JPS6227163B2 - - Google Patents

Info

Publication number
JPS6227163B2
JPS6227163B2 JP54053730A JP5373079A JPS6227163B2 JP S6227163 B2 JPS6227163 B2 JP S6227163B2 JP 54053730 A JP54053730 A JP 54053730A JP 5373079 A JP5373079 A JP 5373079A JP S6227163 B2 JPS6227163 B2 JP S6227163B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
coagulation
polymer
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053730A
Other languages
Japanese (ja)
Other versions
JPS55148211A (en
Inventor
Shuzo Yamashita
Shuji Kawai
Hirokuni Tanii
Koichi Takakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5373079A priority Critical patent/JPS55148211A/en
Priority to DE19792935097 priority patent/DE2935097A1/en
Priority to US06/071,671 priority patent/US4269713A/en
Priority to FR7922340A priority patent/FR2435276A1/en
Priority to GB7931000A priority patent/GB2031792B/en
Publication of JPS55148211A publication Critical patent/JPS55148211A/en
Publication of JPS6227163B2 publication Critical patent/JPS6227163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エチレン―ビニルアルコール
(EVA)系共重合体よりなる中空糸膜の製法に関
し、さらに詳しくは乾湿式紡糸法により非対称型
中空糸膜を製造する方法に関する。 医療用及び工業用の透析膜や限外過膜として
各種の中空糸膜が開発されている。本発明者らは
生体親和性がよく、抗溶血性や抗血栓性が良好で
あり、しかも耐久性や化学的安定性にすぐれる
EVA系共重合体中空糸膜につき研究を進め、す
でに均質構造のEVA中空糸膜を開発した。 この均質構造EVA中空糸膜は透析膜としてす
ぐれた性能を有し、人工腎臓用透析膜として実用
化されつつある。該均質構造EVA中空糸膜は平
均径100〜10000Åの粒子が相互に接合した構造
で、かつ孔径2μ以上の孔は実質的に存在しない
構造のものである。 一般に膜の構造としては、上述の均質構造の外
に、スキン層を有するいわゆる非対称型構造の膜
がある。従来提供されている非対称構造の膜とし
てはセルロースアセテートやポリアクリロニトリ
ルからなる膜が知られているが、EVA系ポリマ
ーの非対称型中空糸膜はほとんど知られていな
い。例えば特開昭53―77883号にて電解液用隔膜
としてのEVA非対称型膜が開示されている。該
膜は、緻密層と支持層である多孔質層から成り立
つているが、支持層の多孔質層は0.05〜10μの孔
径からなるハチの巣状の構造を有し、本発明で得
られる膜とは本質的に異なる構造を有している。 本発明者らは、EVA系共重合体膜に関し、さ
らに研究を進めた結果、スキン層と多孔質支持層
を有する非対称型構造のEVA系膜が得られるこ
とを見い出し、特願昭53―110259号として出願し
た。該発明においては、ポリマー溶液中の濃度C
が10〜40重量%のとき、凝固浴温度T℃が、下記
の式を満足する条件で凝固製膜する方法が開示さ
れている。 10≦C<25のときC−10≦T≦C+30 25≦C≦40のときC−8≦T≦C+30 上記の凝固条件は、ポリマー溶液を直接凝固浴
中に吐出するいわゆる湿式製膜においては非常に
すぐれている。しかしながら本発明者らの検討に
よれば、温式製膜法で中空糸膜を製造する場合に
は、ポリマー溶液と凝固浴の温度に差があるた
め、紡糸調子が不安定になりやすいことや、中空
糸の細径化や製膜化がむずかしいという問題があ
る。かかる問題を解決するためには、ポリマー溶
液を一旦気体雰囲気中に紡出し、気体雰囲気中を
通過後凝固浴に導入する、いわゆる乾湿式製膜法
がすぐれている。そこで本発明者らは乾湿式紡糸
法により非対称型EVA系中空糸膜を製造する方
法につき、検討を行なつた結果、本発明を完成し
た。 すなわち本発明は、EVA系共重合体をジメチ
ルスルホキシド、ジメチルアセトアミド、ピロリ
ドン、N―メチルピロリドン又はこれらの混合物
を主成分とする溶媒に溶解した紡糸原液を中空糸
紡糸口金の中部より凝固性液体を導入しつつ紡出
し、気体雰囲気中で2.3〜20倍のドラフトを受け
るように紡糸原糸を通過させ、ついで下記の温度
範囲の凝固浴で凝固させることを特徴とする
EVA系中空糸膜の製造方法である。 15≦C≦40のとき1/4C+12.5≦T≦1/4C+17
.5 ここでCはポリマー濃度(重量%)、Tは凝固
温度(℃) 本発明に用いるEVA系ポリマーはエチレン含
量が10〜90モル%、より好ましくは10〜60モル%
であり、濃度3重量%のジメチルスルホキシド
(DMSO)溶液で30℃において1.0〜50センチポイ
ズの粘度をもつものが用いられる。さらに他の共
重合可能なモノマーを15モル%以下の範囲で共重
合したものでもよい。共重合可能なモノマーとし
ては、メタクリル酸、ビニルクロライド、メチル
メタクリレート、アクリロニトリル、ビニルピロ
リドン等が含まれる。また紡糸前もしくは紡糸後
においてEVA系共重合体をホウ素化合物等の無
機架橋剤、あるいはジイソシアナート、ジアルデ
ヒドなどの有機架橋剤などにより処理することに
より架橋が導入されたもの、あるいはビニルアル
コール単位の官能性水酸基が30モル%以内におい
てホルムアルデヒド、アセトアルデヒド、ブチル
アルデヒド、ベンズアルデヒド等のアルデヒドで
アセタール化されているものでもよい。 EVA系コポリマーを溶解する溶媒としては、
メタノール、エタノール、エチレングリコール、
プロピレングリコール等の一価及び多価アルコー
ル、フエノール、メタクレゾール、メチルピロリ
ドン、ギ酸及びこれらの含水物などが知られてい
るが、本発明の目的とする膜を製造するために
は、ジメチルスルホキシド、ジメチルアセトアミ
ド、ピロリドン、N―メチルピロリドン又はこれ
らの混合物を用いるのが望ましい。特にEVA系
コポリマーに対し高い溶解性を示すジメチルスル
ホキシドが好ましい。EVA系コポリマーをこれ
らの溶媒に溶解するにあたり、その濃度は15〜40
重量%、より好ましくは18〜30重量%の範囲が望
ましい。ポリマー濃度が15重量%よりも小さいと
粘度が低くなりすぎ、又40重量%よりも大きいと
粘度が高くなりすぎて紡糸が困難となる。またポ
リマー溶液の温度は0〜120℃、好ましくは20〜
80℃がよい。これより高温ではポリマーが変質す
るおそれがあり、またこれより低温では溶液粘度
が高くなりすぎるかポリマーのゲル化が起こり紡
糸が難しくなるので望ましくない。 上述のようにして調製された紡糸原液は円環状
ノズル等の中空糸紡糸口金を用いて中空糸状に紡
糸する。本発明においては、該紡糸口金の中部よ
り、ポリマー溶液に対して凝固性液体を導入しつ
つ紡糸することが必要である。該凝固性液体によ
り中空糸膜の内表面側で凝固が生じることが非対
称型構造を形成させる重要な因子である。 凝固性液体としては水単独、又は水と水混和性
有機溶媒との溶液、水と芒硝等の塩との溶液があ
るが、本発明においては、紡糸原液に用いた溶媒
と水20〜100重量%、より好ましくは45〜100重量
%を含む溶液が特に好ましい。 該溶液のもつ凝固能が膜構造の形成に特に適し
ている。 紡糸口金より紡出された紡糸原糸はまず気体雰
囲気中を通過する。紡糸原液は気体雰囲気中では
流動性を保持しているので、紡糸原糸は引きのば
され真円性及び均一厚さの膜壁が形成される。ま
た紡糸原糸は気体雰囲気中でドラフトを受ける
が、該ドラフト条件も本発明における重要な因子
である。即ち真円性及び均一膜厚、特に膜の薄層
化をはかるためにはドラフト比は大きい方が望ま
しい。しかしながらドラフトがあまりに大きいと
全体の膜厚が薄くなり、ピンホール状の膜の破壊
が生じ易くなる傾向にある。 本発明において紡糸原糸は2.3〜20倍のドラフ
トを受ける必要がある。好ましくは、2.3〜15倍
のドラフトを受けるのが望ましい。該ドラフト条
件は凝固浴での凝固条件との相互作用で膜構造の
形成に大きく影響し、上述の真円性、膜厚の均一
性の他、分画性やフラツクス等の透過性能に大き
な影響を及ぼす。ノズルと凝固浴面との間隔は10
〜500mm程度が好ましい。 気体雰囲気は、普通開放空間であるが、溶媒の
蒸発をコントロールする場合は、円筒状等任意の
形状の遮蔽体を設け、凝固浴からのペーパー又は
別途供給されるペーパーで充満させた雰囲気とす
るが、又はコントロールされた気流を流通させる
雰囲気とすることができる。ドラフト工程の条件
により中空糸膜外表面の緻密層の微細構造を調節
できる。 紡糸原糸は、次いで凝固浴中に導びかれ凝固を
受ける。凝固浴の組成及び温度は広い範囲のもの
が考えられるが、本発明者らの検討の結果、組成
については上述した中部に導入する凝固性液体と
同組成のものが望ましいことを認めた。即ち紡糸
原液に用いた溶媒の水性溶液が好ましく、特にジ
メチルスルホキシド―水溶液が好ましい。各成分
の量は、中部に導入する凝固性液体、凝固温度等
の条件により選択すべきであり、通常含水率20〜
100重量%の範囲から実験により決定される。 また凝固温度は、本発明の膜構造を形成する重
要な因子の一つであり、紡糸原液のポリマー濃度
(C重量%)と凝固浴の温度(T℃)は一定の範
囲にあることが必要であることを見い出した。即
ち、下記の関係が満足されなければならない。 15≦C≦40のとき1/4C+12.5≦T≦1/4C+17
.5 本願発明の製造方法における凝固温度の場合に
は、ポリマー分子が動きやすく、ある程度ポリマ
ーの凝集は起りやすくなつている。従つて、凝固
浴中での脱溶媒の進行に伴つてポリマーの移動、
凝集が進行し、膜の孔径は大きくなる。そして、
中空部に液体を注入すると、中空部は凝固浴に比
較して注入液体の体積が小さいため、原液からの
脱溶媒の進行に伴い、注入液中の溶媒濃度は急激
に上昇する。その結果、中空糸内表面側は外表面
側に比べて溶媒濃度差が小さくなり、脱溶媒が緩
慢となり、ポリマーの移動、凝集がより長時間に
わたつて進むので、大きな孔径の孔構造を有する
膜が得られる。さらに凝固能力の大きい注入液を
注入した場合には、注入と同時に内表面でポリマ
ーの析出が起り、極めて微小な孔径の孔よりなる
緻密層が形成される。内表面側からの凝固は、該
緻密層の微小孔を通じての脱溶媒、水の浸入によ
つて進行するため、極めて緩慢となり、従つてポ
リマーは長時間かかつて凝集するため巨大な空孔
が生じる。 本願発明の製造方法における凝固温度よりも凝
固温度が高い場合には、凝固能力の大きい注入液
を注入してポリマーを急速に析出させようとして
も、ポリマーの移動、凝集も起り易くなつている
ため、さほど微小な孔径の孔よりなる緻密層は形
成できなくなる。その結果、むしろ脱溶媒と水の
浸入、ポリマーの移動、凝集がバランスする傾向
が出てきて、孔径の大きな孔よりなる均質多孔膜
ができる。 凝固温度がさらに高くなると原液の粘度が低下
し、洩糸性が低下し成膜が困難になる場合があ
り、凝固温度が極めて高くなると洩糸性がなくな
つて連続した中空糸膜は得られなくなる。 一方、本願発明の製造方法における凝固温度よ
りも凝固温度が低い場合、原液は凝固浴中で先ず
冷却されて固化し、次いで溶媒の拡散、流出、水
の浸入が起る。このとき、低温で固定化され運動
が不活発な状態にあるポリマー間から脱溶媒が進
み、それに伴なうポリマーの移動、凝集が低温で
は起りにくいので、均質な微小孔径を有する膜が
得られる。凝固温度が極端に低いと、原液の粘度
が高くなりすぎて洩糸性がなくなり、連続した中
空糸膜を成膜することができない。 このように、凝固浴温度と膜構造とは密接な関
連を有するが、上述のように、目的とする膜構造
の発現にはポリマーの移動、凝集が大きくかかわ
つており、原液中のポリマー濃度を上げて成膜す
る場合には、ポリマーの移動を起り易くするため
に、より高い凝固浴温度にする必要がある。従つ
て、本願発明で目的としている巨大空孔を有する
微多孔膜を得るには、前述したポリマー濃度と凝
固浴温度で規定される特定の範囲内で成膜する必
要がある。この範囲外の温度で膜を製造しても、
本願発明で目的としている構造の膜を容易に得る
ことができない。 凝固浴を経た中空糸は、さらに必要に応じてロ
ーラー延伸、湿熱処理、湿熱延伸等を行ない、膜
性能、機械的性能を調整することができる。また
ホルムアルデヒド、アセトアルデヒド、クロルア
セトアルデヒド、ベンズアルデヒドなどのモノア
ルデヒド、グルタルアルデヒド、グリオキザー
ル、PVAジアルデヒドなどのジアルデヒドでビ
ニルアルコール部分をアセタール化したり、フエ
ニレンジイソシアネート、トリレンジイソシアネ
ートなどのジイソシアネートによるエステル架橋
や、エピクロヒドリンによるエーテル架橋などを
導入することもできる。特にグルタルアルデヒド
などのジアルデヒドによる架橋は、耐熱性、耐薬
品性、強度、寸法安定性等を大きく改善できるの
で、好ましい。 本発明による中空糸膜は湿潤又は乾燥膜として
使用できる。乾燥法としては、中空糸に含まれる
水分を水混和性でかつポリマーを溶解しない有機
溶媒(例えば、アセトン、メタノール、テトラヒ
ドロフラン等)で置換し次いで有機溶媒を加熱等
により除去する方法、又は製膜中あるいは製膜後
に多価脂肪族アルコール(例えばエチレングリコ
ール、ジエチレングリコール、グリセリン)で処
理し、しかる後比較的低温度で加熱乾燥する方法
さらには、水分を含んだ湿潤膜を液体窒素等で凍
結し、次いで減圧下において水を昇華現象を利用
して除去できる凍結乾燥方法等をとることができ
る。 本発明方法により得られるEVA系非対称型膜
は、膜表面の緻密層と該緻密層を支持する多孔質
層からなり、該多孔質層は乾燥膜の電子顕微鏡観
察により単層又は積層構造の空胞がその長軸長さ
において膜厚の20〜99%となる形状を有し、該多
孔質層のポリマー相は平均孔径0.05〜10μの微細
孔を有し、かつ該膜は60〜90%の空隙率を有する
ものである。 本発明のEVA膜は、膜の一面又は両面に緻密
な層いわゆるスキン層を有しており、該スキン層
が膜の透過性能および分画性を規制している。ス
キン層の微細構造を明確にすることは極めて難し
いが、乾燥膜の電顕観察によれば5000Å以下の微
細間隙を有する。 かゝる構造の緻密層は、その下部に多孔質の支
持層を有する。多孔質層の存在はスキン層に対し
て一種の障壁となるものであるから、その構造は
膜性能に対して大きな影響を与える。本発明の膜
に存する多孔質層の構造は空胞が単層又は積層構
造で、その長軸長さにおいて膜厚の20〜99%とな
る形状を有しているので、その空孔率は非常に大
なるものである。さらにそのポリマー相の構造も
平均孔径0.05〜10μ、より好ましくは0.05〜5μ
の微細孔を有するものであり、比較的多孔質の構
造である。ここでポリマー相の微細孔の大きさ
は、微細孔が認められるものではその平均孔径で
あり、又粒子が結合した構造では粒子間の間隙を
意味する。すなわち該多孔質層は空胞を有する上
にポリマー相自体が多孔性であるという特長を有
する。空胞の配列が単層又は積層構造となるの
は、膜面に対し凝固が一面から進む場合、単層構
造が形成されやすく、両面から凝固が進む場合
は、二層又はそれ以上の積層構造となることが多
い。 第1図は本発明による中空糸膜の一例の断面構
造を示す電顕写真(600倍)である。 本発明での膜構造は、乾燥膜を液体窒素中で凍
結し、破断して破断面を作る。次いで破断面に金
を厚さ約100Åに蒸着し、これを日立製作所製電
子顕微鏡HFS―2型で観察する。 また本発明での空隙率とは下記の式から算出さ
れる。 (1−ρa/ρr)×100(%) ρa:見かけの比重 ρr:真の比重 本発明による中空糸膜は外径40〜3000μ、より
好ましくは100〜2000μ、膜厚は10〜1000μ、よ
り好ましくは20〜500μ程度である。 かゝる膜は、過型人工腎臓用の過膜や腹水
の過及び/又は濃縮膜として使用できる外、各
種工業用の過膜としても使用できる。 以下、実施例により本発明を説明する。 実施例 1 エチレン含有量33モル%のエチレン―ビニルア
ルコール共重合体をジメチルスルホキシドに加熱
溶解し、濃度22重量%の溶液を得た。これを70℃
で1晩放置して脱泡した。ノズル孔径が1.5mmニ
ードル外径が1.13mmニードル内径が0.87mmの円環
ノズルを凝固液面上20mmに設置し、その内側部よ
りジメチルスルホキシドと水(45/55wt/wt)
の混合溶媒を1.3c.c./minで注入しながら、その
外側部より上記脱泡後原液を1.9c.c./minの割合
で押し出しジメチルスルホキシド―水(60/
40wt/wt)混合溶液の凝固浴中(19℃)に垂直
下方に紡糸し、紡糸速度を9.4m/minとした。空
気中のドラフトは3.8であつた。得られた湿潤中
空繊維は外径が590μ、膜厚が80μであり、ほぼ
完全な真円の断面形状を示し、繊維長1Kmにわた
つて径、膜厚の斑は殆ど認められず均一性に優れ
た繊維であり、電顕観察による構造は第1図と同
様のものであつた。またその透水量(UFR)は
7.90ml/cm2・hr・atm、尿素透過性は226×10-4
cm/min、VB12透過性は46×10-4cm/minであつ
た。 実施例 2 中空糸内側部に導入する凝固性液体を水とし、
凝固浴を23℃の水とした以外は、実施例1と同様
にして中空糸膜を製造した。得られた湿潤中空糸
の外径は470μ、膜厚130μでほぼ真円形の断面形
状であつた。そのUFRは14.46ml/cm2・hr・
atm、尿素透過性は445×10-4cm/min、VB12透過
性は184×10-4cm/minであつた。 実施例 3〜5 紡糸ノズルをかえ(実施例3,4は1.0/0.6/
0.3mm径ノズル、実施例5は2.0/0.8/0.4mm径ノ
ズル)紡糸速度を10m/minとし、さらに凝固浴
組成、温度等をかえた外は実施例1と同様にして
中空糸を製造した。これらの詳細は下表に示す。
電顕観察により、いずれも第1図と同様のもので
あり、過膜として使用することができた。
The present invention relates to a method for producing a hollow fiber membrane made of an ethylene-vinyl alcohol (EVA) copolymer, and more particularly to a method for producing an asymmetric hollow fiber membrane by a dry-wet spinning method. Various hollow fiber membranes have been developed as dialysis membranes and ultrafiltration membranes for medical and industrial use. The present inventors have discovered that the present invention has good biocompatibility, good anti-hemolytic and anti-thrombotic properties, and excellent durability and chemical stability.
We have been conducting research on EVA copolymer hollow fiber membranes and have already developed an EVA hollow fiber membrane with a homogeneous structure. This homogeneous structure EVA hollow fiber membrane has excellent performance as a dialysis membrane and is being put into practical use as a dialysis membrane for artificial kidneys. The homogeneous structure EVA hollow fiber membrane has a structure in which particles with an average diameter of 100 to 10,000 Å are bonded to each other, and there are substantially no pores with a pore diameter of 2 μm or more. In general, membrane structures include, in addition to the above-mentioned homogeneous structure, membranes having a so-called asymmetric structure having a skin layer. Membranes made of cellulose acetate and polyacrylonitrile are known as conventionally provided membranes with asymmetric structures, but asymmetric hollow fiber membranes made of EVA-based polymers are hardly known. For example, JP-A-53-77883 discloses an EVA asymmetric membrane as a diaphragm for electrolyte. The membrane is composed of a dense layer and a porous layer as a supporting layer, and the porous layer of the supporting layer has a honeycomb-like structure with pores of 0.05 to 10 μm in diameter. It has an essentially different structure. As a result of further research into EVA-based copolymer membranes, the present inventors discovered that it was possible to obtain an EVA-based membrane with an asymmetric structure having a skin layer and a porous support layer. The application was filed as No. In the invention, the concentration C in the polymer solution
is 10 to 40% by weight, and a method for forming a coagulated film under conditions where the coagulation bath temperature T° C. satisfies the following formula is disclosed. When 10≦C<25, C-10≦T≦C+30 When 25≦C≦40, C-8≦T≦C+30 The above coagulation conditions apply to so-called wet film forming in which the polymer solution is directly discharged into a coagulation bath. Very good. However, according to studies conducted by the present inventors, when hollow fiber membranes are manufactured using the hot membrane forming method, the spinning condition tends to become unstable due to the difference in temperature between the polymer solution and the coagulation bath. However, there is a problem in that it is difficult to reduce the diameter of hollow fibers and to form membranes. In order to solve this problem, a so-called wet-dry film forming method is excellent, in which a polymer solution is once spun into a gas atmosphere, passed through the gas atmosphere, and then introduced into a coagulation bath. Therefore, the present inventors conducted studies on a method for producing an asymmetric EVA-based hollow fiber membrane using a dry-wet spinning method, and as a result, completed the present invention. That is, in the present invention, a spinning stock solution in which an EVA-based copolymer is dissolved in a solvent containing dimethyl sulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone, or a mixture thereof as a main component is mixed with a coagulable liquid from the center of a hollow fiber spinneret. It is characterized by spinning while introducing the spinning yarn, passing the spinning yarn through it in a gas atmosphere so as to receive a draft of 2.3 to 20 times, and then coagulating it in a coagulation bath in the following temperature range.
This is a method for manufacturing an EVA-based hollow fiber membrane. When 15≦C≦40, 1/4C+12.5≦T≦1/4C+17
.5 Here, C is the polymer concentration (wt%) and T is the coagulation temperature (°C). The EVA polymer used in the present invention has an ethylene content of 10 to 90 mol%, more preferably 10 to 60 mol%.
A dimethyl sulfoxide (DMSO) solution with a concentration of 3% by weight and a viscosity of 1.0 to 50 centipoise at 30°C is used. Furthermore, it may be copolymerized with other copolymerizable monomers in an amount of 15 mol% or less. Copolymerizable monomers include methacrylic acid, vinyl chloride, methyl methacrylate, acrylonitrile, vinylpyrrolidone, and the like. In addition, crosslinking is introduced by treating the EVA copolymer with an inorganic crosslinking agent such as a boron compound, or an organic crosslinking agent such as diisocyanate or dialdehyde before or after spinning, or a vinyl alcohol unit. The functional hydroxyl group may be acetalized with an aldehyde such as formaldehyde, acetaldehyde, butyraldehyde, benzaldehyde, etc. within 30 mol%. As a solvent for dissolving EVA copolymer,
methanol, ethanol, ethylene glycol,
Monohydric and polyhydric alcohols such as propylene glycol, phenol, metacresol, methylpyrrolidone, formic acid, and hydrated products thereof are known, but in order to produce the membrane targeted by the present invention, dimethyl sulfoxide, Preferably, dimethylacetamide, pyrrolidone, N-methylpyrrolidone or mixtures thereof are used. Particularly preferred is dimethyl sulfoxide, which exhibits high solubility in EVA copolymers. When dissolving EVA-based copolymers in these solvents, the concentration should be 15 to 40.
% by weight, more preferably in the range of 18-30% by weight. If the polymer concentration is less than 15% by weight, the viscosity will be too low, and if it is more than 40% by weight, the viscosity will be too high, making spinning difficult. The temperature of the polymer solution is 0 to 120℃, preferably 20 to 120℃.
80℃ is good. A higher temperature than this is undesirable because the polymer may deteriorate in quality, and a lower temperature is undesirable because the solution viscosity becomes too high or the polymer gels, making spinning difficult. The spinning stock solution prepared as described above is spun into a hollow fiber using a hollow fiber spinneret such as an annular nozzle. In the present invention, it is necessary to perform spinning while introducing a coagulating liquid into the polymer solution from the middle of the spinneret. The coagulation caused by the coagulable liquid on the inner surface of the hollow fiber membrane is an important factor in forming the asymmetric structure. The coagulable liquid includes water alone, a solution of water and a water-miscible organic solvent, and a solution of water and a salt such as Glauber's salt. %, more preferably 45 to 100% by weight. The coagulating ability of this solution makes it particularly suitable for forming membrane structures. The raw yarn spun from the spinneret first passes through a gas atmosphere. Since the spinning dope retains its fluidity in a gas atmosphere, the spinning yarn is stretched to form a circular membrane wall with a uniform thickness. Further, the spinning yarn is subjected to drafting in a gas atmosphere, and the drafting conditions are also an important factor in the present invention. That is, in order to achieve roundness and uniform film thickness, especially thinning of the film, it is desirable that the draft ratio be large. However, if the draft is too large, the overall film thickness becomes thinner, and pinhole-like film destruction tends to occur more easily. In the present invention, the spinning yarn needs to undergo a draft of 2.3 to 20 times. Preferably, it is desirable to receive a draft of 2.3 to 15 times. The draft conditions greatly influence the formation of the membrane structure through interaction with the coagulation conditions in the coagulation bath, and in addition to the above-mentioned roundness and uniformity of membrane thickness, they also have a great effect on permeation performance such as fractionation and flux. effect. The distance between the nozzle and the coagulation bath surface is 10
~500mm is preferable. The gas atmosphere is normally an open space, but when controlling the evaporation of the solvent, a shield of any shape such as a cylinder is provided, and the atmosphere is filled with paper from the coagulation bath or paper supplied separately. The atmosphere may have a controlled air flow or a controlled air flow. The fine structure of the dense layer on the outer surface of the hollow fiber membrane can be controlled by the conditions of the drafting process. The spun yarn is then introduced into a coagulation bath and undergoes coagulation. Although a wide range of compositions and temperatures can be considered for the coagulation bath, as a result of studies by the present inventors, it has been found that it is desirable that the composition be the same as that of the coagulating liquid introduced into the above-mentioned middle part. That is, an aqueous solution of the solvent used in the spinning dope is preferable, and an aqueous dimethyl sulfoxide solution is particularly preferable. The amount of each component should be selected depending on the conditions such as the coagulating liquid introduced into the middle part and the coagulating temperature.
Determined experimentally from a range of 100% by weight. Furthermore, the coagulation temperature is one of the important factors for forming the membrane structure of the present invention, and the polymer concentration (C weight %) of the spinning dope and the temperature of the coagulation bath (T°C) need to be within a certain range. I found that. That is, the following relationship must be satisfied. When 15≦C≦40, 1/4C+12.5≦T≦1/4C+17
.5 At the coagulation temperature in the production method of the present invention, polymer molecules tend to move easily, and polymer aggregation tends to occur to some extent. Therefore, as desolvation progresses in the coagulation bath, the movement of the polymer;
As aggregation progresses, the pore size of the membrane increases. and,
When a liquid is injected into the hollow part, since the volume of the injected liquid in the hollow part is smaller than that of the coagulation bath, the solvent concentration in the injected liquid increases rapidly as the solvent is removed from the stock solution. As a result, the difference in solvent concentration on the inner surface of the hollow fiber is smaller than on the outer surface, desolvation is slow, and polymer movement and aggregation proceed over a longer period of time, resulting in a pore structure with a large pore size. A membrane is obtained. Furthermore, when an injection liquid with a large coagulation ability is injected, polymer precipitation occurs on the inner surface at the same time as the injection, and a dense layer consisting of pores with extremely small pore diameters is formed. Solidification from the inner surface progresses by desolvation and water infiltration through the micropores of the dense layer, so it is extremely slow, and the polymer coagulates for a long time, creating huge pores. . If the coagulation temperature is higher than the coagulation temperature in the production method of the present invention, even if an injection liquid with a large coagulation ability is injected to rapidly precipitate the polymer, polymer movement and aggregation are likely to occur. , it becomes impossible to form a dense layer consisting of pores with very small pore diameters. As a result, there is a tendency for desolvation, water infiltration, polymer movement, and aggregation to be balanced, resulting in a homogeneous porous membrane consisting of large pores. If the coagulation temperature becomes even higher, the viscosity of the stock solution decreases, which may reduce the threadability and make film formation difficult.If the coagulation temperature becomes extremely high, the threadability disappears and a continuous hollow fiber membrane cannot be obtained. It disappears. On the other hand, when the coagulation temperature is lower than the coagulation temperature in the production method of the present invention, the stock solution is first cooled and solidified in the coagulation bath, and then solvent diffusion, outflow, and water intrusion occur. At this time, desolvation proceeds from between the polymers that are immobilized at low temperatures and inactive, and the accompanying movement and aggregation of polymers is less likely to occur at low temperatures, resulting in a membrane with a homogeneous micropore size. . If the coagulation temperature is extremely low, the viscosity of the stock solution will become too high, resulting in a loss of threadability, making it impossible to form a continuous hollow fiber membrane. In this way, there is a close relationship between the coagulation bath temperature and the film structure, but as mentioned above, the movement and aggregation of the polymer are greatly involved in the development of the desired film structure, and the polymer concentration in the stock solution must be controlled. When forming a film at a higher temperature, it is necessary to use a higher coagulation bath temperature in order to facilitate the movement of the polymer. Therefore, in order to obtain a microporous membrane having giant pores, which is the object of the present invention, it is necessary to form the membrane within a specific range defined by the above-mentioned polymer concentration and coagulation bath temperature. Even if membranes are manufactured at temperatures outside this range,
A film having the structure targeted by the present invention cannot be easily obtained. The hollow fibers that have passed through the coagulation bath can be further subjected to roller stretching, wet heat treatment, wet heat stretching, etc., as necessary, to adjust membrane performance and mechanical performance. In addition, the vinyl alcohol moiety is acetalized with monoaldehydes such as formaldehyde, acetaldehyde, chloroacetaldehyde, and benzaldehyde, dialdehydes such as glutaraldehyde, glyoxal, and PVA dialdehyde, and ester crosslinking with diisocyanates such as phenylene diisocyanate and tolylene diisocyanate. It is also possible to introduce ether crosslinking using epichlorohydrin. In particular, crosslinking with a dialdehyde such as glutaraldehyde is preferred because it can greatly improve heat resistance, chemical resistance, strength, dimensional stability, etc. The hollow fiber membrane according to the invention can be used as a wet or dry membrane. Drying methods include replacing the water contained in the hollow fibers with an organic solvent that is water-miscible and does not dissolve the polymer (e.g., acetone, methanol, tetrahydrofuran, etc.), and then removing the organic solvent by heating, etc., or film forming. A method of treating with a polyhydric aliphatic alcohol (e.g., ethylene glycol, diethylene glycol, glycerin) during or after film formation, and then heating and drying at a relatively low temperature.Furthermore, a wet film containing water may be frozen with liquid nitrogen, etc. Then, a freeze-drying method or the like can be used in which water can be removed by sublimation under reduced pressure. The EVA-based asymmetric membrane obtained by the method of the present invention consists of a dense layer on the surface of the membrane and a porous layer supporting the dense layer. The cell has a shape in which the length of the long axis is 20 to 99% of the membrane thickness, the polymer phase of the porous layer has micropores with an average pore diameter of 0.05 to 10μ, and the membrane has a thickness of 60 to 90%. It has a porosity of . The EVA membrane of the present invention has a dense layer, so-called skin layer, on one or both sides of the membrane, and the skin layer regulates the permeability and fractionation properties of the membrane. Although it is extremely difficult to clarify the fine structure of the skin layer, electron microscopic observation of the dry film shows that it has fine gaps of less than 5000 Å. The dense layer of such a structure has a porous support layer below it. Since the presence of the porous layer acts as a kind of barrier to the skin layer, its structure has a great influence on membrane performance. The structure of the porous layer in the membrane of the present invention is such that the vacuoles are a single layer or a laminated structure, and the long axis length is 20 to 99% of the membrane thickness, so the porosity is It is very large. Furthermore, the structure of the polymer phase also has an average pore size of 0.05 to 10μ, more preferably 0.05 to 5μ.
It has a relatively porous structure. Here, the size of the micropores in the polymer phase refers to the average pore diameter in the case where micropores are recognized, and in the case of a structure in which particles are bonded, it refers to the gaps between the particles. That is, the porous layer has vacuoles and the polymer phase itself is porous. The vacuoles are arranged in a single-layer or laminated structure when solidification proceeds from one side of the membrane surface, and a single-layer structure is likely to be formed, whereas when coagulation proceeds from both sides, a two-layer or more laminated structure is formed. This is often the case. FIG. 1 is an electron micrograph (600x magnification) showing the cross-sectional structure of an example of a hollow fiber membrane according to the present invention. In the membrane structure of the present invention, a dried membrane is frozen in liquid nitrogen and ruptured to create a fractured surface. Next, gold was deposited to a thickness of approximately 100 Å on the fractured surface, and this was observed using a Hitachi electron microscope model HFS-2. Moreover, the porosity in the present invention is calculated from the following formula. (1-ρa/ρr)×100(%) ρa: Apparent specific gravity ρr: True specific gravity The hollow fiber membrane according to the present invention has an outer diameter of 40 to 3000μ, more preferably 100 to 2000μ, and a membrane thickness of 10 to 1000μ, or more. Preferably it is about 20 to 500μ. Such a membrane can be used not only as a membrane for an artificial kidney or as a membrane for filtering and/or concentrating ascites, but also as a membrane for various industrial applications. The present invention will be explained below with reference to Examples. Example 1 An ethylene-vinyl alcohol copolymer having an ethylene content of 33 mol% was dissolved in dimethyl sulfoxide by heating to obtain a solution having a concentration of 22% by weight. This is 70℃
The mixture was left to stand overnight to defoam. An annular nozzle with a nozzle hole diameter of 1.5mm, a needle outer diameter of 1.13mm, and a needle inner diameter of 0.87mm is installed 20mm above the coagulation liquid level, and dimethyl sulfoxide and water (45/55wt/wt) are injected from the inside of the nozzle.
While injecting the mixed solvent at 1.3 cc/min, extrude the defoamed stock solution from the outside at a rate of 1.9 cc/min, and add dimethyl sulfoxide-water (60/min).
40wt/wt) mixed solution in a coagulation bath (19°C) vertically downward, and the spinning speed was 9.4m/min. The draft in the air was 3.8. The obtained wet hollow fibers had an outer diameter of 590 μm and a film thickness of 80 μm, and exhibited an almost perfectly circular cross-sectional shape, with almost no irregularities in diameter or film thickness being observed over a fiber length of 1 km, indicating uniformity. It was an excellent fiber, and the structure observed by electron microscopy was similar to that shown in FIG. 1. Also, its water permeability (UFR) is
7.90ml/ cm2・hr・atm, urea permeability is 226×10 -4
cm/min, and the VB 12 permeability was 46×10 −4 cm/min. Example 2 Water is used as the coagulable liquid introduced inside the hollow fiber,
A hollow fiber membrane was produced in the same manner as in Example 1 except that the coagulation bath was water at 23°C. The obtained wet hollow fiber had an outer diameter of 470 μm, a membrane thickness of 130 μm, and a substantially perfect circular cross-sectional shape. Its UFR is 14.46ml/cm 2・hr・
ATM, urea permeability was 445×10 −4 cm/min, and VB 12 permeability was 184×10 −4 cm/min. Examples 3 to 5 Change the spinning nozzle (Examples 3 and 4 are 1.0/0.6/
Hollow fibers were produced in the same manner as in Example 1, except that the spinning speed was 10 m/min (0.3 mm diameter nozzle, 2.0/0.8/0.4 mm diameter nozzles in Example 5), and the coagulation bath composition, temperature, etc. were changed. . Details of these are shown in the table below.
Electron microscopic observation revealed that all of them were similar to those shown in FIG. 1, and could be used as membranes.

【表】 比較例 1 エチレン含有量34モル%のエチレン―ビニルア
ルコール共重合体をジメチルスルホキシドに加熱
溶解し、22.5重量%の溶液を得、減圧で完全に脱
泡した。ノズル孔径が0.8mm、ニードル外径が0.4
mm、ニードル内径が0.1mmの環状ノズルを用い、
原液を1.1c.c./min、内側部よりノズルの1孔当
り空気を0.9ml/min注入しながら5℃の冷却水
中に垂直上方に紡出した。離浴速度は5m/min
とした(ドラフトは1.7倍)。 得られた中空繊維は外径300μ、膜厚40μであ
り、膜構造は外表面に薄いスキン層とその下に多
孔性の支持層を有する構造であつた。又、UFR
ml/m2・hr・atmは7100であつた。
[Table] Comparative Example 1 An ethylene-vinyl alcohol copolymer having an ethylene content of 34 mol% was dissolved in dimethyl sulfoxide under heating to obtain a 22.5% by weight solution, which was completely defoamed under reduced pressure. Nozzle hole diameter is 0.8mm, needle outer diameter is 0.4mm
mm, using an annular nozzle with a needle inner diameter of 0.1 mm,
The stock solution was spun vertically upward into cooling water at 5° C. while injecting air at 1.1 cc/min from the inside of the nozzle at 0.9 ml/min per hole. Bathing speed is 5m/min
(Draft is 1.7x). The obtained hollow fibers had an outer diameter of 300 μm and a membrane thickness of 40 μm, and the membrane structure had a thin skin layer on the outer surface and a porous support layer underneath. Also, UFR
ml/ m2・hr・atm was 7100.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による中空糸膜の一例の断面構
造を示す電顕写真である。
FIG. 1 is an electron micrograph showing the cross-sectional structure of an example of a hollow fiber membrane according to the present invention.

Claims (1)

【特許請求の範囲】 1 エチレン―ビニルアルコール系共重合体をジ
メチルスルホキシド、ジメチルアセトアミド、ピ
ロリドン、N―メチルピロリドン又はこれらの混
合物を主成分とする溶媒に溶解した紡糸原液を中
空糸紡糸口金の中部より凝固性液体を導入しつつ
紡出し、気体雰囲気中で2.3〜20倍のドラフトを
受けるように紡糸原糸を通過させ、次いで下記の
温度範囲の凝固浴で凝固させることを特徴とする
エチレン―ビニルアルコール系非対称型中空糸膜
の製法。 15≦C≦40のとき1/4C+12.5≦T≦1/4C+17
.5 ここでCはポリマー濃度(重量%)、Tは凝固
温度(℃) 2 特許請求の範囲第1項記載の発明において中
空糸紡糸口金の中部より導入する凝固性液体とし
て、含水率が20〜100重量%の紡糸原液溶媒の溶
液を用いる方法。
[Scope of Claims] 1. A spinning dope in which an ethylene-vinyl alcohol copolymer is dissolved in a solvent containing dimethyl sulfoxide, dimethylacetamide, pyrrolidone, N-methylpyrrolidone, or a mixture thereof as a main component is added to the center of a hollow fiber spinneret. Ethylene, which is characterized by being spun while introducing a more coagulable liquid, passing the spinning yarn in a gas atmosphere so as to receive a draft of 2.3 to 20 times, and then coagulating in a coagulation bath in the following temperature range. Manufacturing method of vinyl alcohol-based asymmetric hollow fiber membrane. When 15≦C≦40, 1/4C+12.5≦T≦1/4C+17
.5 Here, C is the polymer concentration (wt%), and T is the coagulation temperature (°C). 2 In the invention described in claim 1, the coagulable liquid introduced from the center of the hollow fiber spinneret has a water content of 20 A method using a solution of ~100% by weight spinning dope solvent.
JP5373079A 1978-09-07 1979-04-30 Production of asymmetric hollow ethylene-vinyl alcohol membrane Granted JPS55148211A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5373079A JPS55148211A (en) 1979-04-30 1979-04-30 Production of asymmetric hollow ethylene-vinyl alcohol membrane
DE19792935097 DE2935097A1 (en) 1978-09-07 1979-08-30 AETHYLENE / VINYL ALCOHOL COPOLYMER MEMBRANE
US06/071,671 US4269713A (en) 1978-09-07 1979-08-31 Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
FR7922340A FR2435276A1 (en) 1978-09-07 1979-09-06 COPOLYMER MEMBRANES OF ETHYLENE AND VINYL ALCOHOL AND PROCESS FOR THEIR PREPARATION
GB7931000A GB2031792B (en) 1978-09-07 1979-09-06 Ethylene-vinyl alcohol copolymer membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5373079A JPS55148211A (en) 1979-04-30 1979-04-30 Production of asymmetric hollow ethylene-vinyl alcohol membrane

Publications (2)

Publication Number Publication Date
JPS55148211A JPS55148211A (en) 1980-11-18
JPS6227163B2 true JPS6227163B2 (en) 1987-06-12

Family

ID=12950937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5373079A Granted JPS55148211A (en) 1978-09-07 1979-04-30 Production of asymmetric hollow ethylene-vinyl alcohol membrane

Country Status (1)

Country Link
JP (1) JPS55148211A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788602B2 (en) * 1987-01-08 1995-09-27 三菱化学株式会社 Copolyamide imide hollow fiber
JP4672128B2 (en) * 2000-11-08 2011-04-20 旭化成クラレメディカル株式会社 Hollow fiber membrane and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126319A (en) * 1977-04-06 1978-11-04 Kuraray Co Ltd Production of dried hollow fiber with selective permeability
JPS55122010A (en) * 1979-03-12 1980-09-19 Kuraray Co Ltd Preparation of hollow ethylene-vinyl alcohol compolymer membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126319A (en) * 1977-04-06 1978-11-04 Kuraray Co Ltd Production of dried hollow fiber with selective permeability
JPS55122010A (en) * 1979-03-12 1980-09-19 Kuraray Co Ltd Preparation of hollow ethylene-vinyl alcohol compolymer membrane

Also Published As

Publication number Publication date
JPS55148211A (en) 1980-11-18

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
JPS6227162B2 (en)
US4279752A (en) Polyvinyl alcohol semi-permeable membrane and method for producing same
US5049276A (en) Hollow fiber membrane
JPS6214642B2 (en)
JPH02151636A (en) Preparation of isotropic microporous polysulfone film
JPH0122003B2 (en)
US5833896A (en) Method of making a hollow fibre membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPS6227163B2 (en)
JPS60122007A (en) Ultrafiltration membrane and its production
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPS59166208A (en) Manufacture of gas separating membrane
JP2530133B2 (en) Microporous membrane
JPS6211018B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS6229524B2 (en)
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JPS62163705A (en) Hollow yarn membrane made of ethylene-vinyl alcohol copolymer
JPH0371168B2 (en)
JPS59169510A (en) Anisotropic hollow yarn membrane
KR950004919B1 (en) Manufacturing method for polysulfone membrane