
であり、図中の数字は実施例番号に対応する。 第5図は、比較例1〜6で得られた金属酸化物粉末、比
較例13で得られた複合金屈酸化物粉末及び比較例1〜
6で扱った原料金属酸化物粉末の紫外線−可視光線域に
おける分光透過率曲線図であり、図中の数字は比較例番
号に対応する。 第1図 波長(nm) 波長(n ml 波長(n m)
1 to 4 are spectral transmittance curves in the ultraviolet to visible light range of the composite metal oxide powders obtained in Examples 1 to 30, and the numbers in the figures correspond to the example numbers. Figure 5 shows the metal oxide powders obtained in Comparative Examples 1 to 6, the composite metal oxide powders obtained in Comparative Example 13, and the composite metal oxide powders obtained in Comparative Examples 1 to 6.
6 is a spectral transmittance curve diagram in the ultraviolet-visible light range of the raw metal oxide powder treated in Section 6, and the numbers in the figure correspond to comparative example numbers. Figure 1 Wavelength (nm) Wavelength (n ml Wavelength (n m)

Claims (1)

【特許請求の範囲】[Claims] (1)平均粒子径が0.001μm〜0.5μmである
、アルミニウム、鉄、クロム、セリウム、ジルコニウム
、及びチタンから選ばれた1種以上の金属と亜鉛との複
合酸化物から成る紫外線遮蔽剤。
(1) Ultraviolet screening agent made of a composite oxide of zinc and one or more metals selected from aluminum, iron, chromium, cerium, zirconium, and titanium, with an average particle size of 0.001 μm to 0.5 μm. .
JP15000886A 1986-01-23 1986-06-26 Ultraviolet screening agent Pending JPS62275182A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-12866 1986-01-23
JP1286686 1986-01-23

Publications (1)

Publication Number Publication Date
JPS62275182A true JPS62275182A (en) 1987-11-30

Family

ID=11817332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15000886A Pending JPS62275182A (en) 1986-01-23 1986-06-26 Ultraviolet screening agent

Country Status (1)

Country Link
JP (1) JPS62275182A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424055A (en) * 1992-03-23 1995-06-13 Mitsui Mining & Smelting Co., Ltd. Ultraviolet screening composited oxide and process for producing the same
WO2004052786A1 (en) * 2002-12-09 2004-06-24 Tayca Corporation Titanium oxide particles having useful properties and method for production thereof
DE10259860A1 (en) * 2002-12-20 2004-07-08 Degussa Ag Powder mixture consisting of titanium dioxide, zinc oxide and zinc-titanium mixed oxide
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
JP2005162695A (en) * 2003-12-04 2005-06-23 Lion Corp Infrared ray-shielding substance-containing cosmetic
JP2005263612A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use
JP2005263620A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use
WO2005076752A3 (en) * 2004-02-18 2005-10-06 Nippon Catalytic Chem Ind Metal oxide particle and its uses
JP2006188386A (en) * 2005-01-05 2006-07-20 Nippon Shokubai Co Ltd Particulate metal oxide and use of the same
JP2007031216A (en) * 2005-07-27 2007-02-08 Nippon Shokubai Co Ltd Metal oxide particle, and its use
WO2015098945A1 (en) 2013-12-24 2015-07-02 堺化学工業株式会社 Cerium-oxide-coated zinc oxide particles, method for producing same, ultraviolet ray shielding agent, and cosmetic
WO2015098992A1 (en) 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
WO2015098993A1 (en) 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
WO2019225491A1 (en) 2018-05-23 2019-11-28 株式会社コーセー Novel titanium oxide powder and cosmetic formulated therewith
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424055A (en) * 1992-03-23 1995-06-13 Mitsui Mining & Smelting Co., Ltd. Ultraviolet screening composited oxide and process for producing the same
JP4546834B2 (en) * 2002-12-09 2010-09-22 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same
WO2004052786A1 (en) * 2002-12-09 2004-06-24 Tayca Corporation Titanium oxide particles having useful properties and method for production thereof
JPWO2004052786A1 (en) * 2002-12-09 2006-04-13 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same
DE10259860A1 (en) * 2002-12-20 2004-07-08 Degussa Ag Powder mixture consisting of titanium dioxide, zinc oxide and zinc-titanium mixed oxide
WO2004058645A1 (en) * 2002-12-25 2004-07-15 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
US7378152B2 (en) 2002-12-25 2008-05-27 Cf High Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconducitve composition
JP2005162695A (en) * 2003-12-04 2005-06-23 Lion Corp Infrared ray-shielding substance-containing cosmetic
JP2005263612A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use
JP2005263620A (en) * 2004-02-18 2005-09-29 Nippon Shokubai Co Ltd Metal oxide particle and its use
WO2005076752A3 (en) * 2004-02-18 2005-10-06 Nippon Catalytic Chem Ind Metal oxide particle and its uses
JP2006188386A (en) * 2005-01-05 2006-07-20 Nippon Shokubai Co Ltd Particulate metal oxide and use of the same
JP2007031216A (en) * 2005-07-27 2007-02-08 Nippon Shokubai Co Ltd Metal oxide particle, and its use
WO2015098945A1 (en) 2013-12-24 2015-07-02 堺化学工業株式会社 Cerium-oxide-coated zinc oxide particles, method for producing same, ultraviolet ray shielding agent, and cosmetic
WO2015098992A1 (en) 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
WO2015098993A1 (en) 2013-12-27 2015-07-02 堺化学工業株式会社 Zinc oxide particles, production method for same, ultraviolet ray shielding agent, and cosmetic material
US9775787B2 (en) 2013-12-27 2017-10-03 Sakai Chemical Industry Co., Ltd. Zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
US9789037B2 (en) 2013-12-27 2017-10-17 Sakai Chemical Industry Co., Ltd. Zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same
WO2019225491A1 (en) 2018-05-23 2019-11-28 株式会社コーセー Novel titanium oxide powder and cosmetic formulated therewith
KR20210012999A (en) 2018-05-23 2021-02-03 가부시키가이샤 코세 New titanium oxide powder and cosmetics containing the same

Similar Documents

Publication Publication Date Title
JPS62275182A (en) Ultraviolet screening agent
EP0268938B1 (en) A lamina and a cosmetic comprising the same
CN100441511C (en) Layered titanic acid, lamellar titanic acid, lamellar titanium oxide and method for producing lamellar titanic acid
US5776239A (en) Hydrothermal process for making ultafine metal oxide powders
JPH09272815A (en) Composite metal oxide fine particle and production of the same
KR100443451B1 (en) Hollow fine powder, flaky thin titanium oxide powder prepared by pulverizing said hollow fine powder and process for preparing the both
US20050126338A1 (en) Zinc comprising nanoparticles and related nanotechnology
US5973175A (en) Hydrothermal process for making ultrafine metal oxide powders
JP2000034124A (en) Production of monodisperse powder of crystalline titanium oxide fine particle
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
Wattanawikkam et al. X-ray absorption spectroscopy analysis and photocatalytic behavior of ZnTiO3 nanoparticles doped with Co and Mn synthesized by sonochemical method
JP2008001774A (en) Ultraviolet light absorber and its use
JPH09188517A (en) Iron-containing superfine zinc oxide, its production and use
Priyanka et al. Multifunctional CeO2 nanomaterials: wet chemical synthesis, characterization, and NIR pigmentation applications
JPS62275025A (en) Production of composite oxide
JP3848458B2 (en) Method for producing UV blocker
US20120164561A1 (en) Zinc Comprising Nanoparticles And Related Nanotechnology
CN107683257A (en) The composite of nanocrystal is absorbed containing UV
JP3398640B2 (en) Manufacturing method of oriented flake zinc oxide
JP2972881B1 (en) Method for producing titanium dioxide
El-Toni et al. Synthesis and silica coating of calcia-doped ceria/mica nanocomposite by seeded polymerization technique
JP2003221230A (en) Ceramic dispersion and its production method
JP2010168254A (en) Ultraviolet screening agent, cosmetic, and micro-acicular zinc oxide
JPH05502011A (en) Method for producing activated zinc oxide powder and obtained powder
JPWO2004062799A1 (en) Composite particles and their production methods and applications