JPS6227458A - Electrically conductive sliding material composition - Google Patents

Electrically conductive sliding material composition

Info

Publication number
JPS6227458A
JPS6227458A JP16635785A JP16635785A JPS6227458A JP S6227458 A JPS6227458 A JP S6227458A JP 16635785 A JP16635785 A JP 16635785A JP 16635785 A JP16635785 A JP 16635785A JP S6227458 A JPS6227458 A JP S6227458A
Authority
JP
Japan
Prior art keywords
nickel
vol
carbon fiber
volume
polyphenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16635785A
Other languages
Japanese (ja)
Other versions
JPH0561305B2 (en
Inventor
Masaki Egami
正樹 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUBEA LE-RON KOGYO KK
Original Assignee
YOUBEA LE-RON KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUBEA LE-RON KOGYO KK filed Critical YOUBEA LE-RON KOGYO KK
Priority to JP16635785A priority Critical patent/JPS6227458A/en
Publication of JPS6227458A publication Critical patent/JPS6227458A/en
Publication of JPH0561305B2 publication Critical patent/JPH0561305B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled compsn. having a low coefficient of friction, a low volume resistivity, excellent wear resistance and moldability and suitable for use as a material for a bearing of a heated roll and a base of a bush bearing, by adding a mixture of a nickel-coated material and carbon fiber to a polyphenylene sulfide. CONSTITUTION:30-140pts.vol. mixture of 15-80pts.vol. nickel-coated material obtd. by plating the surface of a lubricating powder or bifer such as mica, graphite, molybdenum sulfide or arom. polyamide with nickel to impart electrical conductivity to the surface and 80-20pts.vol. carbon fiber having a diameter of 20mu or below and a length of 6mm or below is blended with 100pts.vol. polyphenylene sulfide of formula I, wherein ph is a group of formula II-VII (wherein Q is F, Cl, Br or CH3 and m is 1-4).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、摩擦係数が小さく、耐摩耗性が優れ、同時
に体積抵抗率が小さいことを目的とする導電性摺動材組
成物に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive sliding material composition that has a small coefficient of friction, excellent wear resistance, and a low volume resistivity. be.

〔従来の技術〕[Conventional technology]

近年、電子機器、電気機器の小型化または軽量化に伴っ
て、それらの部品に合成樹脂が盛んに利用されるように
なって来た。そして、特に摺動特性と導電性とを兼備し
た摺動材料のプラスチック化が強く要望されるようにな
り、合成樹脂を基材とし、これに耐摩耗性の向上と導電
性の付与とを目的として、黒鉛、導電性カーボン、金属
粉、金属繊維などの充填材を添加した材料が開発された
In recent years, as electronic devices and electrical devices have become smaller and lighter, synthetic resins have come to be widely used for their parts. In particular, there was a strong demand for plastic sliding materials that had both sliding properties and electrical conductivity, and the aim was to use synthetic resin as a base material to improve wear resistance and impart electrical conductivity. As a result, materials containing fillers such as graphite, conductive carbon, metal powder, and metal fibers have been developed.

しかし、黒鉛、導電性カーボンを添加した材料では体積
抵抗率は10〜10Ω・cm  程度得られるが、ポリ
フェニレンサルファイド等に添加したときは耐摩耗性が
著しく悪い。また、金属粉を添加するときは、金、銀、
銅、アルミニウム、ニッケル等の粉末が用いられるが、
金および銀は化学的に安定でしかも高導電性のものでは
あるがきわめて高価であり、したがって、これらの代替
品として使用される銅、アルミニウムは成形加工する際
に酸化されやすく、得られる製品の導電性は不安定とな
って導電性付与材には適しない。さらにニッケル粉は化
学的にも比較的安定で、合成樹脂に添加して得られる製
品の導電性および安定性は共に良好ではあるものの、耐
摩耗性は著しく悪い。また、金属繊維には黄銅ファイバ
ー、アルミニウムファイバーなどがあるが、これらはい
ずれも前記の粉末状のものと同様に酸化されやすく、通
常の市販品の多くは径60μm、長さ3 mmと寸法が
大きく、摺動材料用の充填材にこのような大型繊維を使
用したときは、材料面より端が突出して相手材表面を損
傷することもあることから、決して望ましいものとは言
えない。その結果、この発明者は、潤滑性のある材料を
金属で被覆し、これを合成樹脂に可能な限り多量に充填
し、その特性の確認を試みたが、期待される導電性のも
のは得られず、またポリオレフィンまたは射出成形可能
なフッ素樹脂にニッケル粉末もしくはニッケル被覆材と
炭素繊維とを組み合わせて添加した組成物を開発した(
たとえば特願昭60−11361号、同一11360号
)が、これら組成物は優れた摺動特性と良好な導電性を
有してはいるものの、射出成形可能なフッ素樹脂は生産
価格が高く事務機器などに使用するには経済的不利を免
れず、またポリオレフィンは安価であっても耐熱温度が
低く使用環境が限られることから、いずれも市場の要求
に充分適応出来るものとは言えない。
However, when graphite or conductive carbon is added to a material, a volume resistivity of about 10 to 10 Ω·cm can be obtained, but when added to polyphenylene sulfide or the like, wear resistance is extremely poor. Also, when adding metal powder, gold, silver,
Powders of copper, aluminum, nickel, etc. are used, but
Although gold and silver are chemically stable and highly conductive, they are extremely expensive, and copper and aluminum, which are used as substitutes for them, are easily oxidized during molding, resulting in poor quality of the resulting product. The conductivity becomes unstable and it is not suitable as a conductivity imparting material. Furthermore, nickel powder is chemically relatively stable, and although products obtained by adding it to synthetic resins have good conductivity and stability, their wear resistance is extremely poor. In addition, metal fibers include brass fibers and aluminum fibers, but these are all easily oxidized like the powdered ones mentioned above, and most commercially available products have dimensions of 60 μm in diameter and 3 mm in length. When such large fibers are used as fillers for sliding materials, their ends protrude beyond the surface of the material and may damage the surface of the mating material, which is by no means desirable. As a result, the inventor tried to confirm the properties of a lubricating material by coating it with metal and filling it into a synthetic resin as much as possible, but he was unable to find the expected electrical conductivity. We have also developed a composition in which a combination of nickel powder or nickel coating and carbon fiber is added to polyolefin or injection moldable fluororesin (
For example, Japanese Patent Application Nos. 60-11361 and 11360) found that although these compositions have excellent sliding properties and good conductivity, injection moldable fluororesins are expensive to produce and are used in office equipment. However, even if polyolefins are inexpensive, they have low heat resistance and are limited in the environment in which they can be used. Therefore, it cannot be said that any of them can be fully adapted to the demands of the market.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来の導電性摺動材組成物には摩擦係数が小
さく、耐摩耗性および導電性が共に優れていて、しかも
耐用範囲が広く安価であるという諸条件を満足するもの
がないと言う解決すべき問題点があった。
In this way, there is no conventional conductive sliding material composition that satisfies the following conditions: a low coefficient of friction, excellent wear resistance and conductivity, and a wide range of service life and low cost. There were problems that needed to be resolved.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために、この発明はポリフェニ
レンサルファイド100容量部に対してニッケル被覆材
と炭素繊維との容量比が15 : 80から80:20
の範囲にある混合物30〜140容量部を添加した組成
物とする手段を採用したものである。以下その詳細を述
べる。
In order to solve the above problems, the present invention provides a method in which the volume ratio of the nickel coating material and the carbon fiber to 100 parts by volume of polyphenylene sulfide is 15:80 to 80:20.
A method is adopted in which 30 to 140 parts by volume of a mixture in the range of 30 to 140 parts by volume are added. The details will be described below.

まず、この発明におけるポリフェニレンサルファイド(
以下PPSと略記する)は、つぎの一般式 %式%] で表わされる合成樹脂である。ここで、−ph−はCH
3 などである。QはF、CI、BrのハロゲンまたはCH
3であり、mは1〜4の整数を示す。これらのうち、特
に典型的なものは で示されるものであり、米国フィリップス・ペトローリ
アム社から「ライドン」の商標で市販されている。その
製造方法は米国特許第3,354,129号(対応特許
特公昭45−3368号)に開示されていて、それによ
るとライドンはN−メチルピロリドン溶媒中、160〜
250℃、加圧条件下にP−ジクロルベンゼンと二硫化
ソーダとを反応させることによって製造され、樹脂中に
交叉結合が全くないものから部分的交叉結合を有するも
のに至るまで各種重合度のものを後熱処理工程にかける
ことによって自由に製造することができるので、目的の
溶融ブレンドに適正な溶融粘度特性を有するものを任意
に選択使用することが可能である。
First, polyphenylene sulfide (
(hereinafter abbreviated as PPS) is a synthetic resin represented by the following general formula %. Here, -ph- is CH
3 etc. Q is F, CI, Br halogen or CH
3, and m represents an integer of 1 to 4. Among these, a particularly typical one is shown by , which is commercially available from Phillips Petroleum Company of the United States under the trademark "Rydon." Its manufacturing method is disclosed in U.S. Pat.
It is produced by reacting P-dichlorobenzene and sodium disulfide under pressure at 250℃, and the resin has various degrees of polymerization, ranging from no cross-linking to partial cross-linking. Since a material can be freely manufactured by subjecting it to a post-heat treatment process, it is possible to arbitrarily select and use a material having appropriate melt viscosity characteristics for the desired melt blend.

また、この発明におけるニッケル被覆材は、たとえば雲
母、黒鉛、石墨、硫化モリブデン、芳香族ポリアミド等
のような潤滑性のある粉末もしくは繊維の表面を電気的
もしくは化学的にニッケルめっきして、表面に導電性を
付与したものである。
Further, the nickel-coated material in this invention is obtained by electrically or chemically nickel-plating the surface of lubricating powder or fiber such as mica, graphite, graphite, molybdenum sulfide, aromatic polyamide, etc. It has electrical conductivity.

さらに、この発明における炭素繊維は耐摩耗性、耐クリ
ープ性を向上させるという役割を果すが、ニッケル被覆
材を分散させたとき、これらが相互に接触して全体の導
電性を満遍なく高めようとする目的に使用されるもので
あるから、炭素繊維自身に良好な導電性が必要であるこ
とは勿論である。
Furthermore, the carbon fibers in this invention play the role of improving wear resistance and creep resistance, but when the nickel coating material is dispersed, they come into contact with each other and try to uniformly increase the overall conductivity. Since the carbon fiber is used for this purpose, it goes without saying that the carbon fiber itself must have good electrical conductivity.

したがって、より高度の導電性が要求されるようなとき
は、たとえばニッケルなどの金属を被覆した炭素繊維(
たとえば東邦ベスロン社製: HTCF/Ni)などを
使用すればよい。いずれにしても、このような炭素繊維
はこの発明の組成物の混合、成形等の容易さおよび成形
面からの突出等の点から、径は20μm以下、好ましく
は6〜15μm、長さは6mm以下、好ましくは010
2〜3.0mmのものが望ましく、一般的には東し社製
;トレカMLDまたは奥羽化学工業社製:クレノ\カー
ボンファイバーなどの市販品を例示することができる。
Therefore, when a higher degree of conductivity is required, for example, carbon fiber coated with a metal such as nickel (
For example, HTCF/Ni) manufactured by Toho Bethlon Co., Ltd. may be used. In any case, such carbon fibers have a diameter of 20 μm or less, preferably 6 to 15 μm, and a length of 6 mm, from the viewpoint of ease of mixing and molding the composition of the present invention, and protrusion from the molding surface. Below, preferably 010
A thickness of 2 to 3.0 mm is desirable, and commercial products such as Torayka MLD (manufactured by Toshisha Co., Ltd.) or Kureno\Carbon Fiber (manufactured by Ou Chemical Industry Co., Ltd.) can be exemplified.

この発明において、ニッケル被覆材と炭素繊維との混合
割合を容量比で15:80から80:20の範囲内に限
定する理由はニッケル被覆材の量を前記下限値よりも少
なくしたのでは導電性が期待できず、また逆に上限値よ
りも多くすると導電性はあっても摺動性が得られなくな
るからであって、好ましくは40:60から70 : 
30の範囲にするとよい。そして、このようなニッケル
被覆材と炭素繊維と炭素繊維との混合物を、合成樹脂1
00容量部に対して30〜140容量部添加する理由は
、30容量部より少ないときは期待する導電性が得られ
ず、140容量部よりも多いときは摺動特性が悪化する
か、または成形が困難になったり、成形できたとしても
成形品の機械的強度(たとえば衝撃強度)が低下して好
ましくないからであって、望ましくは50〜100容量
部にするとよい。
In this invention, the reason why the mixing ratio of nickel coating material and carbon fiber is limited to within the range of 15:80 to 80:20 in terms of volume ratio is that if the amount of nickel coating material is less than the lower limit value, the conductivity will increase. On the other hand, if the ratio exceeds the upper limit, it will not be possible to obtain sliding properties even if conductivity is achieved.The ratio is preferably 40:60 to 70:
It is recommended to set it in the range of 30. Then, such a mixture of nickel coating material, carbon fibers, and carbon fibers is mixed with synthetic resin 1.
The reason for adding 30 to 140 parts by volume to 00 parts by volume is that if it is less than 30 parts by volume, the expected conductivity cannot be obtained, and if it is more than 140 parts by volume, the sliding properties may deteriorate or the molding This is because it becomes difficult to mold, or even if molding is possible, the mechanical strength (for example, impact strength) of the molded product decreases, which is undesirable, and the amount is desirably 50 to 100 parts by volume.

ここで、この発明において配合割合をすべて容量比で示
す理由は、通常の炭素繊維と金属被覆炭素繊維とでは比
重が著しく異なり、重量化ではこの発明の構成範囲を客
観的に示し得ないからであり、各原料についてそれぞれ
重量と真比重とを測定し、その重量を真比重で除した値
を容積(体積)とする方法を用いた。そして配合量の決
まった各原料を混合する方法は特に限定するものではな
く、通常広く用いられている方法、たとえばPPS樹脂
、ニッケル被覆材、炭素繊維などをそれぞれ個別に、ま
たはヘンシェルミキサー、ボールミル、タンブラ−ミキ
サー等の混合機によって適宜乾式混合した後、溶融混合
性のよい射出成形機もしくは溶融押出成形機に供給する
か、または予め熱ロール、ニーダ、バンバリーミキサ−
5溶融押出機などで溶融混合するなどの方法を利用すれ
ばよい。
The reason why all compounding ratios in this invention are expressed as volume ratios is that the specific gravity of ordinary carbon fibers and metal-coated carbon fibers is significantly different, and it is not possible to objectively indicate the range of composition of this invention by weighting. A method was used in which the weight and true specific gravity of each raw material were measured, and the volume was determined by dividing the weight by the true specific gravity. There is no particular limitation on the method of mixing each raw material in a fixed amount; for example, the method of mixing PPS resin, nickel coating material, carbon fiber, etc. individually, Henschel mixer, ball mill, etc. is not particularly limited. After dry mixing as appropriate with a mixer such as a tumbler mixer, it is fed to an injection molding machine or melt extrusion molding machine with good melt mixing properties, or it is mixed in advance with a heated roll, kneader, Banbury mixer, etc.
5. A method such as melt mixing using a melt extruder or the like may be used.

また、この発明の組成物を成形するにあたっても、特に
その方法を限定するものではなく、圧縮成形、押出成形
、射出成形等の通常の方法、または組成物を溶融混合し
た後、これをジェットミル、冷凍粉砕機等によって粉砕
し、所望の粒径に分級するかまたは分級しないままで、
得られた粉末を用いた流動浸漬塗装、静電粉体塗装など
を行なうこと黒鉛、二硫化モリブデン、オイル等の潤滑
剤を添加しても構わない。
In addition, the method for molding the composition of the present invention is not particularly limited, and the method may be any conventional method such as compression molding, extrusion molding, or injection molding, or by melt-mixing the composition and then using a jet mill. , crushed by a freezing crusher, etc., and classified to the desired particle size, or left unclassified.
The obtained powder may be subjected to fluidized dip coating, electrostatic powder coating, etc. A lubricant such as graphite, molybdenum disulfide, or oil may be added.

〔作用〕[Effect]

以上述べたこの発明の組成物の成形体表面を研磨して摺
動面とした面には、PPSの相、ニッケル被覆の相のほ
かに、ニッケル被覆材に内蔵されている固体潤滑剤の相
も現われて、固体潤滑剤と炭素繊維とは潤滑性の向上に
、ニッケル被覆層は互にまたは炭素繊維と密に接して電
路を形成し導電性の増大に寄与するのである。
In addition to the PPS phase and the nickel-coated phase, the surface of the molded product of the composition of the present invention described above is polished to form a sliding surface, and the solid lubricant phase incorporated in the nickel-coated material The solid lubricant and carbon fibers contribute to improving lubricity, and the nickel coating layer forms an electrical path in close contact with each other or with carbon fibers, contributing to increased conductivity.

〔実施例〕 実施例および比較例に用いた諸原料はつぎのとおりであ
る。すなわち、 ■ ポリフェニレンサルファイド(米国フィリップス・
ペトローリアム社製:ライトンp4)、■ 四フッ化エ
チレン樹脂(三片デュポンフロロケミカル社製:テフロ
ン7J’)、 ■ ニッケル被覆雲母(平均粒径12μmの全雲母に無
電解法によって平均膜厚0.1μmのニッケルめっきを
形成したもの)、 ■ ニッケル被覆炭素繊維(東邦ベスロン社製:HTC
F/Ni、繊維径7.5 μm、繊維長300μm、平
均ニッケル膜厚0.25μm)、 ■ ニッケル粉末(米国インコ社製:ニッケルパウダー
255、平均粒径3μm)、 ■ 炭素繊維(東し社製:トレカMLD−300、繊維
径7μm、繊維長300μm) である。
[Example] The raw materials used in the Examples and Comparative Examples are as follows. In other words, ■ Polyphenylene sulfide (Philips, USA)
(manufactured by Petroleum Corporation: Ryton P4), ■ Tetrafluoroethylene resin (manufactured by Mikata DuPont Fluorochemical Company: Teflon 7J'), ■ Nickel-coated mica (all mica with an average particle size of 12 μm is coated with an average film thickness of 0.5 μm by an electroless method). 1 μm nickel plating), ■ Nickel-coated carbon fiber (manufactured by Toho Bethlon: HTC
F/Ni, fiber diameter 7.5 μm, fiber length 300 μm, average nickel film thickness 0.25 μm), ■ Nickel powder (manufactured by Inco, USA: Nickel Powder 255, average particle size 3 μm), ■ Carbon fiber (Toshisha Co., Ltd.) (manufactured by Torayca MLD-300, fiber diameter 7 μm, fiber length 300 μm).

そして、実施例1〜4における各原料の配合割合はポリ
フェニレンサルファイド100容量部に対し、また比較
例1〜4における各原料の配合割合も同シ<ポリフェニ
レンサルファイド100容量部に対するそれぞれの容量
部の値で示し、これらを一括して表にまとめた。これら
諸原料はヘンシェルミキサーで充分混合した後、二軸溶
融押出機に供給し、シリンダ一温度300℃、回転数1
100rpの溶融混合条件で押出して造粒した。得られ
たペレットを樹脂温度310℃、射出圧力800kg/
cm、金型温度130℃の射出成形条件で外径23mm
、内径14mm、長さ13mmのリング状試験片および
幅12.7mm、長さ63mm、厚さ3mmの板状試験
片を成形し、リング状試験片を用いて体積抵抗率の測定
および摩擦摩耗試験を行ない、一方板状試験片はAST
M−D790に準拠して曲げ強さを測定した。ここで、
摩擦係数は滑り速度を毎分100m、荷重1 kg/c
m2の条件でスラスト型摩擦試験機を用いて測定し、摩
耗係数は滑り速度毎分128m、荷重1.6 kg/c
m”の条件でスラスト型摩耗試験機を用いて求めいずれ
も相手材には軸受鋼5UJ−2(焼入れ、研削仕上げ)
を使用した。得られた結果をすべてまとめて表に併記し
た。この表から明らかなように、比較例1〜4において
は体積抵抗率が低い値を示しても摩耗係数が著しく大き
いか、または逆に摩耗係数が小さくても体積抵抗率が著
しく高くて、実施例1〜4に示されているような体積抵
抗率と摩耗係数とが共に小さい値である組成物は得られ
ていない。
The blending ratio of each raw material in Examples 1 to 4 is the same with respect to 100 parts by volume of polyphenylene sulfide, and the blending ratio of each raw material in Comparative Examples 1 to 4 is also the same. These are summarized in a table. After thoroughly mixing these raw materials with a Henschel mixer, they are fed to a twin-screw melt extruder, with a cylinder temperature of 300°C and a rotation speed of 1.
The mixture was extruded and granulated under melt mixing conditions of 100 rpm. The obtained pellets were heated at a resin temperature of 310°C and an injection pressure of 800 kg/
cm, outer diameter 23mm under injection molding conditions of mold temperature 130℃
A ring-shaped test piece with an inner diameter of 14 mm and a length of 13 mm and a plate-shaped test piece with a width of 12.7 mm, a length of 63 mm, and a thickness of 3 mm were molded, and the ring-shaped test pieces were used to measure volume resistivity and conduct friction and wear tests. was carried out, while the plate-shaped specimen was subjected to AST
Bending strength was measured according to M-D790. here,
The coefficient of friction is a sliding speed of 100 m/min and a load of 1 kg/c.
Measured using a thrust type friction tester under the conditions of m2, the wear coefficient was a sliding speed of 128 m/min and a load of 1.6 kg/c.
Tested using a thrust type abrasion tester under conditions of
It was used. All the obtained results are summarized and listed in the table. As is clear from this table, in Comparative Examples 1 to 4, even if the volume resistivity showed a low value, the wear coefficient was extremely large, or conversely, even if the wear coefficient was small, the volume resistivity was extremely high, and the No composition has been obtained in which both the volume resistivity and the wear coefficient are small as shown in Examples 1 to 4.

〔効果〕〔effect〕

以上述べたように、この発明の組成物から得られる成形
体は、低摩擦係数を有し、そのうえニッケル被覆材およ
び炭素繊維の添加により優れた耐摩耗性を保持しながら
導電性が付与されているので、耐摩耗性と導電性との二
つの機能が同時に要求される用途、たとえばフロッピデ
ィスクドライ部のアースボタン、自動車のステアリング
コラム部通電ベアリング、OA機器類のキャリッヂベア
リング、複写機のアースもしくは通電ベアリングなどヒ
ートロール軸受、滑り軸受基材に格好のものであると言
える。また射出成形も可能であるため成形も容易である
ことからこの発明の意義はきわめて大きいということが
できる。
As described above, the molded product obtained from the composition of the present invention has a low coefficient of friction, and is also imparted with electrical conductivity while maintaining excellent wear resistance due to the addition of a nickel coating material and carbon fiber. Therefore, it is suitable for applications that require both wear resistance and conductivity at the same time, such as grounding buttons in floppy disk drives, current-carrying bearings in steering columns of automobiles, carriage bearings in office automation equipment, and grounding in copying machines. Alternatively, it can be said that it is suitable as a base material for heat roll bearings such as current-carrying bearings, and sliding bearings. In addition, since injection molding is possible and molding is easy, it can be said that the significance of this invention is extremely large.

Claims (1)

【特許請求の範囲】[Claims]  ポリフェニレンサルファイド100容量部に対してニ
ッケル被覆材と炭素繊維との容量比が15:80から8
0:20の範囲にある混合物30〜140容量部を添加
したことを特徴とする導電性摺動材組成物。
The volume ratio of nickel coating material and carbon fiber to 100 parts by volume of polyphenylene sulfide is 15:80 to 8.
A conductive sliding material composition characterized in that 30 to 140 parts by volume of a mixture in a ratio of 0:20 is added.
JP16635785A 1985-07-26 1985-07-26 Electrically conductive sliding material composition Granted JPS6227458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16635785A JPS6227458A (en) 1985-07-26 1985-07-26 Electrically conductive sliding material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16635785A JPS6227458A (en) 1985-07-26 1985-07-26 Electrically conductive sliding material composition

Publications (2)

Publication Number Publication Date
JPS6227458A true JPS6227458A (en) 1987-02-05
JPH0561305B2 JPH0561305B2 (en) 1993-09-06

Family

ID=15829885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16635785A Granted JPS6227458A (en) 1985-07-26 1985-07-26 Electrically conductive sliding material composition

Country Status (1)

Country Link
JP (1) JPS6227458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283133A (en) * 1988-07-27 1994-02-01 Mitsubishi Denki Kabushiki Kaisha Magneto-optical disk
EP2287244A1 (en) * 2009-08-17 2011-02-23 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
JP2018172641A (en) * 2017-03-31 2018-11-08 東レ株式会社 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and molding containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283133A (en) * 1988-07-27 1994-02-01 Mitsubishi Denki Kabushiki Kaisha Magneto-optical disk
EP2287244A1 (en) * 2009-08-17 2011-02-23 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
JP2011038078A (en) * 2009-08-17 2011-02-24 Laird Technologies Inc Highly thermal conductive and formable thermoplastic composite material and composition
CN101993602A (en) * 2009-08-17 2011-03-30 莱尔德电子材料(深圳)有限公司 Highly thermally-conductive moldable thermoplastic composites and compositions
US8299159B2 (en) 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
JP2018172641A (en) * 2017-03-31 2018-11-08 東レ株式会社 Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and molding containing the same

Also Published As

Publication number Publication date
JPH0561305B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
JPS6158093B2 (en)
CN100402599C (en) Fluororesin composition
JPS61168649A (en) Electrically conductive sliding material composition
JPS6227458A (en) Electrically conductive sliding material composition
JPS59202258A (en) Polyether-imide resin composition
JPS6243459A (en) Electrically conductive sliding material composition
JPH07286103A (en) Masterbatch pellet of electrically conductive resin and product of electrically conductive thermoplastic resin
JP2766703B2 (en) Seal part material for scroll compressor
JP3978841B2 (en) Conductive sliding member composition
JPS61151267A (en) Electrically conductive sliding resin material
JP2804294B2 (en) Lubricating resin composition for plain bearings
JPH115990A (en) Production of sliding bearing made from synthetic resin
JP4209974B2 (en) Sliding member for transfer device
JPH0756762B2 (en) Conductive sliding material composition
US5147922A (en) Resin composition
JPS61168645A (en) Electrically conductive sliding material composition
JP2837458B2 (en) Lubricating resin composition for sliding members
JPH0548789B2 (en)
JPS60250054A (en) Electrically conductive sliding material composition
JPH08104803A (en) Resin composition
JPS60137954A (en) Electrically conductive sliding material composition
JPH0769015B2 (en) Material of seal part for scroll type compressor
JPH0465866B2 (en)
JPH0743965B2 (en) Conductive resin composition
JPH0535183B2 (en)