JPS62273428A - Optical test circuit - Google Patents

Optical test circuit

Info

Publication number
JPS62273428A
JPS62273428A JP11609186A JP11609186A JPS62273428A JP S62273428 A JPS62273428 A JP S62273428A JP 11609186 A JP11609186 A JP 11609186A JP 11609186 A JP11609186 A JP 11609186A JP S62273428 A JPS62273428 A JP S62273428A
Authority
JP
Japan
Prior art keywords
optical
waveguide
test
optical pulse
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11609186A
Other languages
Japanese (ja)
Inventor
Morio Kobayashi
盛男 小林
Masao Kawachi
河内 正夫
Makoto Sumita
真 住田
Yasubumi Yamada
泰文 山田
Toshiaki Matsumoto
松本 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11609186A priority Critical patent/JPS62273428A/en
Publication of JPS62273428A publication Critical patent/JPS62273428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a fault to be searched for with little insertion loss and without cutting an optical communication service by inserting a monitoring reflecting mirror and a testing light wavelength filter in an optical waveguide circuit and making the wavelengths of a test optical pulse and an optical signal different from each other. CONSTITUTION:Angles theta1 and theta2 between waveguide paths 21a and 21b and between 21d and 21e are set 30 deg. and a monitoring reflecting mirror 22 and an optical pulse testing light wavelength filter 25 are set to about 15 deg. relative to the waveguide paths 21a and 21c, respectively. By using along wavelength transmitting filter as the filter 25 and making the wavelengths of an optical pulse and a test optical pulse different from each other, an optical signal is transmitted and the test optical pulse and backscattering light are reflected. Accordingly, the insertion loss of a test circuit is little for the optical signal an the optical pulse. Further, the waveguide paths 21b and 21e are arranged in a truncated chevron-shape. The test optical pulse that is not wholly reflected by the filter 25 and forward scattering light produced by the filter 25 are prevented from being incident on the waveguide path 21b as crosstalk light. Accordingly, since the test optical pulse is not put into subscriber instruments in an optical pulse test, a fault point can be searched for while a communication condition is held as it is.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、光伝送方式における送出光信号のモニタと光
フアイバ伝送路の障害点探索を行うための光試験回路に
関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention provides an optical test circuit for monitoring a transmitted optical signal in an optical transmission system and searching for a fault point in an optical fiber transmission line. It is related to.

(従来の技術) 第7図は従来の光試験回路の構成図であって、la、l
bは電気信号(下り)、2と12は電気−光変換器、3
は光信号(下り)、4と7は光合分波器、5は光試験回
路、6は光フアイバ伝送路、8と14は光−電気変換器
、9は端末装置、11a。
(Prior Art) FIG. 7 is a configuration diagram of a conventional optical test circuit, in which la, l
b is an electrical signal (downstream), 2 and 12 are electrical-to-optical converters, 3
is an optical signal (downlink), 4 and 7 are optical multiplexers/demultiplexers, 5 is an optical test circuit, 6 is an optical fiber transmission line, 8 and 14 are optical-to-electrical converters, 9 is a terminal device, and 11a.

11bは電気信号(上り)、13は光信号(上り)、1
5はモニタ装置、16は光分岐回路、17は光パルス試
験器、18は光合流目路である。
11b is an electrical signal (upstream), 13 is an optical signal (upstream), 1
5 is a monitor device, 16 is an optical branch circuit, 17 is an optical pulse tester, and 18 is an optical convergence path.

局側での電話、ファクシミリ、画像などの電気信号(下
り)laは、電気−光変換器2で光信号(下り)3に変
換される。光信号(下り)3は、光合分波器4と光試験
回路5を通過し、光フアイバ伝送路6に送出される。光
ファイバ伝・送路6で伝送された光信号(下り)3は、
加入者側において光合分波器7を通り、光−電気変換器
8て電気信号(下り)lbに変換され、最終的には電話
、ファクシミリ、画像の情報として端末装置9から出力
される。一方、加入者側からの電話、ファクシミリ、画
像の情報は、まず電気信号(上り)11aとして電気−
光変換器12に人力され、光信号(上り)13に変換さ
れる。光信号(上り)13は光合分波器7を介して光フ
アイバ伝送路6に送出される。
An electrical signal (downstream) la such as a telephone, facsimile, image, etc. at the office side is converted into an optical signal (downstream) 3 by an electrical-to-optical converter 2 . The optical signal (downlink) 3 passes through an optical multiplexer/demultiplexer 4 and an optical test circuit 5, and is sent to an optical fiber transmission line 6. The optical signal (downlink) 3 transmitted through the optical fiber transmission/transmission line 6 is
On the subscriber side, the signal passes through an optical multiplexer/demultiplexer 7, is converted into an electric signal (downstream) lb by an optical-electrical converter 8, and is finally outputted from a terminal device 9 as telephone, facsimile, and image information. On the other hand, telephone, facsimile, and image information from the subscriber side is first sent to the electrical network as an electrical signal (upstream) 11a.
The signal is input to an optical converter 12 and converted into an optical signal (upstream) 13. The optical signal (upstream) 13 is sent to the optical fiber transmission line 6 via the optical multiplexer/demultiplexer 7.

この光信号(上り)13は、局側において光試験回路5
と光合分波器4を通過し、光−電気変換器14により電
気信号(上り)11bになり、加入者側からの各種情報
が局側に送られる。
This optical signal (upstream) 13 is sent to an optical test circuit 5 at the office side.
The signal passes through the optical multiplexer/demultiplexer 4, becomes an electrical signal (upstream) 11b by the optical-to-electrical converter 14, and various information from the subscriber side is sent to the station side.

障害の発生事例を見てみると、光フアイバ伝送路が完全
に断線する場合よりも、通信は一応可能ではあるが、光
フアイバ伝送路の損失が増加したり、その特性が不安定
になったりする場合が多いので、通信状態を保ったまま
試験を行なえることが望ましい。そのため光試験回路5
が使われる。
Looking at cases of failure, we find that communication is still possible, but the loss of the optical fiber transmission line increases or its characteristics become unstable, rather than the case where the optical fiber transmission line is completely disconnected. Therefore, it is desirable to be able to perform tests while maintaining communication status. Therefore, the optical test circuit 5
is used.

これは光信号(下り)3のモニタのための光分岐回路1
6と障害点探索のための光合流目路18とからなる。
This is optical branch circuit 1 for monitoring optical signal (downstream) 3.
6 and a light merging path 18 for searching for a fault point.

従来、光分岐回路16には1〜数%程度の所要の反射率
を有するバルク形の多層膜反射ミラーが用いられている
。それにより光信号(下り)3の1〜10%をモニタ光
として取り出し、モニタ回路15に入力して光信号(下
り)3の送出状況をモニタする。また光合流目路18に
は反射率50%のバルク形多層膜反射ミラーが用いられ
ている。障害点探索は、光パルス試験器17からの試験
光パルスを反射ミラーの光合流目路18を介して光フア
イバ伝送路6に送出し、この試験光パルスによって生じ
る光フアイバ伝送6路中での後方散乱光を上記光合流目
路18を介して光パルス試験器17で受信して行われる
Conventionally, the optical branching circuit 16 uses a bulk type multilayer reflective mirror having a required reflectance of about 1 to several percent. Thereby, 1 to 10% of the optical signal (downstream) 3 is taken out as monitor light and input to the monitor circuit 15 to monitor the transmission status of the optical signal (downstream) 3. Further, a bulk type multilayer film reflection mirror with a reflectance of 50% is used in the light convergence channel 18. The fault point search is performed by sending a test light pulse from the light pulse tester 17 to the optical fiber transmission line 6 via the optical convergence path 18 of the reflecting mirror, and detecting the damage caused by this test light pulse in the six optical fiber transmission lines. The backscattered light is received by the optical pulse tester 17 via the optical convergence path 18 and performed.

後方散乱光の受信例を第8図に示す。図示のようにコネ
クタ10や破断点Aにおいては、受信レベルが不連続に
減少するので、その受光レベルの変動量からコネクタ1
0の不良や光フアイバ破断などの障害を検知する。ここ
で、後方散乱光の戻り時間Tと距離りの間には、nを光
ファイバの屈折率、Cを光速として、L=cT/(2n
)の関係があり、従って障害点の位置を特定できる。
FIG. 8 shows an example of receiving backscattered light. As shown in the figure, the reception level decreases discontinuously at the connector 10 and the breaking point A, so the connector 1
Detects failures such as zero defects and optical fiber breaks. Here, between the return time T of the backscattered light and the distance, L=cT/(2n
), and therefore the location of the failure point can be identified.

ところで従来の光試験回路の光合流目路18は50%反
射率の反射ミラーで構成されているので、次のような欠
点があった。
By the way, since the light convergence path 18 of the conventional optical test circuit is constituted by a reflecting mirror having a reflectance of 50%, it has the following drawbacks.

■光パルス試験時の試験光パルスのZの光パワーだけが
光フアイバ伝送路6に人力され、残りの2の光パワーが
損失になる。また光フアイバ伝送路6から戻る後方散乱
光についても2の光パワーだけが光パルス試験器17に
人力され、残りの2の光パワーは光合分波器4側へ漏れ
て損失になる。すなわち反射ミラーを使っているので、
光パルス試験では6dBの損失が避けられず、障害点検
知が困難になっている。
(2) Only the Z optical power of the test optical pulse during the optical pulse test is input to the optical fiber transmission line 6, and the remaining 2 optical powers become losses. Also, regarding the backscattered light returning from the optical fiber transmission line 6, only two optical powers are input to the optical pulse tester 17, and the remaining two optical powers leak to the optical multiplexer/demultiplexer 4 side and become a loss. In other words, since a reflective mirror is used,
In optical pulse tests, a loss of 6 dB is unavoidable, making it difficult to detect fault points.

■光信号(下り)3および光信号(上り)13は、光合
流目路18で%の光パワーが失われ3dBの損失が避け
られない。そのため伝送距離が短くなる。
(2) In the optical signal (downstream) 3 and the optical signal (upstream) 13, % of the optical power is lost in the optical converging path 18, and a loss of 3 dB is unavoidable. Therefore, the transmission distance becomes shorter.

また従来の光試験回路の光分岐回路16と光合流目路1
8にバルク形の反射ミラーを使っているので、光ファイ
バとの接続部に平行光ビームにするためのレンズ系が不
可欠であり、反射ミラーとレンズ系と光ファイバとの位
置合わせの工程に熟練と長時間を要する欠点があった。
In addition, the optical branch circuit 16 and the optical convergence path 1 of the conventional optical test circuit
Since a bulk-type reflective mirror is used in step 8, a lens system to create a parallel light beam is essential at the connection point with the optical fiber, and the process of aligning the reflective mirror, lens system, and optical fiber requires skill. The drawback was that it required a long time.

またバルク形の反射ミラーを使った構成のため小型化で
きない欠点があった。
Furthermore, since the structure uses a bulk reflecting mirror, it has the disadvantage that it cannot be miniaturized.

また従来は光パルス試験の波長について特別に配慮され
ておらず、通常使用レーザの仕様を統一して安価にする
ため光信号(上り)または光信号(下り)の波長と一致
させていた。そのため光パルス試験時には、光通信サー
ビスを切断して障害点探索をしなければならない欠点が
あった。
Furthermore, in the past, no special consideration was given to the wavelength of the optical pulse test, and the wavelength of the optical signal (upstream) or optical signal (downstream) was made to match the wavelength of the optical signal (upstream) or optical signal (downstream) in order to standardize the specifications of commonly used lasers and make them cheaper. Therefore, during optical pulse testing, there was a drawback that the optical communication service had to be disconnected to search for the point of failure.

(発明が解決しようとする問題点) 本発明は、挿入損失が小さく、かつ光通信サービスの切
断を伴わない、光信号のモニタならびに障害点探索用の
光試験回路を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide an optical test circuit for monitoring optical signals and searching for failure points, which has low insertion loss and does not involve disconnection of optical communication services.

(問題点を解決するための手段) 本発明は、反射ミラーを用いたモニタ用の光分岐回路と
光波長フィルタを用いた光パルス試験用の光合流回路を
組み合わせて光回路を構成し、試験光パルスの波長を光
信号の波長と異なる波長に設定し、光回路を導波路構造
で製作する。
(Means for Solving the Problems) The present invention configures an optical circuit by combining an optical branching circuit for monitoring using a reflecting mirror and an optical converging circuit for optical pulse testing using an optical wavelength filter. The wavelength of the optical pulse is set to a wavelength different from that of the optical signal, and the optical circuit is fabricated with a waveguide structure.

すなわち一直線状の導波路と、この導波路に対して折れ
曲がりの向きが反対になるように、かつ互いに位置を離
して配置されたモニタ用導波路と、光試験用導波路とを
基板上に一体に形成する。そして前記一直線状の導波路
とモニタ用導波路の交差点に、モニタ用の反射ミラーを
設置し、また前記一直線状の導波路と試験用導波路の交
差点に、光信号(上り)および光信号(下り)を透過し
、かつこれらの光信号と異なる波長を有する試験光パル
スを反射する光波長フィルタを設置する。
In other words, a linear waveguide, a monitoring waveguide whose bending direction is opposite to the waveguide, and an optical test waveguide arranged at a distance from each other are integrated on a substrate. to form. A reflective mirror for monitoring is installed at the intersection of the linear waveguide and the monitoring waveguide, and an optical signal (upstream) and an optical signal ( An optical wavelength filter is installed that transmits a test optical pulse (downstream) and reflects a test optical pulse having a wavelength different from these optical signals.

従来の技術とは、光波長フィルタによる光合流回路の使
用と適切な波長の試験光パルスの使用が異なっており、
それによって、従来避けられなかった光信号に対する3
dBの損失と試験光パルスに対する6dBの損失を除去
でき、低損失の光試験回路を実現できる。また導波路構
造を使った点が従来技術と異なっており、それによって
光試験回路の生産性の向上と小型化が達成される。
The difference from conventional technology is the use of an optical combining circuit with an optical wavelength filter and the use of a test optical pulse of an appropriate wavelength.
As a result, 3
A dB loss and a 6 dB loss for the test optical pulse can be removed, and a low-loss optical test circuit can be realized. The present invention also differs from conventional technology in that it uses a waveguide structure, thereby achieving improved productivity and miniaturization of the optical test circuit.

第1図は本発明の第1の実施例の斜視図であって、19
.24.27は光ファイバ、20は入力ポート、21a
〜21eは導波路、22はモニタ用の反射ミラー、23
はモニタポート、25は光パルス試験用の光波長フィル
タ、26は出力ポート、28は光パルス試験ポート、3
3はファイバガイドである。
FIG. 1 is a perspective view of a first embodiment of the present invention, 19
.. 24.27 is an optical fiber, 20 is an input port, 21a
~21e is a waveguide, 22 is a reflective mirror for monitoring, 23
is a monitor port, 25 is an optical wavelength filter for optical pulse testing, 26 is an output port, 28 is an optical pulse test port, 3
3 is a fiber guide.

光信号(下り)3は、光合分波器4を通り、光ファイバ
19により光試験回路5の人力ポート20に人力され、
導波路21aを通り、モニタ用の反射ミラー22に達す
る。ここで、光信号(下り)3の一部の光パワーが反射
され、モニタ光として導波路21b1モニタポート23
、光ファイバ24を経由してモニタ装置15に人力され
、光信号(下り)3の送出状態がモニタされる。一方、
大部分の光信号(下り)3は、導波路2101光パルス
試験用の光波長フィルタ25、導波路21d、出力ポー
ト26を経由し、光フアイバ伝送路6に送出される。
The optical signal (downstream) 3 passes through the optical multiplexer/demultiplexer 4 and is inputted to the manual port 20 of the optical test circuit 5 via the optical fiber 19.
The light passes through the waveguide 21a and reaches the reflective mirror 22 for monitoring. Here, part of the optical power of the optical signal (downstream) 3 is reflected and sent to the waveguide 21b1 monitor port 23 as monitor light.
, is manually input to the monitor device 15 via the optical fiber 24, and the sending state of the optical signal (downlink) 3 is monitored. on the other hand,
Most of the optical signal (downstream) 3 is sent to the optical fiber transmission line 6 via the waveguide 2101, the optical wavelength filter 25 for optical pulse testing, the waveguide 21d, and the output port 26.

光パルス試験器17からの試験光パルスは、元ファイバ
27、光パルス試験ポート28、導波路21eを経由し
、光波長フィルタ25ですべての光パワーが反射され、
導波路21d1出力ポート26を通って光フアイバ伝送
路6に出力される。そして光フアイバ伝送路6中で生じ
た後方散乱光は逆の経路を経て光パルス試験器17に人
力される。
The test light pulse from the light pulse tester 17 passes through the original fiber 27, the light pulse test port 28, and the waveguide 21e, and all the light power is reflected by the light wavelength filter 25.
The signal is output to the optical fiber transmission line 6 through the waveguide 21d1 output port 26. The backscattered light generated in the optical fiber transmission line 6 is inputted to the optical pulse tester 17 via the reverse path.

第1図に示す光試験回路5は、次のようになっている。The optical test circuit 5 shown in FIG. 1 is constructed as follows.

ファイバガイド33は、導波路形成時に同時に加工して
設けたもので、このガイド間の溝に光ファイバ19を挿
入するだけで導波路21aとの位置合わせが行われるよ
うにして、アライメント工程を簡単化している。
The fiber guide 33 is processed and provided at the same time as the waveguide is formed, and alignment with the waveguide 21a is performed simply by inserting the optical fiber 19 into the groove between the guides, simplifying the alignment process. It has become

導波路21bと21eの位置を離すとともに、これらの
導波路の折れ曲がりの向きが反対になるように、これら
の導波路を「ハ」の字状に配置することによ、す、導波
路21e中を伝搬し、光波長フィルタ25で完全に反射
しきれなかった試験光パルスおよび光波長フィルタ25
によって生じた前方散乱光が、クロストーク光としてモ
ニタ用の導波路21bに入らないようにした。測定によ
れば、このクロストークは測定限界の一65dB以下と
微小であった。
By separating the waveguides 21b and 21e and arranging them in a V-shape so that the bending directions of these waveguides are opposite, the center of the waveguide 21e is The test light pulse that propagated and was not completely reflected by the light wavelength filter 25 and the light wavelength filter 25
The forward scattered light generated by this is prevented from entering the monitoring waveguide 21b as crosstalk light. According to measurements, this crosstalk was minute, less than the measurement limit of 65 dB.

次に81基板上の石英系先導波路を使った光試験回路に
より、各構成要素の構造を詳しく説明する。
Next, the structure of each component will be explained in detail using an optical test circuit using a quartz-based guiding waveguide on an 81 substrate.

導波路2La〜21eの構造の断面を第2図に示す。FIG. 2 shows a cross section of the structure of waveguides 2La to 21e.

第2図において、29はSi基板、30は石英バッファ
層、31は石英系コア、32は石英クラッド層である。
In FIG. 2, 29 is a Si substrate, 30 is a quartz buffer layer, 31 is a quartz core, and 32 is a quartz cladding layer.

Si基板29上に、石英バッファ眉、石英系コア層の順
で火炎直接堆積法により形成した平面状の石英系先導波
膜を反応性イオンエツチング法で所定の幅でSi基板の
表面までエツチングし、その後、CVD法により石英系
コア31の上部と側面を石英膜で覆って石英クラッド層
32とした。各部のガラス組成と形状は以下の通りであ
る。
A planar quartz-based waveguide film is formed on the Si substrate 29 by a flame direct deposition method in the order of a quartz buffer layer and a quartz-based core layer, and is etched to the surface of the Si substrate to a predetermined width using a reactive ion etching method. Thereafter, the top and side surfaces of the quartz-based core 31 were covered with a quartz film to form a quartz cladding layer 32 using a CVD method. The glass composition and shape of each part are as follows.

石英バッファ層・・・SiO。ガラス、10μm[石英
系コア・・・SlO□・TlO□ガラス、45μm幅×
45μm厚 石英クラッド層・・・5in2ガラス、3μm厚なお(
石英系コアと石英バッファ層)および(石英系コアと石
英クラッド層)の比屈折率差はそれぞれ共に1%とした
Quartz buffer layer...SiO. Glass, 10 μm [quartz core...SlO□・TlO□ glass, 45 μm width×
45μm thick quartz cladding layer...5in2 glass, 3μm thick (
The relative refractive index differences between (the quartz core and the quartz buffer layer) and (the quartz core and the quartz cladding layer) were both 1%.

モニタ用の反射ミラー22にはGGGまたは高屈折率ガ
ラスの厚さ50μm程度の薄片を用い、導波路中に設け
た反射ミラー用の溝中にこの薄片を挿入し、接着剤で固
定した。ここで、導波路21aと21bの間の角θ1は
30°に設定し、上記反射ミラー用の溝は導波路21a
の軸方向に対して15°になるように設定した。GGG
を用いた場合、約2%のフレネル反射によるモニタ光が
、また屈折率1.8〜2.0のガラスを用いた場合、約
0.8〜2%のモニタ光が得られた。なお1〜数層のS
lO□・T10□交互多層膜による多層膜ミラーを用い
てもよい。この場合0〜10%程度のモニタ光が得られ
る。
A thin piece of GGG or high refractive index glass with a thickness of about 50 μm was used as the reflective mirror 22 for monitoring, and this thin piece was inserted into a groove for the reflective mirror provided in the waveguide and fixed with an adhesive. Here, the angle θ1 between the waveguides 21a and 21b is set to 30°, and the groove for the reflective mirror is formed in the waveguide 21a.
The angle was set at 15° with respect to the axial direction. GGG
When a glass with a refractive index of 1.8 to 2.0 was used, a monitor light of about 2% was obtained due to Fresnel reflection, and when a glass having a refractive index of 1.8 to 2.0 was used, a monitor light of about 0.8 to 2% was obtained. In addition, one to several layers of S
A multilayer mirror made of alternating lO□ and T10□ multilayer films may also be used. In this case, approximately 0 to 10% of the monitor light can be obtained.

光パルス試験用の光波長フィルタ25には、20層以上
のSiD□・TlO□交互多層膜による長波長通過光波
長フィルタを用いた。この実施例では光信号(下り)に
波長1.2μm、光信号(上り)に波長1.3 μmを
用い、試験光パノνスに0.85μmを用いた。そこで
光波長フィルタには、第3図に示すように、力・lトオ
フ波長約1μmのものを用いた。
As the optical wavelength filter 25 for the optical pulse test, a long wavelength passing optical wavelength filter made of an alternating multilayer film of 20 or more layers of SiD□ and TlO□ was used. In this example, a wavelength of 1.2 μm was used for the optical signal (downstream), a wavelength of 1.3 μm was used for the optical signal (upstream), and a wavelength of 0.85 μm was used for the test light panosus. Therefore, as shown in FIG. 3, an optical wavelength filter with a power-off wavelength of about 1 μm was used.

この長波長通過光波長フィルタは透過率0%では全反射
するので、前記のように試験光パルスと後方散乱光はす
べて反射され、一方、光信号(上り:下り)はすべて通
過する。この光波長フィルタ22も厚さ50μm程度の
薄片にし、導波路21Cの軸方向に対して15°になる
ように形成した光波長フィルタ用の溝中に挿入し、接着
剤で固定した。すなわちここで、導波路21dと216
の間の角θ2は30゜に設定した。
Since this long-wavelength passing light wavelength filter causes total reflection when the transmittance is 0%, the test light pulse and backscattered light are all reflected as described above, while all the optical signals (upstream/downstream) are passed through. This optical wavelength filter 22 was also made into a thin piece with a thickness of about 50 μm, inserted into an optical wavelength filter groove formed at an angle of 15° with respect to the axial direction of the waveguide 21C, and fixed with an adhesive. That is, here, the waveguides 21d and 216
The angle θ2 between them was set to 30°.

以上述べたような構成にしたことにより、従来の光試験
器で問題になっていた光信号(上り、下り)の3dBの
損失は無くなり、また光パルス試験での6dBの損失も
無くなる。
With the configuration described above, the 3 dB loss of optical signals (up and down), which was a problem with conventional optical testers, is eliminated, and the 6 dB loss in optical pulse testing is also eliminated.

また試験光パルスおよび後方散乱光が局側の光−電気変
換器および電気−光変換器に入らないので、光パルス試
験時においても、局側の光信号送受信は正常に行われる
。加入者側の光合分波器7(第7図)の直前に光波長フ
ィルタ25(第1図)と同一の光波長フィルタを1枚挿
入しておくことにより、加入者側の光−電気変換器およ
び電気−光変換器に試験パルス光が入らないようにでき
るので、光パルス試験時においても、加入者側の光信号
送受信は正常に行われる。その結果、局側と加入者側で
の光通信サービスを切断することなく、通信状態を保っ
たままで、任意の時に障害点探索ができる。
Further, since the test light pulse and the backscattered light do not enter the optical-to-electrical converter and the electrical-to-optical converter at the central office, optical signal transmission and reception at the central office are performed normally even during the optical pulse test. By inserting one optical wavelength filter identical to the optical wavelength filter 25 (Fig. 1) immediately before the optical multiplexer/demultiplexer 7 (Fig. 7) on the subscriber side, optical-to-electrical conversion on the subscriber side can be achieved. Since the test pulse light can be prevented from entering the device and the electro-optical converter, optical signal transmission and reception on the subscriber side can be performed normally even during the optical pulse test. As a result, the point of failure can be searched for at any time while maintaining the communication state without disconnecting the optical communication service between the station and subscriber sides.

第4図は本発明の第2の実施例の斜視図である。FIG. 4 is a perspective view of a second embodiment of the invention.

これは、第1の実施例で述べたモニタ用の反射ミラーの
機能と光パルス試験用の光波長フィルタの機能を、1枚
の光フィルタ34に持たせることにより、光回路の構成
を簡略化したものである。
This simplifies the configuration of the optical circuit by providing a single optical filter 34 with the function of a reflective mirror for monitoring and the function of an optical wavelength filter for optical pulse testing as described in the first embodiment. This is what I did.

光フィルタ34には、第5図に示すように、基板34a
上に310□−TiO□交互多層膜フィルタ34bを形
成したものを用いる。ここで基板34aにGGGや高屈
折率ガラスを用いることにより、基板の裏面34Cに反
射ミラー機能を、また基板の表面34dに光波長フィル
タ機能を持たせた。Si基板上に「×」字状に導波路を
形成し、その交差部に設けた溝中に上記光フィルタ34
を挿入、固定して光試験回路を製作した。導波路(21
aと21b)および(21eと21d)のなす角は30
°にした。この光試験回路の機能は第1の実施例と同様
であるが、試験光パルスが光フィルタ34を漏れてモニ
タ装置15に入る恐れがある。
As shown in FIG. 5, the optical filter 34 includes a substrate 34a.
A filter on which a 310□-TiO□ alternating multilayer filter 34b is formed is used. By using GGG or high refractive index glass for the substrate 34a, the back surface 34C of the substrate has a reflecting mirror function, and the front surface 34d of the substrate has a light wavelength filter function. A waveguide is formed in the shape of an "X" on the Si substrate, and the optical filter 34 is placed in a groove provided at the intersection of the waveguide.
An optical test circuit was fabricated by inserting and fixing. Waveguide (21
The angle between a and 21b) and (21e and 21d) is 30
I made it to °. Although the function of this optical test circuit is similar to that of the first embodiment, there is a risk that the test light pulse may leak through the optical filter 34 and enter the monitor device 15.

従って、モニタに必要とされるS’/Nが充分に得られ
るだけのモニタ光パワーが許される場合に、この第2の
実施例は有用である。
Therefore, this second embodiment is useful when the monitor optical power is allowed to be sufficient to obtain the S'/N required for the monitor.

なお光フィルタ34には、第6図に示すように、基板3
4Hの上に反射ミラーの機能を有する1〜数層の810
□−丁lO7交互多層膜34eを積層し、その上に波長
の1〜数倍の厚さのSiO□分離層34fを積層し、そ
の上に光波長フィルタ機能を有する20層以上のSiO
□−TiO□交互多層膜フィルタ34bを積層したもの
を用いてもよい。この場合にはモニタ光は交互多層膜3
4eの層数や膜厚の調整によって0〜lO%程度の任意
のものが得られる。
Note that the optical filter 34 includes a substrate 3 as shown in FIG.
One to several layers of 810 having the function of a reflective mirror on top of 4H
A □-1O7 alternating multilayer film 34e is laminated, a SiO□ separation layer 34f having a thickness of one to several times the wavelength is laminated thereon, and 20 or more SiO layers having an optical wavelength filter function are laminated thereon.
A stack of □-TiO□ alternating multilayer filters 34b may be used. In this case, the monitor light is the alternating multilayer film 3
By adjusting the number of layers and film thickness of 4e, an arbitrary value of about 0 to 10% can be obtained.

(発明の効果) 以上説明したように、本発明の光試験回路は、モニタ用
の反射ミラーと光パルス試験用の光波長フィルタを先導
波回路内に挿入した構造、または反射ミラーと光波長フ
ィルタの機能を兼ね合わせた1枚の光フィルタを光導波
回路に挿入した構造にし、さらに試験光パルスの波長を
光信号(上り、下り)の波長と故意に異なるようにした
光試験回路であるので、光信号(上り、下り)に対する
光試験回路の損失を零にまで低減でき、その結果、伝送
距離を延長できる利点がある。さらに光パルス試験にお
ける損失も零にまで低減できるので、光パルス試験器に
大出力のものを必要とせず、また障害点探索の精度が向
上し、また長距離の障害点探索が可能になる利点がある
(Effects of the Invention) As explained above, the optical test circuit of the present invention has a structure in which a reflecting mirror for monitoring and an optical wavelength filter for optical pulse testing are inserted into a leading wave circuit, or a reflecting mirror and an optical wavelength filter. This optical test circuit has a structure in which a single optical filter that has the functions of This has the advantage that the loss of the optical test circuit for optical signals (up and down) can be reduced to zero, and as a result, the transmission distance can be extended. Furthermore, the loss in optical pulse testing can be reduced to zero, which eliminates the need for a high-output optical pulse tester, improves the accuracy of failure point detection, and has the advantage of enabling long-distance failure point detection. There is.

また加入者側の光回路の直前に試験光パルスを遮断する
光波長フィルタを1枚設置するだけで、局側と加入者側
の光通信サービスを切断することなく、任意の時に障害
点探索ができる利点がある。
In addition, by simply installing a single optical wavelength filter that blocks the test optical pulse just before the optical circuit on the subscriber side, you can search for fault points at any time without disconnecting the optical communication service between the station and subscriber sides. There are advantages that can be achieved.

また光導波路を基本とした光回路構成のため、小型で量
産できる利点がある。
Furthermore, since it has an optical circuit configuration based on optical waveguides, it has the advantage of being compact and mass-produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の斜視図、第2図は石英
系導波路の断面図、 第3図は光波長フィルタの特性を説明するための図、 第4図は本発明の第2の実施例の斜視図、第5および第
6図は光フィルタの構成図、第7図は従来の光試験回路
の構成図、 第8図は光パルス試験を説明するための図である。 la、 lb・・・電気信号(下り’) 2.12・・
・電気−光変換器3・・・光信号(下り)4,7・・・
光合分波器5・・・光試験回路     6・・・光フ
アイバ伝送路8.14・・・光−電気変換器  9・・
・端末装置10・・・コネクタ 11a、 Ilb・・・電気信号(上り)13・・・光
信号(上り)15・・・モニタ装置16・・・光分岐回
路     17・・・光パルス試験器18・・・光合
流回路     19.24.27・・・光ファイバ2
0・・・人カポ−)      21a〜21e・・・
導波路22・・・反射ミラー     23・・・モニ
タポート25・・・光波長フィルタ   26・・・出
力ポート28・・・光パルス試験ポート29・・・Si
基板30・・・石英バッファ層   31・・・石英系
コア32・・・石英クラッド層   33・・・ファイ
バガイド34・・・光フィルタ     34a・・・
基板34b・・・S10□−TlO□交互多層膜フィル
タ34C・・・基板の裏面    34d・・・基板の
表面34e・・・5iO7−Tin□交互多層膜34f
・・・SlO□の分離層 第7図 渣1牽(%)
Fig. 1 is a perspective view of the first embodiment of the present invention, Fig. 2 is a cross-sectional view of a silica waveguide, Fig. 3 is a diagram for explaining the characteristics of an optical wavelength filter, and Fig. 4 is a diagram of the present invention. 5 and 6 are configuration diagrams of an optical filter, FIG. 7 is a configuration diagram of a conventional optical test circuit, and FIG. 8 is a diagram for explaining an optical pulse test. be. la, lb...electrical signal (downstream') 2.12...
・Electrical-optical converter 3... Optical signal (down) 4, 7...
Optical multiplexer/demultiplexer 5... Optical test circuit 6... Optical fiber transmission line 8.14... Optical-electrical converter 9...
・Terminal device 10... Connector 11a, Ilb... Electric signal (up) 13... Optical signal (up) 15... Monitor device 16... Optical branch circuit 17... Optical pulse tester 18 ...Optical merging circuit 19.24.27...Optical fiber 2
0...person capo) 21a~21e...
Waveguide 22... Reflection mirror 23... Monitor port 25... Optical wavelength filter 26... Output port 28... Optical pulse test port 29... Si
Substrate 30...Quartz buffer layer 31...Quartz core 32...Quartz cladding layer 33...Fiber guide 34...Optical filter 34a...
Substrate 34b...S10□-TlO□Alternating multilayer film filter 34C...Back surface of substrate 34d...Substrate surface 34e...5iO7-Tin□Alternating multilayer film 34f
... Separation layer of SlO□ Fig. 7 residue 1 ratio (%)

Claims (1)

【特許請求の範囲】 1、入射光信号を受け、出射光信号を送る一直線状の導
波路と、この導波路に対して折れ曲がりの向きが反対に
なるように、かつ互いに位置を離して配置されたモニタ
用導波路と、光試験用導波路とが基板上に一体に形成さ
れ、前記一直線状の導波路とモニタ用導波路の交差点に
、モニタ用の反射ミラーを設置し、また前記一直線状の
導波路と光試験用導波路の交差点に、光信号(上り)お
よび光信号(下り)を透過し、かつこれらの光信号と異
なる波長を有する試験光パルスを反射する光波長フィル
タを設置したことを特徴とする光試験回路。 2、入射光信号を受け、出射光信号を送る一直線状の導
波路と、この導波路に交差し、かつこの交差点で互いに
対向して一直線状に配置されたモニタ用導波路と、光試
験用導波路とが基板上に一体に形成され、前記交差点に
、モニタ用の反射ミラーの機能と、光信号(上り)およ
び光信号(下り)を透過し、かつ試験光パルスを反射す
る光波長フィルタ機能とを有する光フィルタを設置した
ことを特徴とする光試験回路。 3、特許請求の範囲第1項または第2項記載の光試験回
路において、導波路に石英系導波路を用いたことを特徴
とする光試験回路。
[Claims] 1. A linear waveguide that receives an incident optical signal and sends an output optical signal, and is arranged so that the bending directions are opposite to the waveguide and are spaced apart from each other. A monitoring waveguide and an optical test waveguide are integrally formed on a substrate, and a reflecting mirror for monitoring is installed at the intersection of the linear waveguide and the monitoring waveguide, and At the intersection of the waveguide and the optical test waveguide, an optical wavelength filter was installed that transmits the optical signal (upstream) and optical signal (downstream) and reflects the test optical pulse having a different wavelength from these optical signals. An optical test circuit characterized by: 2. A straight waveguide that receives an incident optical signal and sends an output optical signal, a monitoring waveguide that intersects this waveguide and is arranged in a straight line facing each other at the intersection, and a waveguide for optical testing. The waveguide is integrally formed on the substrate, and at the intersection, there is an optical wavelength filter that functions as a reflective mirror for monitoring and that transmits the optical signal (upstream) and optical signal (downstream) and reflects the test optical pulse. An optical test circuit characterized by having an optical filter installed therein. 3. An optical test circuit according to claim 1 or 2, characterized in that a quartz-based waveguide is used as the waveguide.
JP11609186A 1986-05-22 1986-05-22 Optical test circuit Pending JPS62273428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11609186A JPS62273428A (en) 1986-05-22 1986-05-22 Optical test circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11609186A JPS62273428A (en) 1986-05-22 1986-05-22 Optical test circuit

Publications (1)

Publication Number Publication Date
JPS62273428A true JPS62273428A (en) 1987-11-27

Family

ID=14678486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11609186A Pending JPS62273428A (en) 1986-05-22 1986-05-22 Optical test circuit

Country Status (1)

Country Link
JP (1) JPS62273428A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171997A (en) * 1988-12-26 1990-07-03 Seiichi Miyazaki Sensor failure detector
JPH055811A (en) * 1991-06-28 1993-01-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical coupler
JP2016513417A (en) * 2013-02-22 2016-05-12 ゼットティーイー コーポレイション Optical transceiver and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171997A (en) * 1988-12-26 1990-07-03 Seiichi Miyazaki Sensor failure detector
JPH055811A (en) * 1991-06-28 1993-01-14 Nippon Telegr & Teleph Corp <Ntt> Waveguide type optical coupler
JP2016513417A (en) * 2013-02-22 2016-05-12 ゼットティーイー コーポレイション Optical transceiver and method

Similar Documents

Publication Publication Date Title
US20020101577A1 (en) Optical fiber test method and apparatus
EP0271177B1 (en) Optical fibre coupler
US20030044141A1 (en) Optical interconnect assemblies and methods therefor
JP2867859B2 (en) Optical transceiver module for bidirectional transmission
US7313293B2 (en) Optical power monitoring apparatus, optical power monitoring method, and light receiving device
US5583958A (en) Composite optical device
JP3344446B2 (en) Optical transceiver module
CA2217688C (en) Coupling of light into a monolithic waveguide device
Winzer et al. Single-mode and multimode all-fiber directional couplers for WDM
JPS62273428A (en) Optical test circuit
JP3391650B2 (en) Optical splitter
US5995687A (en) Circuit for testing an optical communication system
Yanagawa et al. Filter-embedded design and its applications to passive components
WO2020149157A1 (en) Optical fiber lateral input/output device
US20050265664A1 (en) Coupling structure between fiber and optical waveguide
JP3184332B2 (en) Optical demultiplexing circuit
JP2758285B2 (en) Waveguide type optical coupler
US20240085632A1 (en) Optical cross-connect device
JP3836707B2 (en) Cross waveguide with filter function
Kihara Optical performance analysis of single-mode fiber connections
JP3257785B2 (en) Manufacturing method of optical transceiver module
JP3112030B2 (en) Waveguide type optical coupler
KR101501140B1 (en) Planar Lightwave Circuit Module Having an Improved Structure of an Optical Power Monitor
JPH0579905A (en) Signal processing module for two-way transmission
Hawk et al. Low loss splicing and connection of optical waveguide cables