JPS62275089A - Method for growing crystal - Google Patents

Method for growing crystal

Info

Publication number
JPS62275089A
JPS62275089A JP11776086A JP11776086A JPS62275089A JP S62275089 A JPS62275089 A JP S62275089A JP 11776086 A JP11776086 A JP 11776086A JP 11776086 A JP11776086 A JP 11776086A JP S62275089 A JPS62275089 A JP S62275089A
Authority
JP
Japan
Prior art keywords
crystal
magnetic field
interface
oxygen
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11776086A
Other languages
Japanese (ja)
Inventor
Katsu Kanamori
金森 克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11776086A priority Critical patent/JPS62275089A/en
Publication of JPS62275089A publication Critical patent/JPS62275089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce ununiformity in the quality of a crystal and to control the amount of sol. oxygen in the crystal by forming a magnetic field only in the vicinity of the interface between molten silicon and single-crystalline silicon during pulling so as to inhibit the disorder of the interface. CONSTITUTION:A quarts crucible 3 contg. molten silicon 2 is put in a growth vessel 6 and an electromagnet 4 is placed on the outside of the vessel 6 so that the pole piece 5 is positioned at the height of the surface of the molten silicon 2. An intense magnetic field of >=about 1,000G is formed only in the vicinity of the interface between solid and liq. with the pole piece 5 and a single crystal 1 is pulled up. The crystal 1 and the quartz crucible 3 are rotated at a low speed during pulling. By this method, the rate of change or resistance in the surface of a water is reduced to <=about 1/10 of the conventional rate and the amount of sol. oxygen in the crystal 1 can be regulated to 2X10<18>-1X10<17>cm<-3>.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、半導体集積回路製造のためのシリコン基板と
して用いられる単結晶シリコンの結晶成長法に関し、特
に、成長中に磁場を用いる単結晶引上げ法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a crystal growth method for single crystal silicon used as a silicon substrate for manufacturing semiconductor integrated circuits, and in particular, to This paper concerns a single crystal pulling method using a magnetic field.

〔従来の技術〕[Conventional technology]

従来のチョクラルスキ法による単結晶シリコンの結晶成
長法は、熔融シリコン(以下メルトと略称)を保持した
石英ルツボと、引上げられた単結晶シリコンとを回転さ
せながら結晶成長を行なっている。従って、メルトの著
るしい熱対流を避ける事ができず、これに起因する結晶
品質の不均一性が生じる。このため不均一性低減を目的
として、磁場をメルトに対し、液面垂直方向または平行
方向に印加する方法が用いられている。
In the conventional Czochralski method for growing single crystal silicon, crystal growth is performed while rotating a quartz crucible holding molten silicon (hereinafter referred to as melt) and pulled single crystal silicon. Therefore, significant heat convection in the melt cannot be avoided, resulting in non-uniform crystal quality. Therefore, for the purpose of reducing non-uniformity, a method is used in which a magnetic field is applied to the melt in a direction perpendicular or parallel to the liquid surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の結晶成長法は、磁場をメルト全体に対し
、液面垂直方向または平行方向に加えるため、磁場の対
流防止効果を充分に発揮させる条件下では、石英ルツボ
からの酸素の混入量も著るしく減少し、結晶への固溶酸
素量を任意に制御する事ができないという欠点がある。
In the conventional crystal growth method described above, a magnetic field is applied to the entire melt in a direction perpendicular or parallel to the liquid surface. Therefore, under conditions where the magnetic field's convection prevention effect is fully exerted, the amount of oxygen mixed in from the quartz crucible can be reduced. There is a drawback that the amount of solid dissolved oxygen in the crystal cannot be controlled arbitrarily.

本発明の目的は、熱対流に起因する結晶品質の不均一性
を低減し、かつ、結晶中の固溶酸素量を制御できる結晶
成長法を提供することにある。
An object of the present invention is to provide a crystal growth method that can reduce non-uniformity in crystal quality caused by thermal convection and control the amount of dissolved oxygen in the crystal.

上述した従来の磁場中の結晶成長法に対し、本発明は、
磁場の効果を固液界面に限定し、その他の部分について
は充分な酸素のメルト中への同溶を可能にし、結晶の機
械的強度向上と、品質の均一性とを共に実現させる独創
的内容を有する。
In contrast to the conventional crystal growth method in a magnetic field described above, the present invention
Unique content that limits the effect of the magnetic field to the solid-liquid interface and allows sufficient oxygen to be dissolved into the melt in other areas, improving the mechanical strength of the crystal and achieving uniform quality. has.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の結晶成長法は、チョクラルスキ法による単結晶
シリコンの結晶成長法において、石英ルツボの中に保持
された熔融シリコンと引上げ単結晶シリコンとの界面近
傍にのみ磁場を形成する事を特徴とする。
The crystal growth method of the present invention is a single crystal silicon crystal growth method using the Czochralski method, and is characterized by forming a magnetic field only near the interface between molten silicon held in a quartz crucible and pulled single crystal silicon. .

引上げ結晶の不均一性、あるいは酸素起因欠陥発生の一
因は引上げ時の固液界面の乱れにある事はよく知られて
おシ、ルツボ回転数等の条件設定が品質確保上重要なパ
ラメータである。一方、磁場をメルトに加える従来の方
法は、固液酸素量を著るしく減少させ、ウェーハの機械
的強度を低下させてしまう。
It is well known that one of the causes of non-uniformity in pulled crystals or the occurrence of oxygen-induced defects is the disturbance of the solid-liquid interface during pulling, and the setting of conditions such as crucible rotation speed is an important parameter for ensuring quality. be. On the other hand, conventional methods of applying a magnetic field to the melt significantly reduce the amount of solid and liquid oxygen, reducing the mechanical strength of the wafer.

本発明は、固溶酸素量を低下させずに固液界面を安定化
させる方法について種々検討した結果、磁場を固液界面
近傍にのみ形成する事が有効であるという事実に基づい
てなされたものである。
The present invention was made based on the fact that it is effective to form a magnetic field only near the solid-liquid interface, as a result of various studies on methods of stabilizing the solid-liquid interface without reducing the amount of dissolved oxygen. It is.

本発明によれば、任意の固溶酸素量で、かつ、均一性の
著るしく向上したシリコン単結晶が得られる。磁場の方
向性についての限定は無く、固液界面近傍に強い磁場の
出来る条件であれば良いが、加熱ヒータの振動の問題か
ら、直流磁場である事が必要でめる。
According to the present invention, a silicon single crystal with an arbitrary amount of dissolved oxygen and significantly improved uniformity can be obtained. There is no limitation on the directionality of the magnetic field, and any condition that allows a strong magnetic field near the solid-liquid interface may be used, but due to the problem of vibration of the heater, a DC magnetic field is required.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の構成を示す図である。FIG. 1 is a diagram showing the configuration of a first embodiment of the present invention.

引上げ単結晶シリコン1が引き上げられる熔融シリコン
2が入った石英ルツボ3が成長容器6の内に入っておシ
、成長容器6の外側に電磁石4のポールピース5が熔融
シリコン2の液面の高さに位置するように設けられてい
る。この構成は横磁場方式の実施例であυ、特殊な形の
ポールピース5によって、固液界面近傍にのみ強い磁場
を形成した。磁場は1000ガウス以上必要である。
A quartz crucible 3 containing molten silicon 2 from which pulled single crystal silicon 1 is pulled is placed inside a growth container 6, and a pole piece 5 of an electromagnet 4 is placed on the outside of the growth container 6 to keep the liquid level of the molten silicon 2 high. It is set up so that it is located in the right direction. This configuration is an example of a transverse magnetic field system, and a strong magnetic field is formed only near the solid-liquid interface by means of a specially shaped pole piece 5. A magnetic field of 1000 Gauss or more is required.

従来の引上法と同様に単結晶1及び石英ルツボ3を低速
回転させて結晶を引上げた。このようにして成長させた
単結晶シリコンをウェーハにスライスし、抵抗率を測定
したところ、ウェーハ面内での抵抗率変動は、従来法の
1/10以下となった。
Similar to the conventional pulling method, the single crystal 1 and the quartz crucible 3 were rotated at low speed to pull the crystal. When the single crystal silicon thus grown was sliced into wafers and the resistivity was measured, the variation in resistivity within the wafer plane was less than 1/10 of the conventional method.

また、固溶酸素量は2 X 10” −I X 10”
art−”の間に制御されており、いずれの固溶量の場
合でも、抵抗率変動は、従来法の1/10以下であった
Also, the amount of solid dissolved oxygen is 2 X 10" - I X 10"
art-'', and for any solid solution amount, the resistivity fluctuation was 1/10 or less of that of the conventional method.

第2図は、本発明の第2の実施例の構成を示す図である
。第1図と同じものは同一記号で示す。
FIG. 2 is a diagram showing the configuration of a second embodiment of the present invention. Components that are the same as in FIG. 1 are indicated by the same symbols.

第2図は第1図のポールピースを有する電磁石の代9に
、空芯コイル7を用いている。この構成にタテ磁場方式
の実施例であ)、狭い領域に磁場を形成するだめの空心
コイルによって固液界面近傍にのみ強い磁場を形成した
。磁場は実施例1と同程度の1000ガウス以上を必要
とし、単結晶1及び石英ルツボ3を低速回転させて結晶
を引き上げた。本実施例によっても前述の第1の実施例
と同等の効果が得られた。
In FIG. 2, an air core coil 7 is used in place of the electromagnet 9 having the pole piece shown in FIG. This configuration is an example of a vertical magnetic field system), and a strong magnetic field was created only near the solid-liquid interface by an air-core coil that was used to create a magnetic field in a narrow region. The magnetic field required 1000 Gauss or more, which is the same as in Example 1, and the single crystal 1 and quartz crucible 3 were rotated at low speed to pull the crystal. This example also provided the same effects as the first example described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、固液界面近傍にのみ磁場
を形成し、界面の乱れを抑制する事により、添加不純物
分布の不均一性を著るしく低減させる事ができる効果が
ある。また、石英ルツボから固溶する酸素量を広い範囲
で制御可能であり、さらに、界面の乱れに起因するデバ
イス動作上不都合な酸素析出と欠陥を低減させる事も出
来るという効果がある。
As explained above, the present invention has the effect of significantly reducing the non-uniformity of the added impurity distribution by forming a magnetic field only near the solid-liquid interface and suppressing disturbances at the interface. Further, the amount of oxygen dissolved in solid solution from the quartz crucible can be controlled within a wide range, and furthermore, it is possible to reduce oxygen precipitation and defects that are inconvenient for device operation due to disturbance at the interface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成図、第2図は本発
明の第2の実施例の構成図を示す。 1・・・・・・引上げ単結晶シリコン、2・・・・・・
熔融シリコン、3・・・・・・石英ルツボ、4・・・・
・・電磁石、5・・・・・・ポールピース、6・−・・
・・成長容器、7・・・・・・空芯コイル0 代理人 弁理士  内 原   fl −目
FIG. 1 is a block diagram of a first embodiment of the present invention, and FIG. 2 is a block diagram of a second embodiment of the present invention. 1... Pulled single crystal silicon, 2...
Molten silicon, 3... Quartz crucible, 4...
...Electromagnet, 5...Pole piece, 6...
... Growth container, 7 ... Air core coil 0 Agent Patent attorney Uchihara fl - eyes

Claims (1)

【特許請求の範囲】[Claims] チョクラルスキ法による単結晶シリコンの結晶成長法に
おいて、石英ルツボの中に保持された熔融シリコンと引
上げ単結晶シリコンとの界面近傍にのみ磁場を形成する
事を特徴とする結晶成長法。
A crystal growth method for single crystal silicon using the Czochralski method, which is characterized by forming a magnetic field only near the interface between molten silicon held in a quartz crucible and pulled single crystal silicon.
JP11776086A 1986-05-21 1986-05-21 Method for growing crystal Pending JPS62275089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11776086A JPS62275089A (en) 1986-05-21 1986-05-21 Method for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11776086A JPS62275089A (en) 1986-05-21 1986-05-21 Method for growing crystal

Publications (1)

Publication Number Publication Date
JPS62275089A true JPS62275089A (en) 1987-11-30

Family

ID=14719644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11776086A Pending JPS62275089A (en) 1986-05-21 1986-05-21 Method for growing crystal

Country Status (1)

Country Link
JP (1) JPS62275089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems

Similar Documents

Publication Publication Date Title
EP1831436B1 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
US6156119A (en) Silicon single crystal and method for producing the same
JPH0212920B2 (en)
JP2688137B2 (en) Method of pulling silicon single crystal
JPS61222984A (en) Unit for single crystal production
JPS5850953B2 (en) crystal growth method
JPS6033291A (en) Preparation of single crystal silicon
KR100271504B1 (en) Method of growing silicon monocrystal and apparatus for growing silicon monocrystal
JPH01282185A (en) Method for growing crystal
JPS62275089A (en) Method for growing crystal
JP2004189559A (en) Single crystal growth method
KR101674822B1 (en) Single crystal ingot growing apparatus and the growth method by it
Blank et al. Single Crystal Growth of Yttrium Orthoferrite by a Seeded Bridgman Technique
JPS6259598A (en) Indium phosphide single crystal and production thereof
JP2001089289A (en) Method of pulling single crystal
JPS6360189A (en) Production of semiconductor single crystal
JPS6317289A (en) Production of semiconductor single crystal
JPH03137090A (en) Pulling-up method for silicon single crystal
JP2001019592A (en) Device for pulling single crystal
JP2592244B2 (en) Equipment for growing uniform crystals
JPS6236097A (en) Production of single crystal and device therefor
JPS61222985A (en) Production unit for single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
KR20050062128A (en) A method of producing silicon ingot by moving magnet