JPS62272987A - Production of glucose - Google Patents

Production of glucose

Info

Publication number
JPS62272987A
JPS62272987A JP11621186A JP11621186A JPS62272987A JP S62272987 A JPS62272987 A JP S62272987A JP 11621186 A JP11621186 A JP 11621186A JP 11621186 A JP11621186 A JP 11621186A JP S62272987 A JPS62272987 A JP S62272987A
Authority
JP
Japan
Prior art keywords
molecular weight
starch
hydrolyzate
glucose
glucoamylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11621186A
Other languages
Japanese (ja)
Inventor
Masamitsu Ito
真実 伊藤
Yukio Fukushima
幸生 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP11621186A priority Critical patent/JPS62272987A/en
Publication of JPS62272987A publication Critical patent/JPS62272987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To stably and efficiently obtain glucose even when properties of a raw material and liquefying reaction condition fluctuate, by reacting starch with alpha-amylase, adding glucoamylase in an amount corresponding to a detected molecular weight thereof to the resultant starch hydrolyzate and saccharifying the hydrolyzate in a given residence time. CONSTITUTION:Starch obtained from corn, potato or sweet potato, etc., and alpha-amylase are charged into a liquefaction tank 1 to give a starch hydrolyzate. The molecular weight distribution is then measured by liquid chromatograph 2 and glucoamylase in an amount corresponding to the molecular weight distribution obtained through a computer 3 is fed from a storage tank 4 to a mixing tank 6 while controlling a pump 5 and blended with a hydrolyzate fed from the liquefaction tank 1. Operation condition of the pump 7 is then controlled through the computer 3 and the blend is fed to a pressurized polysulfone hollow fiber type ultrafiltration module 8 having 3,000-10,000 fraction molecular weight, retained for a given time and saccharified to discharge formed glucose to the outside of the membrane. On the other hand, the unreacted substance is circulated through the mixing tank 6.

Description

【発明の詳細な説明】 3、発明の詳細な説明 主呈上■且且分旦 本発明は、澱粉にα−アミラーゼを作用させ、澱粉加水
分解物を生成(液化)させた後、更にグルコアミラーゼ
を作用させ、ブドウ糖を製LI=L (vN化)する方
法に関する。
Detailed description of the invention 3. Detailed description of the invention The present invention relates to a method for producing LI=L (vN) of glucose by causing amylase to act.

従来q技止 ブドウ糖を工業的に生産するには、まず澱粉と細菌性α
−アミラーゼとを混合し、85〜110℃の高温で液化
した後、グルコアミラーゼを添加し、50〜65℃で糖
化させ、ブドウ糖を得ている。この中で、特に糖化反応
はブドウ糖への変換率が30%を越えると、濃度阻害が
生じ、急激に反応速度が低下するが、連続的に生成する
ブドウ糖を反応系外に排出させることが困難なため、四
分法で48〜72時間反応させ、ブドウ糖の収率を高め
ているのが現状である。
Traditionally, in order to industrially produce glucose, starch and bacterial α
- After mixing with amylase and liquefying at a high temperature of 85 to 110°C, glucoamylase is added and saccharification is performed at 50 to 65°C to obtain glucose. Among these, especially in the saccharification reaction, when the conversion rate to glucose exceeds 30%, concentration inhibition occurs and the reaction rate rapidly decreases, but it is difficult to discharge the continuously produced glucose out of the reaction system. Therefore, the current situation is to increase the yield of glucose by carrying out the reaction for 48 to 72 hours using the quarter-section method.

■が”しよ°と る。 占 糖化反応における反応時間を短くするには、前段の液化
工程でのα−アミラーゼの添加量を多くし、低分子化す
る方法及びグルコアミラーゼの添加量を多くする方法が
ある。しかしながら、低分子化によれば、糖化反応性が
低下し、グルコアミラーゼを過剰添加すると、逆反応が
起こり、マルトース等が生成する等、酵素使用量の増加
だけではなく、適切な添加量でない場合、逆に反応性が
低下する等、問題点が多い。
In order to shorten the reaction time in the saccharification reaction, increase the amount of α-amylase added in the previous liquefaction step to reduce the molecular weight, and increase the amount of glucoamylase added. However, when reducing the molecular weight, the saccharification reactivity decreases, and when glucoamylase is added in excess, a reverse reaction occurs, producing maltose, etc., which not only increases the amount of enzyme used, but also increases the amount of enzyme used. If the amount added is not adequate, there will be many problems such as a decrease in reactivity.

従って、本発明は、前記従来技術の欠点を解消し、酵素
の添加量及び滞留時間を適切に選択して効率よく糖化を
行いうるブドウ糖の製造方法を提供することを目的とす
る。
Therefore, it is an object of the present invention to provide a method for producing glucose that eliminates the drawbacks of the prior art and allows efficient saccharification by appropriately selecting the amount of enzyme added and residence time.

。 占 ”° るための“ 本発明は、澱粉加水分解物の分子量に応じて酵素添加量
及び滞留時間を決定することによって前記の問題点を解
決したものである。
. The present invention solves the above problems by determining the amount of enzyme added and residence time depending on the molecular weight of the starch hydrolyzate.

即ち、本発明によるブドウ糖の製造方法は、澱粉加水分
解物の分子量分布を検出し、検出値に応じて糖化工程で
の酵素添加量及び滞留時間を制御することを特徴とする
That is, the method for producing glucose according to the present invention is characterized in that the molecular weight distribution of the starch hydrolyzate is detected, and the amount of enzyme added and residence time in the saccharification step are controlled according to the detected value.

糖化工程における酵素添加量及び滞留時間には、澱粉加
水分解物の分子量によって最適値がある。
The amount of enzyme added and residence time in the saccharification step have optimum values depending on the molecular weight of the starch hydrolyzate.

第1図には、濃度300g/lの澱粉加水分解物を12
時間でブドウ糖に変換するのに必要な酵素量を測定した
結果を示す、第2図は酵素量を1.5g/lとした場合
の滞留時間を測定した結果を示す。このような測定結果
から、その都度の澱粉加水分解物の分子量分布を測定し
、最適な酵素量及び滞留時間を決定することができる。
Figure 1 shows 12 starch hydrolysates with a concentration of 300 g/l.
FIG. 2 shows the results of measuring the amount of enzyme required to convert glucose into glucose over time. FIG. 2 shows the results of measuring the residence time when the amount of enzyme was 1.5 g/l. From such measurement results, the molecular weight distribution of each starch hydrolyzate can be measured, and the optimal enzyme amount and residence time can be determined.

分子量分布は、液体クロマトグラフィーによって測定す
るのが好ましい。使用する液体クロマトグラフは分子量
100万以下の糖類を分析できるものであればよいが、
分析時間(検出時間)を短縮するため、耐圧性がある高
速液体クロマトグラフ用のゲルが好ましい。
Preferably, the molecular weight distribution is determined by liquid chromatography. The liquid chromatograph used should be one that can analyze sugars with a molecular weight of 1 million or less, but
In order to shorten the analysis time (detection time), a pressure-resistant gel for high performance liquid chromatography is preferred.

また、糖化反応を半透膜内で連続的に行い、生成するブ
ドウ糖を半透膜外に排出させることにより、効率よく糖
化を行うことができる。
Moreover, by continuously performing the saccharification reaction within the semipermeable membrane and discharging the produced glucose outside the semipermeable membrane, saccharification can be performed efficiently.

次に、図面に基づいて本発明を詳述する。Next, the present invention will be explained in detail based on the drawings.

第3図は、本発明方法の一実施態様を示すフローシート
である。この装置において、トウモロコシ澱粉、バレイ
ショ澱粉、カンショ澱粉等を原料として、まず、液化槽
1内でα−アミラーゼと混合することにより、澱粉加水
分解物を得る。加水分解物の分子量は、次の工程である
糖化工程でのブドウ糖収率に影響するため1万〜5万程
度であるのが好ましい。
FIG. 3 is a flow sheet showing one embodiment of the method of the present invention. In this apparatus, a starch hydrolyzate is obtained by first mixing corn starch, potato starch, corn starch, etc. as raw materials with α-amylase in a liquefaction tank 1. The molecular weight of the hydrolyzate is preferably about 10,000 to 50,000 because it affects the glucose yield in the next saccharification step.

しかし、原料の性状により加水分解物の分子量分布が異
なるため、液体クロマトグラフ2で分子量分布を測定し
、その分布及び分子惜別の濃度に応じて予め求めておい
たグルコアミラーゼの添加量をコンピュータ3で判断し
、グルコアミラーゼ貯槽4から混合!!6へ酵素液を送
るポンプ5を制御し、分子量分布及び濃度に応じて酵素
を添加する。
However, since the molecular weight distribution of the hydrolyzate differs depending on the properties of the raw materials, the molecular weight distribution is measured with a liquid chromatograph 2, and the amount of glucoamylase to be added, which has been determined in advance, is calculated using a computer 3. Judging by this, mix from glucoamylase storage tank 4! ! The pump 5 that sends the enzyme solution to the enzyme solution 6 is controlled, and the enzyme is added according to the molecular weight distribution and concentration.

澱粉加水分解物と適量のグルコアミラーゼとの混合液は
、ポンプ7で加圧した限外口過モジュール8へ送られる
。限外口過モジュールは、定期的に殺菌されるので、耐
熱性(80℃以上)であり、グルコアミラーゼ及び基質
を透過しない分画分子量の膜であればよいが、特に、材
質がポリスルホンのホローファイバ型で、分画分子量3
000〜10000のものが好ましい。
A mixed solution of starch hydrolyzate and an appropriate amount of glucoamylase is sent to an ultrafiltration module 8 pressurized by a pump 7 . Since the ultrafiltration module is regularly sterilized, any membrane that is heat resistant (above 80°C) and has a molecular weight cut-off that does not permeate glucoamylase and substrates is sufficient. Fiber type, molecular weight cut off 3
000 to 10,000 is preferred.

なお、限外口過モジュール8内で糖化を行い、生成した
ブドウ糖は膜外へ排出するが、未反応物質は混合槽6へ
返送し、循環させるため、混合槽内での液の性状の変動
だけでなく、限外口過モジュールの膜表面状態も変化す
る。そこで混合槽内での液の性状の変化に応じて定常的
に運転できるようにポンプ7の操作条件を制御する。
Note that saccharification is performed in the ultrafiltration module 8, and the produced glucose is discharged outside the membrane, but unreacted substances are returned to the mixing tank 6 and circulated, so fluctuations in the properties of the liquid in the mixing tank may occur. In addition, the membrane surface condition of the ultrafiltration module also changes. Therefore, the operating conditions of the pump 7 are controlled so that it can operate steadily according to changes in the properties of the liquid in the mixing tank.

l施■ 次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
EXAMPLES Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 半透膜を有する連続式リアクタに濃度280g/lの澱
粉加水分解物を1 ml/分の流量で供給し、澱粉加水
分解物の分子量分布に応じてグルコアミラーゼを添加し
、・リアクタ内で滞留時間5時間で反応させた。
Example 1 A starch hydrolyzate with a concentration of 280 g/l was supplied at a flow rate of 1 ml/min to a continuous reactor having a semipermeable membrane, and glucoamylase was added according to the molecular weight distribution of the starch hydrolyzate. The reaction was carried out for a residence time of 5 hours.

比較のため、半透膜を有しない反応容器中で回分法で同
じ澱粉加水分解物にグルコアミラーゼを420s/j!
添加し、反応させた(従来法)。
For comparison, glucoamylase was added to the same starch hydrolyzate at 420 s/j by batch method in a reaction vessel without a semipermeable membrane!
and reacted (conventional method).

上記の実験により得られたブドウ糖の生産量を下記の表
に示す。
The amount of glucose produced in the above experiment is shown in the table below.

本発明方法では、酵素が澱粉加水分解物の分子量分布に
応じて適量で添加され、更に生成物であるブドウ糖をリ
アクタ外に排出しながら、かつリアクタ内の基質濃度を
高くし、反応速度を高めるので、生産効率が従来法に比
べて著しく高くなることが証明された。
In the method of the present invention, the enzyme is added in an appropriate amount according to the molecular weight distribution of the starch hydrolyzate, and furthermore, the enzyme is added in an appropriate amount according to the molecular weight distribution of the starch hydrolyzate, and the reaction rate is increased by increasing the substrate concentration in the reactor while discharging the product glucose out of the reactor. Therefore, it has been proven that the production efficiency is significantly higher than that of the conventional method.

実施例2 半透膜を有する連続式リアクタに濃度300g/lの澱
粉加水分解物を1ml/分の流量で供給し、滞留時間1
2時間で連続運転を行った。その際、グルコアミラーゼ
を連続的に420■/l添加する方法と、澱粉加水分解
物の分子量に応じて添加する本発明方法とを実施した。
Example 2 A starch hydrolyzate with a concentration of 300 g/l was supplied to a continuous reactor having a semipermeable membrane at a flow rate of 1 ml/min, and the residence time was 1.
Continuous operation was performed for 2 hours. At that time, a method in which glucoamylase was added continuously at 420 μl/l, and a method of the present invention in which glucoamylase was added in accordance with the molecular weight of the starch hydrolyzate were carried out.

酵素を一定量で添加する方法では、ブドウ糖の濃度が2
50±30 g / lであったのに対し、本発明方法
では270±10 g/lであり、澱粉加水分解物の分
子量に応じて酵素を添加することにより生産物を安定し
て多量に得られた。
In the method of adding a fixed amount of enzyme, the concentration of glucose is 2
50±30 g/l, whereas it was 270±10 g/l in the method of the present invention, and by adding enzymes according to the molecular weight of the starch hydrolyzate, it is possible to stably obtain a large amount of the product. It was done.

また、逆反応によるオリゴ糖の生成量は、酵素を連続的
に添加する方法では、2〜20g/Ilであったのに対
し、本発明方法では5〜10g/lであり、本発明方法
によれば逆反応が抑制されることが明らかになった。
In addition, the amount of oligosaccharide produced by the reverse reaction was 2 to 20 g/l in the method of continuously adding enzymes, but was 5 to 10 g/l in the method of the present invention. It was revealed that the reverse reaction was suppressed.

光皿立肱工 本発明によれば澱粉加水分解物の分子量分布に応じて酵
素添加量及び滞留時間を制御するので、原料の性状及び
液化工程の反応条件が変動しても、糖化反応を常に効率
よく行うことができ、安定してブドウ糖を生産すること
ができる。更に、糖化反応を半透膜内で実施することに
より、反応効率を一層向上させることができる。
According to the present invention, the amount of enzyme added and the residence time are controlled according to the molecular weight distribution of the starch hydrolyzate, so even if the properties of the raw material and the reaction conditions of the liquefaction process change, the saccharification reaction can always be carried out efficiently. It works well and can stably produce glucose. Furthermore, by carrying out the saccharification reaction within a semipermeable membrane, the reaction efficiency can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は澱粉加水分解物の分子量とその糖化に必要な酵
素量との関係図、第2図は澱粉加水分解物の分子量とそ
の糖化に必要な滞留時間との関係図、第3図は本発明方
法の一実施態様を示すフローシートである。
Figure 1 is a relationship diagram between the molecular weight of starch hydrolyzate and the amount of enzyme required for its saccharification, Figure 2 is a relationship diagram between the molecular weight of starch hydrolyzate and the residence time required for its saccharification, and Figure 3 is a relationship diagram between the molecular weight of starch hydrolyzate and the residence time required for its saccharification. 1 is a flow sheet showing one embodiment of the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)澱粉にα−アミラーゼを作用させ、澱粉加水分解
物を生成(液化)させた後、更にグルコアミラーゼを作
用させ、ブドウ糖を製造(糖化)する方法において、澱
粉加水分解物の分子量分布を検出し、検出値に応じて糖
化工程での酵素添加量及び滞留時間を制御することを特
徴とするブドウ糖の製造方法。
(1) In a method in which α-amylase is applied to starch to produce (liquefy) a starch hydrolyzate, and then glucoamylase is applied to produce glucose (saccharification), the molecular weight distribution of the starch hydrolyzate is determined. A method for producing glucose, characterized by detecting the value and controlling the amount of enzyme added and residence time in the saccharification step according to the detected value.
(2)糖化工程を半透膜内で行い、生成するブドウ糖を
半透膜外に排出させる特許請求の範囲第1項記載の製造
方法。
(2) The manufacturing method according to claim 1, wherein the saccharification step is performed within a semipermeable membrane and the produced glucose is discharged outside the semipermeable membrane.
(3)澱粉加水分解物の分子量分布を排除限界分子量が
100万以下のカラムを用いた液体クロマトグラフィー
によって検出する特許請求の範囲第1項又は第2項記載
の製造方法。
(3) The production method according to claim 1 or 2, wherein the molecular weight distribution of the starch hydrolyzate is detected by liquid chromatography using a column with an exclusion limit molecular weight of 1 million or less.
JP11621186A 1986-05-22 1986-05-22 Production of glucose Pending JPS62272987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11621186A JPS62272987A (en) 1986-05-22 1986-05-22 Production of glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11621186A JPS62272987A (en) 1986-05-22 1986-05-22 Production of glucose

Publications (1)

Publication Number Publication Date
JPS62272987A true JPS62272987A (en) 1987-11-27

Family

ID=14681588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11621186A Pending JPS62272987A (en) 1986-05-22 1986-05-22 Production of glucose

Country Status (1)

Country Link
JP (1) JPS62272987A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446975B1 (en) * 2001-07-27 2004-09-01 대상 주식회사 Production of powder dextrose from hydrol
WO2008090804A1 (en) * 2007-01-24 2008-07-31 Ajinomoto Co., Inc. Method for production of saccharide from starch-containing plant raw material
EP2009098A1 (en) 1999-07-09 2008-12-31 Novozymes A/S Glucoamylase variant
EP2186887A1 (en) 2005-11-18 2010-05-19 Novozymes A/S Glucoamylase variants
WO2011020852A1 (en) 2009-08-19 2011-02-24 Danisco A/S Variants of glucoamylase
CN111455001A (en) * 2020-04-26 2020-07-28 德兰梅勒(北京)分离技术股份有限公司 Membrane concentration production process for starch sugar production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009098A1 (en) 1999-07-09 2008-12-31 Novozymes A/S Glucoamylase variant
KR100446975B1 (en) * 2001-07-27 2004-09-01 대상 주식회사 Production of powder dextrose from hydrol
EP2186887A1 (en) 2005-11-18 2010-05-19 Novozymes A/S Glucoamylase variants
WO2008090804A1 (en) * 2007-01-24 2008-07-31 Ajinomoto Co., Inc. Method for production of saccharide from starch-containing plant raw material
WO2011020852A1 (en) 2009-08-19 2011-02-24 Danisco A/S Variants of glucoamylase
CN111455001A (en) * 2020-04-26 2020-07-28 德兰梅勒(北京)分离技术股份有限公司 Membrane concentration production process for starch sugar production

Similar Documents

Publication Publication Date Title
Ghose et al. Rapid ethanol fermentation in immobilized yeast cell reactor
Tjerneld et al. Enzymatic hydrolysis of cellulose in aqueous two‐phase systems. II. Semicontinuous conversion of a model substrate, solka floc BW 200
GB2059989A (en) Ethanol production process
US5141859A (en) Manufacturing method of high purity maltose and its reduced product
Paolucci‐Jeanjean et al. Kinetics of cassava starch hydrolysis with Termamyl® enzyme
KR101070824B1 (en) A process and equipment for fractionation and saccharification of biomass
CA2310382A1 (en) A method of producing oligosaccharide syrups, a system for producing the same and oligosaccharide syrups
WO2005099476A1 (en) Improved distillation process
Paolucci-Jeanjean et al. The effect of enzyme concentration and space time on the performance of a continuous recycle membrane reactor for one-step starch hydrolysis
Pontoh et al. Glucose syrup production from Indonesian palm and cassava starch
JPS62272987A (en) Production of glucose
Gaouar et al. Production of maltose syrup by bioconversion of cassava starch in an ultrafiltration reactor
Beschkov et al. A kinetic model for the hydrolysis and synthesis of maltose, isomaltose, and maltotriose by glucoamylase
CN101896611A (en) A process of producing a fermentation product
Aschengreen et al. Liquefaction, saccharification and isomerization of starches from sources other than maize
JPS6246159B2 (en)
US3551293A (en) Method for enzymatically hydrolyzing starch
CN101363031B (en) Method for producing acetone-butanol using fermentation of corn bran raw material
Rugh et al. Application possibilities of a novel immobilized glucoamylase
CN106047963A (en) Method for producing high fructose syrup by immobilized glucose isomerase
CN103343147B (en) Method for preparing dibutyl succinate from cassava raw materials
BRPI0509301B1 (en) process for fermentation of sugars containing oligomeric saccharides
Abraham et al. Effect of hydrolysis conditions of cassava on the oligosaccharide profile and alcohol fermentation
Roychoudhury et al. Operational strategies in vacuum-coupled SSF for conversion of lignocellulose to ethanol
CN108624637B (en) Method for producing trehalose by using rice