JPS62273792A - Printed wiring board - Google Patents

Printed wiring board

Info

Publication number
JPS62273792A
JPS62273792A JP11607686A JP11607686A JPS62273792A JP S62273792 A JPS62273792 A JP S62273792A JP 11607686 A JP11607686 A JP 11607686A JP 11607686 A JP11607686 A JP 11607686A JP S62273792 A JPS62273792 A JP S62273792A
Authority
JP
Japan
Prior art keywords
paper
resin
printed wiring
wholly aromatic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11607686A
Other languages
Japanese (ja)
Inventor
邦夫 西村
平川 菫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11607686A priority Critical patent/JPS62273792A/en
Publication of JPS62273792A publication Critical patent/JPS62273792A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は、耐熱寸法安定性、ハンダ耐熱性、耐湿寸法安
定性に優れかつ軽量で厚みが薄く安価なプリント配線板
(フレキシブルプリント配線板を含む)に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention provides a printed wiring that has excellent heat resistance dimensional stability, solder heat resistance, and moisture resistance dimensional stability, and is lightweight, thin, and inexpensive. Regarding boards (including flexible printed wiring boards).

〈従来技術〉 近年カメラ、電卓2時計、コンピュータなどの電気電子
製品の小型化、軽量化、高性能化の傾向が著しい。これ
ら電気電子製品の小型化、軽量化および高性能化は主に
半導体素子の進歩に負うておりトランジスタ、IC,L
SI更に超LSIへと益々高集積化されてきている。
<Prior Art> In recent years, there has been a remarkable trend toward smaller size, lighter weight, and higher performance of electrical and electronic products such as cameras, calculators, watches, and computers. The miniaturization, weight reduction, and high performance of these electrical and electronic products are mainly due to advances in semiconductor elements, such as transistors, ICs, and L
SI is becoming more and more highly integrated into ultra-LSI.

これら半導体の高集積化に伴いプリント配線板は導体幅
と導体間隙の狭小化、あるいは多層化。
As these semiconductors become more highly integrated, printed wiring boards become narrower in conductor width and conductor gaps, or multilayered.

表面実装化、フレキシブル化することにより高密度化が
急速に進んでいる。更に片面板から両面板へ、更にスル
ーホール両面板から多層板へ、又フレキシブルプリント
配線板へと発展している。これら配線板の絶縁基材とし
ては、紙/フェノール樹脂系のPP材1紙/エポキシ樹
脂系のPE材。
High density is rapidly progressing due to surface mounting and flexibility. Furthermore, there has been progress from single-sided boards to double-sided boards, from through-hole double-sided boards to multilayer boards, and from flexible printed wiring boards. The insulating base materials for these wiring boards include paper/phenol resin-based PP material, paper/epoxy resin-based PE material.

ガラス布/エポキシ樹脂系のGE材などの絶縁材料が開
発されている。これらの材料のうちPP材。
Insulating materials such as glass cloth/epoxy resin based GE materials have been developed. Among these materials, PP material.

PE材は価格が安く加工性が優れていて大量生産に向い
でいることからカラーテレビ、ラジオといった家庭用電
子機器のプリント配線板に使用されている。しかしPE
材は耐熱性、耐熱寸法安定性。
PE materials are used in printed wiring boards for household electronic devices such as color televisions and radios because they are cheap, easy to process, and suitable for mass production. However, P.E.
The material is heat resistant and dimensionally stable.

耐湿寸法安定性が不十分である。またGE材は機械的強
さ、電気的特性、耐熱性、耐水性、耐湿性に優れている
ため高度の信頼性が要求されるIC。
Moisture dimensional stability is insufficient. In addition, GE materials have excellent mechanical strength, electrical properties, heat resistance, water resistance, and moisture resistance, so ICs require a high degree of reliability.

LSIなどの基板としてコンピュータ、電子交換機、各
種の計測機等の電子機器用のプリント配線板に使われて
いる。
It is used as a substrate for LSIs and printed wiring boards for electronic devices such as computers, electronic exchanges, and various measuring instruments.

しかし、LSIの目覚しい進歩に対しGE材では充分に
対応しきれないのが現状であり、GE材には下記の問題
点がある。(1)高温時の機械特性が劣る(2)高温時
の長時間使用による機械特性。
However, the current situation is that GE materials cannot sufficiently respond to the remarkable progress in LSI, and GE materials have the following problems. (1) Poor mechanical properties at high temperatures (2) Mechanical properties due to long-term use at high temperatures.

電気特性の劣化が大きい(3)高温時の寸法変化が大き
い。従ってGE材では原画寸法の再現性が乏しく高精度
回路の製造がむずかしく高密度回路用プリント配線板に
対しては限界がある。更に温度線膨脹係数が大ぎいこと
から半導体部品を実装することが困難である。またガラ
ス布自体の生産性が悪い。特に薄物、低目付のガラス布
を作ろうとすると製織性が低下し一層生産性が低下する
ので低目付量とするには限界がある。また織物はたて方
向、よこ方向の強度1寸法安定性が良好であるが斜め方
向は劣るという織組織上の基布自体の欠点がある。
Significant deterioration of electrical properties (3) Large dimensional change at high temperatures. Therefore, GE materials have poor reproducibility of original dimensions, making it difficult to manufacture high-precision circuits, and have limitations in their use in printed wiring boards for high-density circuits. Furthermore, the temperature linear expansion coefficient is large, making it difficult to mount semiconductor components. Moreover, the productivity of the glass cloth itself is poor. In particular, when trying to make glass cloth that is thin and has a low basis weight, the weavability deteriorates and productivity further decreases, so there is a limit to how low the fabric weight can be made. In addition, the woven fabric itself has a drawback in that it has good strength and one-dimensional stability in the warp and cross directions, but is poor in the diagonal direction.

更に、重く厚いため多層化すると体積が大きくなり、重
くなるという欠点がある。また可撓性がないためにフレ
キシブルプリント配線板用材料としても不適当である。
Furthermore, since it is heavy and thick, if it is multi-layered, the volume becomes large and it becomes heavy. Furthermore, since it is not flexible, it is unsuitable as a material for flexible printed wiring boards.

一層セラミック材料、金属材料などハンダ耐熱性、耐熱
寸法安定性、耐湿寸法安定性などは優れているが多層化
すると極めて重くなるという欠点がある。またセラミッ
ク材料は可撓性に乏しくフレキシブルプリント配線板に
は不適当である。金属材料では温度線膨脹係数が大きい
ため半導体部品を実装したり、高密度回路用プリント配
線板には不適当でおる。
Single-layer ceramic materials and metal materials have excellent soldering heat resistance, heat-resistant dimensional stability, moisture-resistant dimensional stability, etc., but have the disadvantage that they become extremely heavy when multilayered. Furthermore, ceramic materials have poor flexibility and are unsuitable for flexible printed wiring boards. Metal materials have a large temperature linear expansion coefficient, making them unsuitable for mounting semiconductor components or printed wiring boards for high-density circuits.

−hフレキシブルプリント配線板の絶縁基材としては主
にポリエステルフィルム、ポリイミドフィルム(登録商
標カブ1〜ン:デュポン社製)、ガラス繊維布に可撓性
樹脂を含浸させた材料あるいは全力香煎ポリアミド紙(
登録商標NOmeX :デュポン社製)などが使用され
ている。ポリエステルフィルムは安価で可撓性に優れて
いるが燃え易くハンダ耐熱性、耐熱寸法安定性に乏しい
。ポリイミドフィルムは可撓性およびハンダ耐熱性はか
なり優れているが吸湿性が大きく耐熱寸法安定性や耐湿
寸法安定性が悪くまた極めて高価である。一方ハンダ耐
熱性に優れ耐湿寸法安定性が良好でかつ安価なガラス繊
維布に可撓性樹脂を含浸させた材料がフレキシブルプリ
ント配線板の絶縁基材に使用されつつある。これはポリ
ニスデルフィルムとポリイミドフィルムとの中間的性能
を有するものであるが、ガラス繊維自身の有する剛直性
が残存する結果、可撓性、耐折性に劣りまた重量が大き
く厚いという欠点がある。更に可撓性樹脂が大きな加熱
収縮率、加熱残留収縮率、温度線膨脹係数を有するため
ガラス繊維布がこの影響を受は耐熱寸法安定性が良好で
はない。
-H Insulating base materials for flexible printed wiring boards are mainly polyester films, polyimide films (registered trademark Kabu1-N: manufactured by DuPont), glass fiber cloth impregnated with a flexible resin, or fully scented polyamide paper. (
Registered trademark NOmeX (manufactured by DuPont), etc. are used. Polyester film is inexpensive and has excellent flexibility, but is easily flammable and has poor solder heat resistance and heat-resistant dimensional stability. Polyimide films have excellent flexibility and soldering heat resistance, but are highly hygroscopic, have poor heat-resistant dimensional stability and moisture-resistant dimensional stability, and are extremely expensive. On the other hand, a material made of glass fiber cloth impregnated with a flexible resin, which is excellent in solder heat resistance, good moisture resistance dimensional stability, and is inexpensive, is being used as an insulating base material for flexible printed wiring boards. This film has intermediate performance between polynisdel film and polyimide film, but as a result of the remaining rigidity of the glass fiber itself, it has the drawbacks of poor flexibility and folding durability, as well as being heavy and thick. be. Furthermore, since the flexible resin has a large heat shrinkage rate, heat residual shrinkage rate, and temperature linear expansion coefficient, glass fiber cloth is affected by this and does not have good heat-resistant dimensional stability.

また全芳香族ポリアミド紙(登録商標Homex :デ
ュポン社製)が一部使用されるようになってきたが、N
omex■紙は可撓性が良好でポリイミドフィルムに比
べて安価ではあるもののハンダ耐熱性。
In addition, fully aromatic polyamide paper (registered trademark Homex, manufactured by DuPont) has come into use in some cases, but N
Omex■Paper has good flexibility and is less expensive than polyimide film, but it is resistant to soldering heat.

耐熱寸法安定性が不良で更に吸湿性が大きく耐湿寸法安
定性に乏しい。ハンダ耐熱性は吸湿性(平衡水分率)、
耐熱寸法安定性と密接な因果関係がある。即ちハンダ耐
熱試験において導体と基材との間にふくれ、剥れが生じ
たりカールが生じるという現象は、平衡水分率及び耐熱
寸法安定性(加熱収縮率、加熱残留収縮率、温度線膨脹
係数)により説明することができる。ハンダ耐熱試験に
おいて260℃を越えるハンダ浴上で紙層の温度が急激
に上昇したとき水分が急激に蒸発して紙層間を通過し外
気中へ飛散していくが、平衡水分率が高い場合はこの水
蒸気量が多い。その結果、高圧の多量の水蒸気が紙層間
で妨げられ、ふくれや剥れを発生させる。また温度線膨
脹係数や加熱収縮率が大きい場合はハンダ浴上で大きな
カールを生じ更に残留加熱収縮率が大きい場合はハンダ
耐熱試験後室温に冷却した後もカールが残留する。
It has poor heat resistance and dimensional stability, and is also highly hygroscopic and has poor moisture resistance and dimensional stability. Solder heat resistance is hygroscopic (equilibrium moisture content),
There is a close causal relationship with heat resistant dimensional stability. In other words, the phenomenon of blistering, peeling, or curling between the conductor and the base material in the solder heat resistance test is due to the equilibrium moisture content and heat-resistant dimensional stability (heat shrinkage rate, heat residual shrinkage rate, temperature linear expansion coefficient) This can be explained by: In the solder heat resistance test, when the temperature of the paper layer rises rapidly on a solder bath exceeding 260℃, water rapidly evaporates and passes between the paper layers and scatters into the outside air, but if the equilibrium moisture content is high, This amount of water vapor is large. As a result, a large amount of high-pressure water vapor is blocked between the paper layers, causing blistering and peeling. Further, if the temperature linear expansion coefficient or heat shrinkage rate is large, large curls will occur on the solder bath, and if the residual heat shrinkage rate is large, curls will remain even after cooling to room temperature after the solder heat resistance test.

Nomex■紙を用いる場合はこれらふくれ、剥れやカ
ールをなくすため予め十分乾燥したり熱処理して歪みを
除去後再吸湿する前にハンダ加工を施している。しかし
工程が煩雑となるばかりでなく乾燥しても非常に再吸湿
しやすいためにふくれ、剥れやカールを完全に防止する
ことは困難である。
When using Nomex ■ paper, in order to eliminate blistering, peeling, and curling, it is thoroughly dried or heat-treated to remove distortion, and then soldered before re-absorbing moisture. However, not only is the process complicated, but it is also very easy to reabsorb moisture even after drying, making it difficult to completely prevent blistering, peeling, and curling.

これらの基材の欠点を補うべくこれまで種々の材料が検
討されている。例えば特公昭52−27189号公報に
は芳香族ポリアミド繊維とポリエステル繊維とから成る
不織布に樹脂を含浸したシー1〜を基材に用いることが
開示されている。
Various materials have been studied to compensate for the drawbacks of these base materials. For example, Japanese Patent Publication No. 52-27189 discloses the use of Sea 1~, which is a nonwoven fabric made of aromatic polyamide fibers and polyester fibers impregnated with a resin, as a base material.

該シートは芳香族ポリアミド繊維とポリエステル繊維と
を最適配合条件下で混合使用したときNomex■紙に
比べて30〜160°Cにおける温度線膨脹係数が小さ
くなりまた吸湿性も低くなるので、ハンダ工程における
ふくれ、剥れ、カールが生じないことが述べられている
。しかし該シートはポリエステル繊維を含有しているた
め熱硬化性樹脂で被覆されていてもハンダ工程において
ポリエステル繊維が実質的に軟化、融解するのでハンダ
耐熱性、耐熱寸法安定性が不十分である。
When used as a mixture of aromatic polyamide fibers and polyester fibers under optimal blending conditions, this sheet has a smaller thermal expansion coefficient at 30 to 160°C and lower hygroscopicity than Nomex paper, making it easier to use in the soldering process. It is stated that no blistering, peeling, or curling occurs. However, since the sheet contains polyester fibers, even if it is coated with a thermosetting resin, the polyester fibers substantially soften and melt during the soldering process, resulting in insufficient solder heat resistance and heat-resistant dimensional stability.

更に特公昭56−1792号公報には芳香族ポリアミド
繊維、アクリル繊維、延伸ポリエステル繊維から成る不
織布に樹脂を含浸したシート“を絶縁基材に用いること
が開示されている。しかし該シートも特公昭52−27
189号公報のシートと同様ポリエステル繊維を含有す
るものであり熱硬化性樹脂で被覆されているがハンダ工
程におい□てポリエステル繊維が実質的に軟化、融解す
るので、ハンダ耐熱性、耐熱X1法安定性が劣る。
Furthermore, Japanese Patent Publication No. 56-1792 discloses the use of a resin-impregnated sheet of nonwoven fabric made of aromatic polyamide fibers, acrylic fibers, and stretched polyester fibers as an insulating base material. 52-27
Similar to the sheet of Publication No. 189, it contains polyester fibers and is coated with a thermosetting resin, but the polyester fibers are substantially softened and melted during the soldering process, so the soldering heat resistance and heat resistance X1 method are stable. inferior in sex.

更に、特開昭60−126400号公報にも、芳香族ポ
リアミド繊維とポリエステル繊維とを混合したスラリー
を湿式抄紙したのち熱圧処理した紙状物が開示されてお
りフレキシブルプリント配線板に応用できることが記載
されているが、前述のようにポリニスデル繊維を含むた
めに十分なるハンダ耐熱性、耐熱寸法安定性を実現する
ことは困難である。
Furthermore, JP-A-60-126400 also discloses a paper-like product obtained by wet-processing a slurry of aromatic polyamide fibers and polyester fibers and then heat-pressing the slurry, which can be applied to flexible printed wiring boards. However, as mentioned above, it is difficult to achieve sufficient solder heat resistance and heat-resistant dimensional stability due to the inclusion of polynisder fibers.

また特開昭60−230312号公報にはアラミド繊維
を主成分とする不織布あるいは紙にジアリルフタレート
系樹脂を主成分とする樹脂を含浸させたシー1〜を絶縁
基材とするフレキシブルプリント配線板が開示されてい
る。
Furthermore, Japanese Patent Application Laid-Open No. 60-230312 discloses a flexible printed wiring board whose insulating base material is Sea 1, which is a nonwoven fabric or paper containing aramid fibers as a main component and impregnated with a resin containing diallyl phthalate resin as a main component. Disclosed.

更に特開昭60−260626号公報には秤量、見かけ
密石1機械方向の引張強さ/横方向の引張強さの比を特
定化したアラミド系不織布に樹脂を含浸したシートが開
示されている。
Furthermore, JP-A No. 60-260626 discloses a sheet in which an aramid nonwoven fabric is impregnated with a resin and has a specific ratio of weight, apparent density, tensile strength in the machine direction/tensile strength in the transverse direction. .

また特公昭60−52937号公報には芳香族ポリアミ
ド繊維布にエポキシ樹脂および/またはポリイミド樹脂
を塗布または含浸し乾燥したシートを基材とする銅張積
層板が開示されている。
Further, Japanese Patent Publication No. 60-52937 discloses a copper-clad laminate using a sheet made of an aromatic polyamide fiber cloth coated or impregnated with an epoxy resin and/or polyimide resin and dried.

しかし用在までのところハンダ耐熱性に優れ温度線膨脹
係数が半導体部品と同等程度に小さく表面実装が十分可
能で、更に耐湿寸法安定性が良好で軽量かつ安価なプリ
ント配線板用基材は知られていない。
However, until now, there are no known base materials for printed wiring boards that are excellent in solder heat resistance, have a temperature linear expansion coefficient as low as that of semiconductor components, and are fully compatible with surface mounting, have good moisture resistance and dimensional stability, and are lightweight and inexpensive. It has not been done.

〈発明の目的〉 本発明はフィルムや紙あるいは繊維布、不織布に樹脂を
含浸した基材の従来からの欠点を克服したものである。
OBJECTS OF THE INVENTION The present invention overcomes the drawbacks of conventional substrates made of resin-impregnated films, paper, fiber cloth, and nonwoven fabrics.

即ちハンダ耐熱性に優れ、また温度線膨脹係数が半導体
部品と同程度に小さいので、プリント配線板として使用
時において半導体部品の表面実装に伴って起こるヒート
サイクルに対しハンダ接合部にクラックを生ずることが
ない。更に高密度回路が膨張収縮により寸法変化を生じ
回路不良となることのない耐熱寸法安定性に優れた紙状
物を提供せんとするものである。更に湿度線膨張係数が
小さいために高湿時のカールが少なく、また膨張、収縮
により高密度回路に寸法変化を生じ回路不良となること
のない耐湿寸法安定性に優れたものであり、軽量で厚み
が薄く多層化しても体積が小さくまた軽いという特徴を
有し単層で使用しても可撓性に優れているのでフレキシ
ブルプリント配線板の基材またはカバーレイとしても使
用できる紙状物を提供せんとするものである。
In other words, it has excellent solder heat resistance and has a temperature linear expansion coefficient as small as that of semiconductor components, so when used as a printed wiring board, cracks will not occur in the solder joints due to the heat cycle that occurs with surface mounting of semiconductor components. There is no. Furthermore, it is an object of the present invention to provide a paper-like material having excellent heat-resistant and dimensional stability, in which a high-density circuit does not undergo dimensional changes due to expansion and contraction, resulting in circuit defects. In addition, it has a low coefficient of linear expansion in humidity, so there is little curling at high humidity, and it has excellent moisture resistance and dimensional stability, which does not cause dimensional changes in high-density circuits due to expansion or contraction, resulting in circuit defects. A paper-like material that is thin, has a small volume even when multi-layered, and is light, and has excellent flexibility even when used as a single layer, so it can be used as a base material or coverlay for flexible printed wiring boards. This is what we intend to provide.

〈発明の構成〉 本発明のプリント配線板は、全芳香族ポリエーテルアミ
ド短繊維とメタ系全芳香族ポリアミドパルプとを含み、
温度線膨脹係数(αT)が−20×10−6/℃≦α、
≦20x 10−6/ ”Cである紙状物および樹脂か
ら成るシートを基材またはカバーレイに使用したことを
特徴とする。
<Structure of the Invention> The printed wiring board of the present invention includes wholly aromatic polyetheramide short fibers and meta-based wholly aromatic polyamide pulp,
Temperature linear expansion coefficient (αT) is -20×10-6/℃≦α,
≦20x 10-6/''C, and a sheet made of a paper-like material and a resin is used as a base material or a coverlay.

ここでいう全芳香族ポリエーテルアミド短繊維とは下記
反復単位(I> で構成される全芳香族ポリエーテルアミド共重合体を十
分に延伸して高度に分子配向させた高モジユラス全芳香
族ポリエーテルアミド共重合体繊維および/または該繊
維を砕いてフィブリル化した短繊維である。
The wholly aromatic polyether amide short fibers referred to herein are high modulus wholly aromatic polyether amide copolymers composed of the following repeating units (I>), which are fully stretched and highly molecularly oriented. These are etheramide copolymer fibers and/or short fibers obtained by crushing and fibrillating the fibers.

この短m雑は難燃性であってり、O,I値が大でかつ樹
脂との接着性が良好でありまた耐熱性に優れている。
This short material is flame retardant, has large O and I values, has good adhesion to resin, and has excellent heat resistance.

更に平衡水分率、加熱収縮率、加熱残留収縮率が小さい
。更に特筆すべきことは温度線膨脹係数が負の値をとる
ということである。これらは全力香煎ポリアミド短繊維
の中で極めて特異なことであり特にポリメタフェニレン
イソフタルアミド短繊維と比較すると良好なる耐熱およ
び耐湿寸法安定性を右づる。
Furthermore, the equilibrium moisture content, heat shrinkage rate, and heat residual shrinkage rate are small. What is also noteworthy is that the temperature linear expansion coefficient takes a negative value. These properties are extremely unique among full-strength polyamide short fibers, and they provide excellent heat and moisture resistance dimensional stability, especially when compared with polymetaphenylene isophthalamide short fibers.

全芳香族ポリエーテルアミド短繊維の単糸繊度は0.1
〜10de、好ましくは0.3〜5de テある。09
lde未満では製糸技術上困難な点が多い(断糸。
The single fiber fineness of wholly aromatic polyetheramide short fibers is 0.1
-10 de, preferably 0.3-5 de. 09
Below lde, there are many difficulties in spinning technology (thread breakage).

毛羽の発生等)。一方10deを越えると機械的物性の
点で実用的でなくなる。
occurrence of fuzz, etc.). On the other hand, if it exceeds 10 de, it becomes impractical in terms of mechanical properties.

更に全芳香族ポリエーテルアミド短繊維のカッミル長は
1〜60mmが好ましく、更には3〜40mmが好まし
い。カッ1−長が過小の場合、得られる紙状物の機械的
物性が低下しまたカット長が過大のときも紙状物の地合
が不良で機械的物性がやはり低下覆る。
Further, the length of the wholly aromatic polyetheramide staple fiber is preferably 1 to 60 mm, more preferably 3 to 40 mm. If the cut length is too small, the mechanical properties of the paper-like material obtained will deteriorate, and if the cut length is too large, the paper-like material will have poor formation and its mechanical properties will also deteriorate.

更に全芳香族ポリT−チルアミド短繊維は機械的剪断力
により容易にフィブリル化する。フィブリル化覆ること
により製糸困難な繊度の短繊維まで(qることかできる
。フィブリル化した短繊維を用いると紙状物の地合が向
上し、優れた品位とすることかできる。
Furthermore, wholly aromatic polyT-tylamide short fibers are easily fibrillated by mechanical shearing force. By fibrillating, it is possible to produce short fibers with a fineness that is difficult to spin.Using fibrillated short fibers improves the texture of paper-like products and makes them of excellent quality.

本発明において、全芳香族ポリエーテルアミド短繊維に
対するバインダーの素材としては下記反復単位(II) で構成されるメタ系全芳香族ポリアミドを用いる。
In the present invention, a meta-based wholly aromatic polyamide composed of the following repeating unit (II) is used as a binder material for the wholly aromatic polyetheramide short fibers.

具体的にはポリ(メタフェニレンイソフタルアミド)や
ポリ(メタフェニレンイソフタルアミドテレフタルアミ
ド)共重合体などである。メタ系全芳香族ポリアミドの
固有粘度(ηinh )は0.7以上のものが好ましい
。なお固有粘度(ηinh )は、0.5g/100 
rdのN−メチルピロリドン溶液を用いて30℃で測定
した値である。
Specifically, they include poly(metaphenylene isophthalamide) and poly(metaphenylene isophthalamide terephthalamide) copolymers. The meta-based wholly aromatic polyamide preferably has an intrinsic viscosity (ηinh) of 0.7 or more. The intrinsic viscosity (ηinh) is 0.5g/100
This is a value measured at 30°C using an N-methylpyrrolidone solution of rd.

メタ系全芳香族ポリアミド溶液よりパルプを製造する際
は、例えば特公昭35−11851号公報に記載された
方法を用いる。すなわち該重合体を構成する溶媒と相溶
性があって重合体と非相溶性の溶媒中に高速で攪拌しな
がら重合体溶液を導入して剪断力をあたえながら重合体
を析出させる。この際に特公昭36−40479号公報
や特開昭52−15621号公報に記載された製造装置
を用いることができる。またパルプを析出せしめるのに
用いる非溶媒としては水、アルコール、グリコール、グ
リセリンなどの他、塩化カルシウム水溶液2重合体溶媒
の水溶液などを用いることができる。
When producing pulp from a meta-based wholly aromatic polyamide solution, for example, the method described in Japanese Patent Publication No. 35-11851 is used. That is, a polymer solution is introduced into a solvent that is compatible with the solvent constituting the polymer but incompatible with the polymer while stirring at high speed, and the polymer is precipitated while applying a shearing force. In this case, the manufacturing apparatus described in Japanese Patent Publication No. 36-40479 and Japanese Patent Application Laid-Open No. 52-15621 can be used. In addition to water, alcohol, glycol, glycerin, etc., an aqueous solution of a calcium chloride aqueous solution and a dipolymer solvent can be used as the non-solvent to precipitate the pulp.

例えばポリメタフェニレンイソフタルアミドの場合、溶
媒としてジメチルフォルムアミド、ジメチルアセトアミ
ド、N−メチルピロリドンなどを用いるが、この場合は
これらの水溶液を非溶媒として用いるのが好ましい。
For example, in the case of polymetaphenylene isophthalamide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. are used as a solvent, but in this case, it is preferable to use an aqueous solution of these as a nonsolvent.

尚、耐熱性を低下せしめないためにパルプに無機塩類(
例えば塩化リチウム、塩化カルシウム等)ができるだけ
残存しないようにするのが好ましい。
In addition, inorganic salts (
For example, it is preferable that lithium chloride, calcium chloride, etc.) remain as little as possible.

パルプの製造に用いる装置としては例えばホモミキサー
、ワーキングミキサーなどを用いる。またこの攪拌は回
転混合式に限らず例えばT字型ラインミキサーや回転式
ラインミキサーなどでもよい。更には特公昭3B−40
479@公報あるいは特開昭52−15621号公報な
どに示される設備を用いることも好ましい。これらの装
置を用いた場合一般にパルプの比表面積が大となりこの
結果として紙状物の引張強度、引裂強度、破断伸度等の
機械的物性が向上する。ここでいう比表面積とは単位質
量あたりの表面積である。 得られるパルプはそのまま
でも十分に使用に適するが必要に応じて再加工する。例
えば一般の製紙の際に抄紙に先立ち実施される叩解等の
処理をパルプに施す。このような処理を行うことにより
一般にパルプの比表面積が大となりその結果、紙状物の
機械的物性が向上する。
For example, a homo mixer, a working mixer, etc. are used as the apparatus for producing pulp. Further, this stirring is not limited to the rotary mixing type, but may also be performed by, for example, a T-shaped line mixer or a rotary line mixer. Furthermore, special public Sho 3B-40
It is also preferable to use the equipment shown in Publication No. 479@ or Japanese Unexamined Patent Publication No. 15621/1983. When these devices are used, the specific surface area of the pulp is generally increased, and as a result, the mechanical properties of the paper-like material, such as tensile strength, tear strength, and elongation at break, are improved. The specific surface area here is the surface area per unit mass. The resulting pulp is fully usable as is, but may be reprocessed if necessary. For example, the pulp is subjected to a treatment such as beating, which is carried out prior to papermaking in general paper manufacturing. By performing such a treatment, the specific surface area of the pulp is generally increased, and as a result, the mechanical properties of the paper-like product are improved.

短繊維とパルプとから成る紙状物は従来公知の方法によ
り得ることができる。
A paper-like material composed of short fibers and pulp can be obtained by a conventionally known method.

即ち、カード、エアレイ(ランドウニバーなどの)方式
による乾式法、抄紙機を用いる湿式法などであるが均一
で良好なる地合の紙状物を得るには湿式法が好ましい。
That is, the dry method using a card or air lay method (such as land univer), the wet method using a paper machine, etc. are preferred, but the wet method is preferable in order to obtain a paper-like material with a uniform and good texture.

湿式法においては予めパルプを稀薄スラリーとじて分散
または/および叩解しこれに短繊維を分散させるか両者
を同時に分散、離解せしめるか、または更に叩解する等
必要な前処理を施して抄紙することが好ましい。抄紙に
は従来の抄紙機が用いられる。手抄ぎでも十分抄紙でき
るが工業的には長網抄紙機、短網抄紙機、更に円網抄紙
機やロ]ヘフt−マーなどで抄紙できる。
In the wet method, paper can be made by dispersing and/or beating the pulp into a dilute slurry and then dispersing short fibers therein, or by dispersing and disintegrating both at the same time, or by performing necessary pretreatments such as further beating. preferable. A conventional paper machine is used for paper making. Paper can be made by hand, but industrially it can be made using a fourdrinier paper machine, a short wire paper machine, a cylinder paper machine, a rotary paper machine, etc.

スラリー中のパルプが少ないと得られる紙状物の機械的
物性が低下する。一方パルプが多すぎても得られる紙状
物の機械的物性が低下する。一般にポリバラフェニレン
テレフタルアミド短繊維は5〜95重量%、好ましくは
20〜80重量%、パルプは95〜5重量%、好ましく
は80〜20重量%の範囲が良好である。
If the amount of pulp in the slurry is small, the mechanical properties of the paper-like product obtained will deteriorate. On the other hand, if there is too much pulp, the mechanical properties of the paper-like product obtained will deteriorate. In general, the content of polyvalent phenylene terephthalamide short fibers is preferably 5 to 95% by weight, preferably 20 to 80% by weight, and the content of pulp is 95 to 5% by weight, preferably 80 to 20% by weight.

紙状物は必要に応じて熱圧処理を行う。例えばカレンダ
ー加工処理を施す場合カレンダーロールの表面温度は2
50℃以上、圧力は50kMCI以上が好ましい。
The paper-like material is subjected to heat and pressure treatment as necessary. For example, when calendering is performed, the surface temperature of the calender roll is 2
Preferably, the temperature is 50° C. or higher and the pressure is 50 kMCI or higher.

紙状物を形成せしめる際、全芳香族ポリエーテルアミド
短繊維に対するバインダーとして前記反復単位(II)
で構成されるパルプの他に必要に応じ熱可塑性耐熱性ポ
リマーの繊維状結合材(ポリエチレンプレフタレートな
どのポリエステル、6゜6−ナイロンなどのポリアミド
、ポリスルホン。
When forming a paper-like product, the repeating unit (II) serves as a binder for the wholly aromatic polyetheramide short fibers.
In addition to pulp composed of thermoplastic heat-resistant polymer fibrous binders (polyester such as polyethylene prephthalate, polyamide such as 6°6-nylon, polysulfone) as necessary.

ポリフェニレンサルファイドなど)を混合することがで
きる。また湿式法では水分散性のバインダーや粉末状の
バインダー等も使用できる。
polyphenylene sulfide, etc.). In the wet method, water-dispersible binders, powdered binders, etc. can also be used.

一方、全芳香族ポリエーテルアミド短繊維とメタ系全芳
香族ポリアミドパルプ以外の他の短繊維、例えば、ガラ
ス短繊維、セラミック短繊維、炭素繊維、全芳香族ポリ
エステル短繊維、ポリエーテルエーテルケトン短繊維な
どの耐熱性繊維を発明の目的を損わない範囲で含めるこ
とができる。
On the other hand, other short fibers other than wholly aromatic polyether amide short fibers and meta-based wholly aromatic polyamide pulp, such as glass short fibers, ceramic short fibers, carbon fibers, fully aromatic polyester short fibers, polyether ether ketone short fibers, etc. Heat-resistant fibers such as fibers can be included as long as the purpose of the invention is not impaired.

本発明における全芳香族ポリエーテルアミド短繊維とメ
タ系全芳香族ポリアミドパルプとを含む紙状物は坪量が
10〜300(+/ Td、好ましくは15〜250(
It/ mである。坪量が109/m未満の場合、地合
が悪化し得られる紙状物の均一性が不良となる。
The paper-like material containing wholly aromatic polyetheramide short fibers and meta-based wholly aromatic polyamide pulp in the present invention has a basis weight of 10 to 300 (+/Td, preferably 15 to 250 (
It/m. If the basis weight is less than 109/m, the formation will deteriorate and the uniformity of the resulting paper-like material will be poor.

一方坪量が300Mydを越えると製紙性が困難となる
On the other hand, if the basis weight exceeds 300 Myd, papermaking becomes difficult.

本発明におけるプリント配線板は温度線膨脹係数(α 
)が−20X 10−6 /℃≦αT≦20X10−6
/℃である紙状物を用いることを特徴とする。ここでい
う温度線膨脹係数(αT)とは、熱機械分析装置(TM
A)を用いサンプル長15mm、初荷重2.0(]の条
件で100〜200℃の温度域を昇温速度10℃/分で
測定したときの値である。α1が一20X10−6/’
C未満であると実装用の半導体部品のα■ (O〜IO
X 10(i/℃”)に比べて小さすぎるため樹脂と複
合した場合α□をO〜IOX 10−6 /℃とするこ
とが困難となる。一方α■が20X 10−6 /℃を
越えると同様に実装用の半導体部品のα1に比べで大き
すぎるため樹脂と複合した場合、α、を0〜IOX 1
0−6 /℃とすることが困難となる。即し本発明は、
仝芳香族ポリエーテルアミド短5iuiどメタ系全芳香
族ポリアミドパルプとを含む紙状物の場合に、−20X
 10−6 /℃≦αT≦20X 10−6 /℃とす
ることができることを見出し、該紙状物を用いれば樹脂
との複合において実装用の半導体部品のα、(0〜IO
X 10−6 /℃)と同程度のαTにすることができ
ることを見出したものである。本発明は α■が−10
,3X  10−6 /℃である全芳香族ポリエーテル
アミド短繊維と、α■が31.3X10−6であるメタ
系全芳香族ポリアミドパルプとを選択的に用いると各々
の有するα1が互いに相殺されることにより、得られる
紙状物のαTは極めてOに近い正の値あるいは負の値と
なることを見い出したものである。これに対しαTが−
0,I Xl0−6X℃であるポリメタフェニレンイソ
フタル7ミド短繊維とα□が31.3X 10−6 /
℃であるメタ系全芳香族ポリアミドパルプとの組合せで
は、得られる紙状物のαTはOに近い値とはならない。
The printed wiring board in the present invention has a temperature linear expansion coefficient (α
) is -20X 10-6 /℃≦αT≦20X10-6
It is characterized by using a paper-like material whose temperature is /℃. The temperature linear expansion coefficient (αT) referred to here refers to the thermomechanical analyzer (TM)
A) is the value when measured at a temperature range of 100 to 200°C at a heating rate of 10°C/min under the conditions of a sample length of 15 mm and an initial load of 2.0 ( ).α1 is -20×10-6/'
If it is less than C, the value of α■ (O~IO
Since it is too small compared to X 10 (i/℃"), it is difficult to set α□ to O~IOX 10-6 /℃ when combined with resin. On the other hand, α■ exceeds 20X 10-6 /℃ Similarly, it is too large compared to α1 of semiconductor components for mounting, so when combined with resin, α is 0 to IOX 1
It becomes difficult to set the temperature to 0-6/℃. Therefore, the present invention
-20
10-6 /℃≦αT≦20X 10-6 /℃
It was discovered that αT can be made to be approximately the same as (X 10-6 /°C). In the present invention, α■ is -10
, 3X 10-6 /℃ and meta-based wholly aromatic polyamide pulp whose α■ is 31.3X10-6, the α1 of each cancels each other out. It has been found that αT of the obtained paper-like material becomes a positive value or a negative value extremely close to O. On the other hand, αT is −
0, I
When used in combination with a meta-based wholly aromatic polyamide pulp having a temperature of 0.degree.

即ら仝芳香族ポリエーテルアミド短amは紙状物中にお
いてバインダー成分であるメタ系全芳香族ポリアミドパ
ルプの膨張を十分に抑制しつる能力を有しており、これ
はα1がポリメタフエニレンイソフタルアミド短繊維に
比べて特に大きい負の値を有すること、更にベンゼン環
とアミド結合がパラ位で連なる剛直分子鎖であること1
分子鎖にエーテル結合を含むことなど全芳香族ポリエー
テルアミド短繊維の固有のlIi維性能によるものであ
る。
In other words, the aromatic polyetheramide short am has the ability to sufficiently suppress the expansion of meta-based wholly aromatic polyamide pulp, which is a binder component, in paper-like materials, and this is because α1 is polymethphenylene. It has a particularly large negative value compared to isophthalamide short fibers, and it is a rigid molecular chain in which the benzene ring and amide bond are connected at the para position.1
This is due to the inherent fiber properties of wholly aromatic polyetheramide short fibers, such as the inclusion of ether bonds in the molecular chain.

かくして、全芳香族ポリエーテルアミド短繊維とメタ系
全芳香族ポリアミドパルプとを含む紙状物は −20X
 10−6 /℃≦αT≦20X 10−610Cのα
、値を有し樹脂と複合した場合樹脂の膨張を十分に抑制
しつる能力を有し、得られるシートは実装用の半導体部
品のα、(0〜IOX 10−6 /℃)と同程度のも
のとすることが可能である。尚紙状物のα■が負の値で
あるばあいは樹脂との相殺効果がより大きくなるため良
好である。
Thus, the paper-like material containing wholly aromatic polyether amide short fibers and meta-based wholly aromatic polyamide pulp is -20X
10-6 /℃≦αT≦20X α of 10-610C
, and when combined with a resin, it has the ability to sufficiently suppress the expansion of the resin and the resulting sheet has an α of the same level as that of the semiconductor component for mounting (0 to IOX 10-6/℃). It is possible to make it a thing. It is preferable that α■ of the paper-like material is a negative value, since the effect of offsetting with the resin becomes larger.

更に本発明における全芳香族ポリエーテルアミド短繊維
とメタ系全芳香族ポリアミドパルプとよりなる紙状物は
加熱収縮率、加熱残留収縮率、更には平衡水分率、湿度
線膨張係数が従来の全芳香族ポリアミド紙に比べ著しく
小さいという特徴を有する。該紙状物に、樹脂を含浸ま
たは塗工させて電気絶縁層と成しプリント配線板の基材
またはカバーレイとする。このとき紙状物と樹脂との接
着性を高めるために種々の表面処理を施してもよい。ま
た用いる樹脂は電気的性質、耐薬品性、耐溶剤性、耐水
性、耐熱性、接着性の優れたものを選択する。 好まし
い樹脂としては多官能エポキシ化合物、イミド化合物、
多官能イソシアネート化合物、フェノール/ホルマリン
縮合物、レゾルシン/ホルマリン縮合物、メラミン/ホ
ルマリン縮合物、キシレン/ホルマリン縮合物、アルキ
ルベンゼン/ホルマリン縮合物、不飽和ポリエステル、
多官能アリル化合物(ジアリルフタレート。
Furthermore, the paper-like material made of the wholly aromatic polyetheramide short fibers and the meta-based wholly aromatic polyamide pulp in the present invention has a heat shrinkage rate, a heat residual shrinkage rate, an equilibrium moisture content, and a humidity linear expansion coefficient that are higher than those of the conventional total. It is characterized by being significantly smaller than aromatic polyamide paper. The paper-like material is impregnated with or coated with a resin to form an electrically insulating layer and used as a base material or coverlay for a printed wiring board. At this time, various surface treatments may be applied to improve the adhesion between the paper-like material and the resin. The resin to be used is selected to have excellent electrical properties, chemical resistance, solvent resistance, water resistance, heat resistance, and adhesive properties. Preferred resins include polyfunctional epoxy compounds, imide compounds,
Polyfunctional isocyanate compounds, phenol/formalin condensates, resorcinol/formalin condensates, melamine/formalin condensates, xylene/formalin condensates, alkylbenzene/formalin condensates, unsaturated polyesters,
Polyfunctional allyl compound (diallyl phthalate).

トリアリル(イソ)シアヌレ−1〜など)、多官能(メ
タ)アクリル系化合物(エポキシアクリレート、ウレタ
ンアクリレートを含む)、イミド化合物、アミドイミド
化合物等をあげることができる。
Examples include triallyl(iso)cyanure-1 and the like), polyfunctional (meth)acrylic compounds (including epoxy acrylate and urethane acrylate), imide compounds, and amidimide compounds.

好ましくは多官能エポキシ化合物、イミド化合物。Preferred are polyfunctional epoxy compounds and imide compounds.

多官能イソシアネート化合物、フェノール/ホルマリン
縮合物、不飽和ポリエステル、ジアリルフタレート系樹
脂である。
These are polyfunctional isocyanate compounds, phenol/formalin condensates, unsaturated polyesters, and diallylphthalate resins.

一方、接着性を向上させ必要に応じ可撓性を向上させる
場合はポリオレフィン系(ポリイソブチレンなど)、ポ
リビニル系(ポリ塩化ビニル、ポリアクリル酸エステル
、ポリ酢酸ビニル、ポリビニルホルマール、ポリビニル
アセタール、ポリビニルブチラールなど)、ゴム系(ポ
リイソブチレン、ポリブタジェン、クロロスルホン化ポ
リエチレン、ポリエピクロルヒドリン、ポリクロロプレ
ンなど)、シリコーン系、フッ素系などあるいはこれら
の共重合体を前記樹脂に混合、あるいは反応させること
が望ましい。
On the other hand, to improve adhesion and, if necessary, flexibility, use polyolefins (polyisobutylene, etc.), polyvinyls (polyvinyl chloride, polyacrylic esters, polyvinyl acetate, polyvinyl formal, polyvinyl acetal, polyvinyl butyral). It is desirable to mix or react with the resin, a rubber type (polyisobutylene, polybutadiene, chlorosulfonated polyethylene, polyepichlorohydrin, polychloroprene, etc.), a silicone type, a fluorine type, etc., or a copolymer thereof.

一方、本発明のシートを形成する樹脂は熱硬化性樹脂に
限らずテフロン、ポリエーテル、エーテルケトン、ポリ
フェニレンサルファイド、ポリカーボネート、ポリエー
テルサルホンなどの熱可塑性樹脂であってもよい。
On the other hand, the resin forming the sheet of the present invention is not limited to thermosetting resins, but may also be thermoplastic resins such as Teflon, polyether, etherketone, polyphenylene sulfide, polycarbonate, and polyethersulfone.

これらの樹脂は紙状物に含浸あるいは塗工され基材ある
いはカバーレイの一部を構成するため特に温度線膨脹係
数(α■)のあまり大きくないもの、好ましくはαT≦
200 x 10−6 / ℃、更に好ましくはαT≦
100 X 10−6 /℃なる樹脂が好ましい。
Since these resins are impregnated or coated on paper-like materials to form a part of the base material or coverlay, they are especially those whose temperature linear expansion coefficient (α■) is not very large, preferably αT≦
200 x 10-6/℃, more preferably αT≦
A resin having a temperature of 100 x 10-6/°C is preferred.

紙状物に該樹脂を付与するには通常の含浸法。A conventional impregnation method is used to apply the resin to paper-like materials.

塗工法を用いることかできるが、あらかじめ例えば上記
樹脂のフィルムを紙状物単体とあるいは紙状物と導体(
例えば銅箔)などとの間に挟んで熱圧成型することによ
り基材またはカバーレイまたはプリント基板を製造する
ことができる。あるいは上記樹脂の粉末を紙状物単体の
上に散布しあるいは紙状物と導体などとの間に散布し熱
圧成型することにより基材またはカバーレイまたはプリ
ント基板を製造することができる。紙状物とフィルムあ
るいは粉末を積層すれば高目付の積層基材やプリント基
板を得ることができる。
Although a coating method can be used, for example, a film of the above resin is coated on a paper-like material alone or on a paper-like material and a conductor (
For example, a base material, a coverlay, or a printed circuit board can be manufactured by sandwiching the material between the materials (for example, copper foil) and performing hot-pressure molding. Alternatively, a base material, a coverlay, or a printed circuit board can be manufactured by scattering powder of the above-mentioned resin onto a single paper-like material or between a paper-like material and a conductor, and performing hot-pressure molding. By laminating a paper-like material and a film or powder, a laminated base material or printed circuit board with a high basis weight can be obtained.

なお樹脂中に本発明の性能を損わない範囲内で滑剤、接
着促進剤、難燃剤、安定材(酸化防止剤。
In addition, lubricants, adhesion promoters, flame retardants, stabilizers (antioxidants) may be added to the resin within a range that does not impair the performance of the present invention.

紫外線吸収材1重合禁止剤等)、離型剤、メッキ活性剤
、その仙無機または有機の充填剤(タルク。
UV absorbers, polymerization inhibitors, etc.), mold release agents, plating activators, and inorganic or organic fillers (talc, etc.).

酸化チタン、弗素系ポリマー微粒子、顔料、染料。Titanium oxide, fluorine polymer fine particles, pigments, dyes.

炭化カルシウムなど)を添加してもよい。Calcium carbide, etc.) may be added.

得られたシートは硬化後接着剤を用いて導体層あるいは
既に回路形成されたプリント配線板と張り合すこともで
きるが接着剤を用いずども樹脂が完全硬化刃る前に導体
層あるいは既に回路形成されたプリンi・配線板と積層
して加熱、加圧し硬化させることもできる。
After curing, the obtained sheet can be attached to a conductor layer or a printed wiring board on which a circuit has already been formed using an adhesive. It can also be laminated with the formed pudding/wiring board and cured by heating and pressurizing.

まlこ硬化後物理蒸着、化学蒸着により前記シー1〜に
導体層を形成せしめることもできるし、またメツキレシ
ストを部分的に積層し化学メッキにより導体層を形成せ
しめプリント配線板とすることができる。更にこのよう
にして形成された導体層の上に前記紙状物を樹脂を介し
て積層し、カバーレイイ」きのプリント配線板とするこ
ともできる。
After curing, a conductive layer can be formed on the sheets 1 to 1 by physical vapor deposition or chemical vapor deposition, or a printed wiring board can be obtained by partially laminating the metal resist and forming a conductive layer by chemical plating. . Furthermore, the paper-like material may be laminated on the conductive layer thus formed via a resin to form a coverlay printed wiring board.

即ち本発明において紙状物および樹脂から成るシートは
プリント配線板の基材のみに用いてもよくカバーレイに
用いてもよく基材およびカバーレイに用いてもよい。
That is, in the present invention, a sheet made of a paper-like material and a resin may be used only as a base material of a printed wiring board, or may be used as a coverlay, or may be used as a base material and a coverlay.

〈発明の効果〉 本発明のプリント配線板は、用いる紙状物自体の平衡水
分率が小さく加熱収縮率、加熱残留収縮率、温度線膨脹
係数が極めて小さいことにより、樹脂を含浸させた銅張
用基板のハンダ耐熱性が優れている。更に樹脂含浸紙の
温度線膨脹係数を実装用の半導体部品と同程度のものと
することができるので、プリント配線板として使用する
際に半導体部品の表面実装に伴って起こるヒートサイク
ルに対しハンダ接合部のクラックを生ずることがない。
<Effects of the Invention> The printed wiring board of the present invention has a low equilibrium moisture content of the paper-like material itself, and its heat shrinkage rate, heat residual shrinkage rate, and temperature linear expansion coefficient are extremely small. The solder heat resistance of the board for use is excellent. Furthermore, the temperature linear expansion coefficient of resin-impregnated paper can be made comparable to that of semiconductor components for mounting, so when used as a printed wiring board, it is possible to prevent solder bonding from the heat cycle that occurs when surface mounting semiconductor components. There will be no cracks in the parts.

また耐熱寸法安定性が高いので高密度回路が膨張収縮に
より寸法変化を生じ回路不良となることがない。更には
湿度線膨張係数が小さいために、高湿時のカールが少な
くまた耐湿寸法安定性が高いので、高湿雰囲気下におい
ても高密度回路が寸法変化を生じ回路不良となることが
ない。
Furthermore, since it has high heat-resistant dimensional stability, high-density circuits will not undergo dimensional changes due to expansion and contraction, resulting in circuit defects. Furthermore, since the humidity coefficient of linear expansion is small, there is little curling at high humidity, and the humidity-resistant dimensional stability is high, so even in a high-humidity atmosphere, a high-density circuit will not undergo dimensional changes and circuit defects.

〈実施例〉 以下実施例により本発明を更に詳しく説明する。<Example> The present invention will be explained in more detail with reference to Examples below.

実施例中で用いた測定法は下記の通りである。The measurement method used in the examples is as follows.

第1表における繊維の測定法 (1)引張強度 万能引張試験機でサンプルのつかみ間隔25cm。Fiber measurement method in Table 1 (1) Tensile strength A universal tensile tester with a sample grip interval of 25 cm.

引張速度10Cm/m i nの条件でインストロン4
C工アチ(/ツクを用いて測定した。
Instron 4 at a tensile speed of 10 Cm/min.
It was measured using C.

(2)初期弾性率 JISL−1017に準拠した強度測定において強度−
伸度曲線における伸度1〜2%間の強度差より次式に従
って算出した。
(2) Initial elastic modulus Strength measurement based on JISL-1017
It was calculated according to the following formula from the strength difference between 1 and 2% elongation in the elongation curve.

モジュラス(g/de) −(1〜2%間の強度差(g/de)) xloo(3
)密度 四塩化炭素およびn−へブタン混合液中の試料の浮沈に
より測定した。
Modulus (g/de) − (strength difference between 1 and 2% (g/de)) xloo(3
) Density was determined by floating a sample in a mixture of carbon tetrachloride and n-hebutane.

(4)結晶化度、配向度、結晶サイズ X線散乱強度より求めた。装置は理学電機■製RU−3
11を使用した。
(4) Crystallinity, orientation, crystal size determined from X-ray scattering intensity. The device is RU-3 manufactured by Rigaku Denki.
11 was used.

(5)平衡水分率 5gのリンプル繊維をシクロヘキサン中50℃で20分
間洗浄し、付着オイル等を除いた。次にJISL−10
13に準拠し50℃で1時間予備乾燥後、硫酸で調整し
た20℃、65%RHのデシケータ中に72時間放置し
たのち重量を測定した。次に105℃で2時間乾燥後の
重量を測定して平衡水分率(%)を算出した。
(5) Ripple fibers with an equilibrium moisture content of 5 g were washed in cyclohexane at 50° C. for 20 minutes to remove attached oil and the like. Next, JISL-10
After pre-drying for 1 hour at 50°C in accordance with 13, it was left in a desiccator at 20°C and 65% RH adjusted with sulfuric acid for 72 hours, and then its weight was measured. Next, the weight after drying at 105° C. for 2 hours was measured to calculate the equilibrium moisture content (%).

(6)加熱収縮率 熱機械分析装置(THA :理学電機■製)を用いた。(6) Heating shrinkage rate A thermomechanical analyzer (THA: manufactured by Rigaku Denki ■) was used.

25°C140%RHにおいてサンプル長15mmのフ
ィラメント束の両端を瞬間接着剤で装置に固定し荷重2
.0にl、昇温速度10’C/分で350℃まで昇温し
、昇温前のサンプル長(ismm)に対する350°C
におけるサンプル長の比から収縮率を算出した。
At 25°C, 140% RH, both ends of a filament bundle with a sample length of 15 mm were fixed to the device with instant adhesive, and a load of 2 was applied.
.. The temperature was increased to 350°C at a heating rate of 10'C/min, and the temperature was increased to 350°C relative to the sample length (ismm) before heating.
The shrinkage rate was calculated from the ratio of sample lengths.

(7)加熱残留収縮率 (6)の測定法において350℃に達したのち、ただち
に降温速度10℃/分で25℃まで降温し、降温後のサ
ンプル長を測定し昇温前のサンプル長(15mlll)
に対する残留収縮率を算出した。
(7) In the measurement method for heating residual shrinkage rate (6), after reaching 350°C, immediately lower the temperature to 25°C at a cooling rate of 10°C/min, measure the sample length after cooling, and measure the sample length before heating ( 15ml)
The residual shrinkage rate was calculated.

(8)温度線膨脹係数 (6)の測定法において200’Cまで昇温し直ちに5
5℃まで10℃/分で降温、更に直ちに200℃まで1
0℃/分で昇温した。この2度目の昇温時の100〜2
00℃において昇温前後のサンプル長を測定し、繊維軸
方向の線膨張係数を算出した。
(8) In the measurement method of temperature linear expansion coefficient (6), the temperature is raised to 200'C and immediately 5
Temperature decreased at 10°C/min to 5°C, then immediately increased to 200°C
The temperature was raised at 0°C/min. 100-2 during this second temperature rise
The sample length before and after heating up was measured at 00°C, and the coefficient of linear expansion in the fiber axis direction was calculated.

第2表における紙状物の測定法 (1)厚み JIS P−8118に準拠しピーコック型厚み計で測
定した。
Measurement method for paper-like materials in Table 2 (1) Thickness Measured using a peacock type thickness gauge in accordance with JIS P-8118.

(2)平衡水分率 第1表の繊維の平衡水分率と同様JIS L−1013
に準拠し20°C165%RHにおける平衡水分率(%
)を算出した。但しこの場合はシクロヘキサンによるサ
ンプルの洗浄は行わなかった。
(2) Equilibrium moisture content Same as the equilibrium moisture content of fibers in Table 1 JIS L-1013
Equilibrium moisture content (%) at 20°C, 165%RH
) was calculated. However, in this case, the sample was not washed with cyclohexane.

(3)湿度線膨張係数 たて20cm、よこ20cmの正方形のサンプルを用い
、130℃、2時間の予備乾燥を行った。次に20°C
210%RHのデシケータ中で1週間調湿した。
(3) Humidity linear expansion coefficient A square sample measuring 20 cm in length and 20 cm in width was pre-dried at 130° C. for 2 hours. then 20°C
The humidity was controlled for one week in a desiccator at 210% RH.

1週間後の該サンプルのたでの両端、よこの両端の長さ
を読取顕微鏡を用いて読みとった。
One week later, the lengths of both vertical and horizontal ends of the sample were read using a reading microscope.

次に20℃、100%RHのデシケータ中に該サンプル
を入れ1週間調湿した。調湿完了後サンプルのたでの両
端、よこの両端の長さを読取顕微鏡を用いで読みとり、
90%RH差における湿度線膨張係数を算出した。
Next, the sample was placed in a desiccator at 20° C. and 100% RH, and the humidity was controlled for one week. After the humidity conditioning is completed, read the length of both the vertical and horizontal ends of the sample using a reading microscope.
The humidity linear expansion coefficient at a 90% RH difference was calculated.

(4)加熱収縮率 25℃、 40%RHにおいてザンプル長15mm、サ
ンプル幅4.5mmの紙状物を荷重2.0g、昇温速度
10℃/分で第1表における繊維の測定法と同様の方法
で算出した。
(4) Heating shrinkage rate 25°C, 40%RH, sample length 15mm, sample width 4.5mm paper-like material, load 2.0g, heating rate 10°C/min, same as the fiber measurement method in Table 1. Calculated using the method.

(5)加熱残留収縮率 (4)の条件で第1表における繊維の測定法と同様の方
法で算出した。
(5) Heating residual shrinkage rate Calculated using the same method as the fiber measurement method in Table 1 under the conditions of (4).

(6)温度線膨脹係数 (4)の条件で第1表における繊維の測定法と同様の方
法で締出した。
(6) Temperature Linear Expansion Coefficient (4) The fibers were determined in the same manner as the method for measuring fibers in Table 1.

上記の(3)、 (4)、 (5)、 (6)の8飴は
たて・よこの平均値を算出した。
The average value of the 8 candies (vertical and horizontal) in (3), (4), (5), and (6) above was calculated.

第3表における銅張板の測定法 (1)厚み 第2表における紙状物と同様の方法で測定した。Measurement methods for copper clad plates in Table 3 (1) Thickness It was measured in the same manner as for the paper-like material in Table 2.

(2)高湿時のカール度 たてiocm、よこiocmの銅張板サンプルを20°
C290%RHのデシケータ中で3日間保持し、この際
カールして最も接近し合った両辺の平均距離でカール度
を示した。
(2) Curl degree at high humidity: Vertical IOCM, horizontal IOCM copper clad plate sample at 20°
It was kept in a C290%RH desiccator for 3 days, and the degree of curl was expressed as the average distance between the two sides that curled closest to each other.

(3)ハンダ耐熱性 、JIS C4481(印刷回路用銅張積層板試験法)
に準拠した。サンプルはたて5 cm、よこ5cmの正
方形とした。ハンダ浴温度は260℃、280℃。
(3) Solder heat resistance, JIS C4481 (Test method for copper-clad laminates for printed circuits)
Compliant with. The sample was a square with a length of 5 cm and a width of 5 cm. Solder bath temperature is 260℃, 280℃.

300℃1時間は60秒とした。各温度で60秒後爪出
し室温まで冷却後銅箔面およびシート面のふくれ、剥れ
を調べた。一方300℃、 60秒後のハンダ浴上、お
よびハンダ浴から取出し常温まで冷却したサンプルのカ
ール度を(2)と同様の方法で測定した。
One hour at 300°C was 60 seconds. After 60 seconds at each temperature, the nails were removed, and after cooling to room temperature, the copper foil surface and sheet surface were examined for blistering and peeling. On the other hand, the curl degree of the sample on the solder bath after 60 seconds at 300° C. and the sample taken out from the solder bath and cooled to room temperature was measured in the same manner as in (2).

(4)温度線膨脹係数 銅張板の一部を塩化第2鉄でエツチングし銅を取り除い
た゛リンプルについて第2表における紙状物の測定法と
同様の方法で測定したて、よこの平均値を算出した。
(4) Temperature Linear Expansion Coefficient The average value of the horizontal values of rimples obtained by etching a portion of a copper clad plate with ferric chloride to remove copper using the same method as that for measuring paper-like materials in Table 2. was calculated.

実施例1.比較例1〜3 全芳香族ポリアミド短繊維として下記のもの(第1表)
を使用した。
Example 1. Comparative Examples 1 to 3 The following wholly aromatic polyamide short fibers (Table 1)
It was used.

全芳香族ポリエーテルアミド繊維 テクノーラ■単糸繊度1.5de繊維長5……(余人v
iJ製) ポリメタフェニレンイソフタルアミド繊維コーネックス
■単糸繊度1.5de繊維長5mm(帝人■製) メタ系全芳香族ポリアミドパルプは下記の方法で製造し
た。
Fully aromatic polyether amide fiber Technora ■Single yarn fineness 1.5de fiber length 5...
(Manufactured by Teijin ■) Polymetaphenylene isophthalamide fiber Conex ■ Single yarn fineness 1.5de Fiber length 5 mm (Manufactured by Teijin ■) Meta-based wholly aromatic polyamide pulp was produced by the following method.

コーネックス■をN−メヂルピロリドンに溶解し12%
溶液を作成した。一方N−メチルピロリドンの30%水
溶液を作り非溶媒とした。
Dissolve Conex ■ in N-medylpyrrolidone to 12%
A solution was created. On the other hand, a 30% aqueous solution of N-methylpyrrolidone was prepared and used as a nonsolvent.

特開昭52−15621@公報に示される回転数10.
00ORPM 、ローター径150mmの攪拌装置に上
記重合体溶液1部、非溶@30部の割合で供給しながら
攪拌しメタ系全芳香族ポリアミドパルプを得た。
The rotation speed shown in JP-A-52-15621@publication is 10.
00ORPM and a stirring device with a rotor diameter of 150 mm, the above polymer solution was supplied in a ratio of 1 part and undissolved @ 30 parts while stirring to obtain a meta-based wholly aromatic polyamide pulp.

次に全芳香族ポリエーテルアミド短繊維とメタ系全芳香
族ポリアミドパルプとを重量比で50150の割合で混
合してスラリーを作成しタラピ一式角型抄紙機で抄紙後
表面温度130℃のロータリードライヤーにて接触乾燥
した。
Next, wholly aromatic polyether amide staple fibers and meta-based wholly aromatic polyamide pulp were mixed at a weight ratio of 50,150 to create a slurry, and the paper was made using a Tarapi square paper machine, followed by a rotary dryer at a surface temperature of 130°C. Contact dry.

その後金属ロール表面温度290℃、線圧200kg/
cm、速度5m/分の金属−金属カレンダーで熱圧処理
し坪量的64p/mの紙状物を得た〈実施例1゜比較例
1)。
After that, the metal roll surface temperature was 290℃, and the linear pressure was 200kg/
A paper-like product having a basis weight of 64 p/m was obtained by heat-pressure treatment with a metal-metal calendar at a speed of 5 m/min (Example 1, Comparative Example 1).

NOmeX■紙(NOmeX■410.3 nilデュ
ポン社製)、カプトンフィルム(KaptOn■100
 H,1milデュポン社製)についての評価結果(比
較例2,3)と共に第2表に示すが、全芳香族ポリエー
テルアミド短繊維とメタ系全芳香族ポリアミドパルプよ
りなる紙状物は平衡水分率、湿度線膨張係数、加熱収縮
率、加熱残留収縮率が極めて小さく温度線膨脹係数もO
に近い小さい値であった。
NOmeX paper (NOmeX 410.3 nil manufactured by DuPont), KaptOn film (KaptOn 100
As shown in Table 2 together with the evaluation results (Comparative Examples 2 and 3) for H, 1mil manufactured by DuPont, paper-like materials made of wholly aromatic polyetheramide short fibers and meta-based wholly aromatic polyamide pulp have equilibrium moisture content. The thermal expansion coefficient, humidity linear expansion coefficient, heating shrinkage rate, and heating residual shrinkage rate are extremely small, and the temperature linear expansion coefficient is also O.
It was a small value close to .

実施例2〜3 第2表で1qられた全芳香族ポリエーテルアミド短繊維
とメタ系全芳香族ポリアミドパルプとよりなる紙状物を
用い銅張加工を行った。
Examples 2 to 3 Copper cladding was performed using a paper-like material made of wholly aromatic polyether amide staple fibers listed as 1q in Table 2 and meta-based wholly aromatic polyamide pulp.

紙状物をエピコート1001 (エポキシ当量450〜
500、油化シ■ルエポキシ■製)、エピコート154
 (エポキシ当N176〜181.油化シェルエポキシ
II製)を主体とするエポキシ樹脂、4.4’−シアミ
ノジフェニルスルホン(Roussel Uclaf 
IIN製)。
Epicoat 1001 (epoxy equivalent: 450~
500, made of oil-based silicone epoxy), Epicoat 154
(Epoxy N176-181. Manufactured by Yuka Shell Epoxy II), 4,4'-cyamino diphenyl sulfone (Roussel Uclaf)
Made by IIN).

三フッ化ホウ素錯化合物(油化シェルエポキシ■製)を
主体とする硬化剤から成る2種の40%メチルエチルケ
トン溶液に浸漬したのちマングルで余分の樹脂を除去し
た。次に90℃、1分間および120℃、3分間の熱風
乾燥を行った。次に電解銅箔(@さ35μm、目付30
0(]/ TIt、日本電解■製)を積層し130℃、
 80kg/cm2.5分間のプレス硬化を行った。更
に150℃、2時間の熱風硬化を行った。
After immersing in two types of 40% methyl ethyl ketone solutions consisting of a curing agent mainly consisting of a boron trifluoride complex compound (manufactured by Yuka Shell Epoxy ■), excess resin was removed using a mangle. Next, hot air drying was performed at 90°C for 1 minute and at 120°C for 3 minutes. Next, electrolytic copper foil (@35μm, fabric weight 30
0(]/TIt, made by Nippon Denki ■) was laminated at 130℃,
Press hardening was performed at 80 kg/cm for 2.5 minutes. Further, hot air curing was performed at 150° C. for 2 hours.

また2種の含浸樹脂のフィルムを作成し樹脂自身の温度
線膨脹係数を測定したところ、α□−70.4X10−
6 /°C(実施例2)、αT = 58.3X 10
−6X℃(実施例3)であった。
In addition, when films of two types of impregnated resin were made and the temperature linear expansion coefficient of the resin itself was measured, it was found that α□-70.4X10-
6/°C (Example 2), αT = 58.3X 10
-6X°C (Example 3).

実施例2および実施例3のいず、れもハンダ耐熱性に優
れまた高湿下でカールが発生せず、温度線膨脹係数が極
めてOに近い値を有し耐熱寸法安定性が大である。
Both Example 2 and Example 3 have excellent solder heat resistance, do not curl under high humidity, have a temperature linear expansion coefficient extremely close to O, and have high heat resistant dimensional stability. .

比較例4〜6 ポリメタフェニレンイソフタルアミド短繊維とメタ系全
芳香族ポリアミドパルプとよりなる紙状物(比較例4 
) 、 NOmeX■紙(NOmeX■4103m1l
)(比較例5)、カプトンフィルム(Kapton■1
(IOILlmil)  (比較例6)を用い実施例2
と同様の方法で銅張加工を実施した。得られた銅張板の
評価結果を第3表に示す。いずれもハンダ耐熱性。
Comparative Examples 4 to 6 Paper-like material made of polymetaphenylene isophthalamide staple fibers and meta-based wholly aromatic polyamide pulp (Comparative Example 4)
), NOmeX paper (NOmeX 4103ml 1l
) (Comparative Example 5), Kapton film (Kapton ■ 1
(IOILlmil) Example 2 using (Comparative Example 6)
Copper cladding was carried out using the same method. Table 3 shows the evaluation results of the obtained copper clad board. Both are solder heat resistant.

高湿時のカール、温度線膨脹係数が劣っていた。Curling at high humidity and temperature linear expansion coefficient were poor.

Claims (1)

【特許請求の範囲】[Claims]  全芳香族ポリエーテルアミド短繊維とメタ系全芳香族
ポリアミドパルプとを含み温度線膨脹係数(α_T)が
−20×10^−^6/℃≦α_T≦20×10^−^
6/℃である紙状物及び樹脂から成るシートを基材また
はカバーレイに使用したことを特徴とするプリント配線
板。
Contains wholly aromatic polyetheramide short fibers and meta-based wholly aromatic polyamide pulp, and has a temperature linear expansion coefficient (α_T) of -20×10^-^6/℃≦α_T≦20×10^-^
A printed wiring board characterized in that a sheet made of a paper-like material and a resin having a temperature of 6/°C is used as a base material or a coverlay.
JP11607686A 1986-05-22 1986-05-22 Printed wiring board Pending JPS62273792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11607686A JPS62273792A (en) 1986-05-22 1986-05-22 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11607686A JPS62273792A (en) 1986-05-22 1986-05-22 Printed wiring board

Publications (1)

Publication Number Publication Date
JPS62273792A true JPS62273792A (en) 1987-11-27

Family

ID=14678115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11607686A Pending JPS62273792A (en) 1986-05-22 1986-05-22 Printed wiring board

Country Status (1)

Country Link
JP (1) JPS62273792A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807703A1 (en) * 1996-05-15 1997-11-19 Matsushita Electric Industrial Co., Ltd Nonwoven fabric cloth substrate for printed wiring boards, and prepreg using the same
JP2003023222A (en) * 2001-07-09 2003-01-24 Ibiden Co Ltd Printed circuit board
JP2007211182A (en) * 2006-02-10 2007-08-23 Kyocera Chemical Corp Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807703A1 (en) * 1996-05-15 1997-11-19 Matsushita Electric Industrial Co., Ltd Nonwoven fabric cloth substrate for printed wiring boards, and prepreg using the same
US5858884A (en) * 1996-05-15 1999-01-12 Matsushita Electric Industrial Co., Ltd. Nonwoven fabric cloth substrate for printed wiring boards, and prepreg using the same
US6045897A (en) * 1996-05-15 2000-04-04 Matsushita Electric Industrial Co., Ltd. Nonwoven fabric cloth substrate for printed wiring boards, and prepreg using the same
JP2003023222A (en) * 2001-07-09 2003-01-24 Ibiden Co Ltd Printed circuit board
JP2007211182A (en) * 2006-02-10 2007-08-23 Kyocera Chemical Corp Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board

Similar Documents

Publication Publication Date Title
JP5117746B2 (en) Aramid-filled polyimides having advantageous thermal expansion properties and related methods
US5049435A (en) Flexible sheet reinforced with poly(aromatic amide) non-woven fabric and use thereof
JP3401381B2 (en) Aromatic polyamide fiber paper, prepreg and laminate made of the aromatic polyamide fiber paper
US6319605B1 (en) Heat-resistant fiber paper
EP0870795A1 (en) Composite film comprising low-dielectric resin and para-oriented aromatic polyamide
JP3631385B2 (en) Laminate substrate and method for producing the same
WO2006077789A1 (en) Polyketone fiber paper, polyketone fiber paper core material for printed wiring board and printed wiring board
JPH0192233A (en) Resin impregnated sheet
JPS62273792A (en) Printed wiring board
JPH11255908A (en) Printed circuit board substrate and its production
JPS62261190A (en) Printed wiring board
JPH10338762A (en) Porous para-oriented aromatic polyamide film, its prepreg and base material for printed circuit using the same and laminated sheet for printed circuit
JPS62274688A (en) Printed wiring board
JPS62274689A (en) Printed wiring board
JP2010199437A (en) Laminated board for printed wiring board
JP3484455B2 (en) Aromatic polyamide fiber paper
JP3806200B2 (en) Prepreg and laminate
JP3475234B2 (en) Aromatic polyamide fiber paper
JP2003221794A (en) Substrate and prepreg for laminated board and laminated board
JP2003031911A (en) Substrate for circuit board, prepreg, and circuit board
CN101107397A (en) Polyketone fiber paper, polyketone fiber paper core material for printed wiring board and printed wiring board
JP7011396B2 (en) Glass cloth, prepreg, and printed wiring board
JP2000135765A (en) Laminate of heat-resistant film and polyimide resin, and its production
JP2002212893A (en) Aromatic polyamide fiber paper
JP2000226789A (en) Aromatic polyamide fiber paper