JPS62271370A - Electrolyte for lithium battery - Google Patents

Electrolyte for lithium battery

Info

Publication number
JPS62271370A
JPS62271370A JP61112085A JP11208586A JPS62271370A JP S62271370 A JPS62271370 A JP S62271370A JP 61112085 A JP61112085 A JP 61112085A JP 11208586 A JP11208586 A JP 11208586A JP S62271370 A JPS62271370 A JP S62271370A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
liasf6
liasf
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61112085A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Masayasu Arakawa
正泰 荒川
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61112085A priority Critical patent/JPS62271370A/en
Publication of JPS62271370A publication Critical patent/JPS62271370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte for lithium battery in which charge discharge performance of lithium electrode is excellent and having high conductivity by using a mixture of LiAsF6 and at least one lithium salt other than LiASF6 as lithium salt in electrolyte. CONSTITUTION:A mixture of LiAsF6 and at least one lithium salt other than LiAsF6 is used as lithium salt in electrolyte. By this mixed solution, a protection film is formed on the surface of lithium by the reaction of lithium with LiAsF6 to increase charge-discharge efficiency of lithium, and by the mixing effect of LiAsF6 and the other lithium salt, decrease in conductivity caused by partial decomposition of LiAsF6 for forming the protection film is supplemented and high conductivity can be obtained. By increasing the conductivity, the current of a battery can be increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はリチウム電池用電解液、さらに詳細にはりチウ
ム−次および二次電池に用いる電解液に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electrolyte for lithium batteries, and more particularly to an electrolyte for use in lithium secondary and secondary batteries.

〔発明の背景〕[Background of the invention]

リチウムを負極活物質として用いる電池は、小型・高エ
ネルギ密度を有する電池として研究されているが、その
二次電池化が大きな問題点となっている。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but converting them into secondary batteries has become a major problem.

リチウム電池を二次電池化するためには、正捲活物質の
選択、電池構成法など、多くの問題点がある。特に電解
液の選択は重要な課題である。
In order to convert a lithium battery into a secondary battery, there are many issues such as the selection of a normally wound active material and the battery construction method. In particular, the selection of electrolyte is an important issue.

電解液は、■高いリチウム充放電効率を有すること、■
高い導電率を有することの二点を同時に充足する必要が
ある。そして、二次電池化では、特に高いリチウムの充
放電効率を有することが重要である。
The electrolyte should have ■high lithium charging and discharging efficiency,■
It is necessary to satisfy the two requirements of having high conductivity at the same time. In the production of secondary batteries, it is particularly important to have high lithium charging and discharging efficiency.

リチウムの充放電効率減少の主要因として、析出リチウ
ムと溶媒の反応により、リチウムが電気化学的に不活性
化し、Lビを放電できない化合物に変化することが指摘
されている(J、 Power 5ouces 、第6
巻、 357〜370頁、1981年)。
It has been pointed out that the main reason for the decrease in lithium charging and discharging efficiency is that lithium is electrochemically inactivated by the reaction between precipitated lithium and the solvent, and turns into a compound that cannot discharge lithium (J, Power 5uces, 6th
Vol., pp. 357-370, 1981).

したがって、リチウムの充放電効率を向上させるために
は、リチウムと溶媒の反応を抑制することが効果的であ
ると考えられる。溶質(つまり電解質)としてLiAs
F sを、溶媒として酸素を含む化合物を用いた場合、
リチウムの表面に(>As−0−As<)を単位とする
高分子膜が形成され、溶媒とリチウムの反応を抑制する
可能性が指摘されている(J、[ilectroche
m  Sac、、第127 S、1461〜1467頁
、1979年)。しかしながらLiAsF 6を使用し
た電解液の導電率は必ずしも充分ではない。
Therefore, in order to improve the charging and discharging efficiency of lithium, it is considered effective to suppress the reaction between lithium and the solvent. LiAs as solute (i.e. electrolyte)
When F s is used as a solvent and a compound containing oxygen,
It has been pointed out that a polymer film with units of (>As-0-As<) is formed on the surface of lithium, which may suppress the reaction between the solvent and lithium (J, [electroche
m Sac, 127 S, pp. 1461-1467, 1979). However, the conductivity of electrolytes using LiAsF 6 is not always sufficient.

また、LiAsF s自体の毒性はLDs o =92
5 mg/にgと低く問題とならないが(リチウム−次
電池に多用されているLiCl0jはLDs o =1
160mg/Kg)、高い充放電容量での長い充放電サ
イクルを繰り返し、かつ分解生成物が1120と接触す
るような条件下では、LiAsF Hに比較して毒性の
高い化合物が生成する危惧がある。本来、リチウム電池
の場合、リチウムが空気中の水分、酸素、炭酸ガスなど
と反応するため、消費者に電池を提供する際には、電池
は完全に密閉された状態になっているので、上記のよう
な毒性に関する問題は、消費者に関することより主とし
て廃液処理に関する問題になる。このような仮定より、
リチウム二次電池用電解質としてのLiAsF sの利
点を生かしながら、その使用量を低減することができる
ならば、LiAsF sの使用方法としては、より望ま
しいものとなると考えられるが、具体的な提案がなされ
ていないのが現状である。
In addition, the toxicity of LiAsF s itself is LDs o =92
Although it is low at 5 mg/g and not a problem (LiCl0j, which is often used in lithium-ion batteries, LDs o = 1
160 mg/Kg), repeating long charge/discharge cycles at a high charge/discharge capacity, and under conditions where decomposition products come into contact with 1120, there is a risk that compounds with higher toxicity than LiAsF H may be produced. Normally, in the case of lithium batteries, lithium reacts with moisture, oxygen, carbon dioxide, etc. in the air, so when batteries are provided to consumers, they are in a completely sealed state, so the above-mentioned Toxicity issues such as these are primarily a waste disposal issue rather than a consumer issue. From such an assumption,
If LiAsFs can be used as an electrolyte for lithium secondary batteries while taking advantage of its advantages while reducing its usage, it would be a more desirable way to use LiAsFs, but there are no concrete proposals. The current situation is that this has not been done.

〔発明の概要〕[Summary of the invention]

本発明は、このような現状に鑑みてなされたものであり
、その目的はリチウムの充放電効率が高く、かつできる
限り、導電性が高いリチウム電池用電解液を提供するこ
とにある。
The present invention has been made in view of the current situation, and its purpose is to provide an electrolytic solution for lithium batteries that has high lithium charging and discharging efficiency and has as high conductivity as possible.

したがって本発明によるリチウム電池用電解液は、リチ
ウム塩を有機溶媒に溶解させたリチウム電池用電解液に
おいて、前記電解液のリチウム塩としてLiAsF s
とLiAsF s以外のリチウム塩の一種以上を混合し
たことを特徴とするものである。
Therefore, the electrolytic solution for lithium batteries according to the present invention is an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent.
and one or more types of lithium salts other than LiAsFs.

本発明によれば、リチウム電池の電解液としてLiAs
F 6とLiAsF 6以外のLiAsF s塩を一種
以上混合したものを用いることにより、リチウム極の充
放電特性が優秀で、かつ導電率が高いリチウム電池用非
水電解液を提供することができる。
According to the present invention, LiAs is used as an electrolyte for a lithium battery.
By using a mixture of F 6 and one or more LiAsF s salts other than LiAsF 6 , it is possible to provide a nonaqueous electrolyte for lithium batteries that has excellent charging and discharging characteristics of the lithium electrode and high conductivity.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

リチウム二次電池は、リチウムを負極活物質とし、Li
”イオンと可逆的な電気化学的反応を行う物質を正極活
物質とし、さらにリチウム塩を有機溶媒に溶解させた非
水電解液を用いたものであるが、このようなリチウム二
次電池用非水電解液のリチウム塩として、本発明におい
てはLiAsF sとLiAsF 6以外のリチウム塩
を一種以上混合したものを用いている。この混合溶質に
よって、LiAsF6とリチウムの反応によりリチウム
表面に保護膜が形成され、リチウムの充放電効率が高い
値を示すと同時に、LiAsF s以外のリチウム塩と
LiAsF6の混合効果により保護膜形成のためLiA
sF 6が一部分解し、導電率が低下するのを補うのみ
ならず、高い導電率が実現できることが期待される。
Lithium secondary batteries use lithium as a negative electrode active material, and Li
``The cathode active material is a substance that undergoes a reversible electrochemical reaction with ions, and a non-aqueous electrolyte in which lithium salt is dissolved in an organic solvent is used. In the present invention, a mixture of one or more lithium salts other than LiAsF s and LiAsF 6 is used as the lithium salt in the aqueous electrolyte. This mixed solute forms a protective film on the lithium surface due to the reaction between LiAsF 6 and lithium. At the same time, due to the mixing effect of lithium salt other than LiAsF s and LiAsF6, LiAs is used to form a protective film.
It is expected that this will not only compensate for the decrease in conductivity due to partial decomposition of sF 6 but also realize high conductivity.

また、この保護膜により、リチウムと溶媒の反応が抑制
され、電池の自己放電による放電容量の低下を抑制し、
電池の保存性能を高めるとともに、混合溶質による導電
率の向上により電池取得電流値も向上することも期待さ
れる。このようなことから、本発明によるリチウム電池
用非水電解液は二次電池のみならず一次電池用としても
優れた性能を有することがわかる。
In addition, this protective film suppresses the reaction between lithium and the solvent, suppressing the decrease in discharge capacity due to self-discharge of the battery,
In addition to improving the storage performance of the battery, it is also expected that the current value obtained by the battery will also improve due to the improvement in conductivity due to the mixed solute. From these facts, it can be seen that the non-aqueous electrolyte for lithium batteries according to the present invention has excellent performance not only for secondary batteries but also for primary batteries.

本発明による電解液に用いられるリチウム塩はLiAs
F aとLiAsF 6以外のリチウム塩を一種以上混
合したものであるが、LiAsF eに混合する溶質は
、基本的には、従来この種の電池に用いられる溶質を自
由に用いることができる。特に、単独溶質でLiAsF
 sより高い導電率を示すものが効果的である。たとえ
ば、LiCl0 a 、LiBFa 、LiPF5、L
i5bF s 、LiAlCl4、CF3 S03 L
i、、CI’3 CO2Li。
The lithium salt used in the electrolyte according to the present invention is LiAs
Although it is a mixture of F a and one or more lithium salts other than LiAsF 6 , the solute to be mixed with LiAsF e can basically be any solute conventionally used in this type of battery. In particular, LiAsF as a single solute
Those exhibiting higher conductivity than s are effective. For example, LiCl0 a , LiBFa , LiPF5, L
i5bF s , LiAlCl4, CF3 S03 L
i,, CI'3 CO2Li.

Li2 B 1ocItoなどの一種以上のリチウム塩
を有効に用いることができる。
One or more lithium salts such as Li2B 1ocIto can be used effectively.

このような混合溶質は、有機溶媒に0.5〜2.5モル
/l (M)添加するのがよい。0.5門未満であると
、リチウムの充放電特性が著しく低下し、また2、5M
を超えると溶質の溶解が困難になる恐れがあるからであ
る。また、LiAsF 6と他のリチウム塩のモル混合
比は、好ましくは1 二9〜9 :1、最も好ましくは
、3 ニア〜1 :1である。1:9未満の混合比であ
ると、両者を混合した意味が薄くなり、単独系の充放電
特性あるいは導電率特性に近づき充放電特性が悪化する
からである。
Such a mixed solute is preferably added to the organic solvent in an amount of 0.5 to 2.5 mol/l (M). If it is less than 0.5 M, the charging and discharging characteristics of lithium will deteriorate significantly, and if it is less than 2.5 M
This is because if the amount exceeds 100%, it may become difficult to dissolve the solute. Further, the molar mixing ratio of LiAsF 6 and other lithium salts is preferably 129 to 9:1, most preferably 3 to 1:1. This is because if the mixing ratio is less than 1:9, the meaning of mixing the two becomes weak, and the charge-discharge characteristics or conductivity characteristics approach those of a single system, and the charge-discharge characteristics deteriorate.

また、上記のリチウム塩を溶解させる有機溶媒は、従来
この種の電池に用いられる溶媒を自由に用いることがで
きる。たとえば、プロピレンカーボネイト、エチレンカ
ーボネイト、スルホラン、3−メチルスルホラン、ジメ
チルスルホキシド、γ−ブチロラクトン、γ−バレロラ
クオン、γ−オクタノイフクラクトン、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、2,5−ジメチ
ルテトラヒドロフラン、1.3−ジオキソラン、2−メ
チル−1,3−ジオキソラン、4−メチル−1,3−ジ
オキソラン、1.2−ジメトキシエタン、1,2−ジェ
トキシエタン、酢酸メチル、ギ酸メチル、アセト、アセ
トニトリル、N、N−ジメチルホルムアミド、N、N−
テトラメチルエチレンジアミン、ヘキサりん酸トリアミ
ド、12−クラウン−4、ジグライム、トリグライム、
テトラグライムなどのなかから選択された1種以上の溶
媒を用いることができる。
Further, as the organic solvent for dissolving the above-mentioned lithium salt, any solvent conventionally used in this type of battery can be freely used. For example, propylene carbonate, ethylene carbonate, sulfolane, 3-methylsulfolane, dimethylsulfoxide, γ-butyrolactone, γ-valerolacone, γ-octanoifuclactone, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 1.3 -dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, 1,2-jethoxyethane, methyl acetate, methyl formate, acetate, acetonitrile, N, N- dimethylformamide, N, N-
Tetramethylethylenediamine, hexaphosphoric acid triamide, 12-crown-4, diglyme, triglyme,
One or more solvents selected from tetraglyme and the like can be used.

以下実施例について説明する。Examples will be described below.

実施例1 電解液として、エチレンカーボネイトと2−メチルテト
ラヒドロフランの体積混合比1/1の混合溶媒に1.5
MのLiAsF 6とLiP F′6を溶解させたもの
を用いて、リチウムの充放電効率CHa)を測定した。
Example 1 As an electrolyte, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran with a volume mixing ratio of 1/1 was mixed with 1.5
The lithium charge/discharge efficiency CHa) was measured using a solution of M LiAsF 6 and LiP F'6.

Eaは作用極に白金極を、対極にリチウムを、参照電極
としてリチウムを用いた電池を組、以下のように測定し
た。測定は、まず、0.5mA/−の定電流で160分
間、白金極上にリチウムを析出させた後(4,8C/c
nl) 、この析出させたリチウムの一部(1,2C/
cd)をLi“イオンとして放電し、再びさらに1.2
C/cnTの容量で放電するサイクル試験を繰り返した
Ea was measured as follows using a battery using a platinum electrode as a working electrode, lithium as a counter electrode, and lithium as a reference electrode. The measurement was carried out by depositing lithium on a platinum electrode for 160 minutes at a constant current of 0.5 mA/- (4,8 C/c).
nl), a part of this precipitated lithium (1,2C/
cd) as Li“ ions, and again further 1.2
A cycle test of discharging at a capacity of C/cnT was repeated.

充放電効率(Ea)は、白金極の電位の変化より求め、
見掛は上100%の効率を示すサイクル数をnとすると
、下記の式(1)より、前記Eaを求めることができる
The charge/discharge efficiency (Ea) is determined from the change in potential of the platinum electrode,
Assuming that the number of cycles showing an apparent efficiency of 100% is n, the above Ea can be determined from the following equation (1).

第1図に、1.5 M LiAsF e /LiP F
 s //エチレンカーボネイト/2−メチルテトラヒ
ドロフラン中でのEaとLiAsF 6モル混合量との
関係を示す。
In FIG. 1, 1.5 M LiAsF e /LiP F
s // shows the relationship between Ea in ethylene carbonate/2-methyltetrahydrofuran and the amount of 6 moles of LiAsF mixed.

1.5 M LiP F s単独にLiAsF 6を混
合することによってEaは向上し、LiAsF 6混合
量が30%以上でほぼLiAsF e単独のEaと同等
のEaを示すことがわかる。つまり、LiAsF s 
/LiP F s =3 /7でLiPF5単独より約
6%充放電効率が向上することがわかった。
It can be seen that Ea is improved by mixing LiAsF 6 with 1.5 M LiP F s alone, and when the amount of LiAsF 6 mixed is 30% or more, Ea is almost equivalent to that of LiAsF e alone. In other words, LiAsF s
It was found that when /LiPF s =3 /7, the charge/discharge efficiency was improved by about 6% compared to LiPF5 alone.

実施例2 電解液として、1.5 M LiAsF e /LiP
 F s  (体1m ンm 合、3 /7 ) //
エチレンカーボネイト/2−メチルテトラヒドロフラン
(体積混合比1/1)を用いて、この電解液の導電率を
測定した。
Example 2 1.5 M LiAsF e /LiP as electrolyte
F s (body 1 m m combination, 3 /7) //
The conductivity of this electrolytic solution was measured using ethylene carbonate/2-methyltetrahydrofuran (volume mixing ratio 1/1).

第2図(A )に−20〜+30℃の範囲における上記
電解液の導電率を示す。第2図(B ’)は本発明の効
果を示すための比較例として、1.5 M LiAsF
G−エチレンカーボネイト/2−メチルテトラヒドロフ
ラン(体積混合比1/1)単独溶質系電解液の導電率を
示しである。第2図より明らかなように、−20〜+3
0℃の範囲において、本発明によるLiAsF s /
LiP F e混合溶質系は、LiAsF 6より高い
導電率を示すことがわかった。
FIG. 2(A) shows the conductivity of the electrolytic solution in the range of -20 to +30°C. FIG. 2 (B') shows a comparative example of 1.5 M LiAsF to show the effect of the present invention.
The graph shows the conductivity of a single solute electrolyte containing G-ethylene carbonate/2-methyltetrahydrofuran (volume mixing ratio 1/1). As is clear from Figure 2, -20 to +3
In the range of 0°C, LiAsF s /
The LiP Fe mixed solute system was found to exhibit higher conductivity than LiAsF6.

実施例3 溶媒として、エチレンカーボネイト/2−メチルテトラ
ヒドロフラン(体1a ?W、合比1/1)を使用し、
溶質として■I M LiAsF s / LiCl0
4(モル混合比、3/7 )あるいは■I M LiA
sF G /LiBF4(モル混合比、3/7 )を溶
解させたものを用いた以外は、実施例1と同様にして、
リチウムの充放電効率を測定した。
Example 3 Using ethylene carbonate/2-methyltetrahydrofuran (body 1a?W, combined ratio 1/1) as a solvent,
■I M LiAsF s / LiCl0 as solute
4 (molar mixing ratio, 3/7) or ■I M LiA
The same procedure as in Example 1 was carried out, except that a solution of sF G /LiBF4 (molar mixing ratio, 3/7) was used.
The charging and discharging efficiency of lithium was measured.

結果を第1表に示す。この第1表より明らかなように、
LiAsF 6 / LiCIO4およびLiAsF 
6 /LiBFaの混合溶質系は、それぞれLiCIO
4およびLiB F 4単独系より高い充放電効率を示
すことがわかった。
The results are shown in Table 1. As is clear from this Table 1,
LiAsF6/LiCIO4 and LiAsF
The mixed solute systems of 6/LiBFa are each LiCIO
4 and LiB F 4 alone.

また上記混合溶質系電解液の導電率の測定結果を第2表
に示す。第2表より明らかなように、本発明による上記
混合溶質系電解液は、LiAsF a単独溶質系電解液
よりたいあい導電率を示すことがわかる。
Further, Table 2 shows the measurement results of the electrical conductivity of the mixed solute electrolyte. As is clear from Table 2, the mixed solute electrolyte according to the present invention exhibits higher conductivity than the LiAsFa single solute electrolyte.

実施例4 溶媒としてプロピレンカーボネイトを溶質としてI M
 LiAsF s / LiCIO4を用いて電解液を
作製い、導電率を測定した。結果を第2表に合わせてし
めす。本発明による上記混合溶質系電解液はLiAsF
 e単独溶質系電解液よりも高い導電率を示すことがわ
かった。
Example 4 Propylene carbonate as a solvent and IM as a solute
An electrolytic solution was prepared using LiAsFs/LiCIO4, and the conductivity was measured. The results are shown in Table 2. The mixed solute electrolyte according to the present invention is LiAsF
It was found that the conductivity was higher than that of a single solute electrolyte.

〔発明の効果〕〔Effect of the invention〕

以上の説明より明らかなように、本発明によれば、リチ
ウム塩を有機溶媒に溶解させたリチウム電池用非水電解
液において、前記リチウム塩として、LiAsF eと
前記LiAsF s以外のLiAsF s塩を一4以上
混合したものを用いることにより、LiAsF6の充放
電効率が高く、導電率も高いリチウム−次および二次電
池用非水電解液を提供することが可能になるという利点
がある。
As is clear from the above description, according to the present invention, in a nonaqueous electrolyte for lithium batteries in which a lithium salt is dissolved in an organic solvent, a LiAsF s salt other than LiAsFe and the LiAsF s is used as the lithium salt. The use of a mixture of 14 or more has the advantage that it is possible to provide a non-aqueous electrolyte for lithium-primary and secondary batteries with high LiAsF6 charging/discharging efficiency and high conductivity.

図面の簡単な説明 第1図は本発明による電解液を用いた場合のリチウムの
充放電効率を示した図、第2図は本発明による電解液の
導電率を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the charging and discharging efficiency of lithium when using the electrolytic solution according to the present invention, and FIG. 2 is a diagram showing the electrical conductivity of the electrolytic solution according to the present invention.

出願人代理人  雨 宮  正 季 第1図Applicant's representative Masashi Ame Miya Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム塩を有機溶媒に溶解させたリチウム電池
用電解液において、前記電解液のリチウム塩としてLi
AsF_6とLiAsF_6以外のリチウム塩の一種以
上を混合したことを特徴とするリチウム電池用電解液。
(1) In an electrolytic solution for lithium batteries in which a lithium salt is dissolved in an organic solvent, Li is used as the lithium salt in the electrolytic solution.
An electrolytic solution for a lithium battery, characterized in that it contains a mixture of AsF_6 and one or more types of lithium salts other than LiAsF_6.
JP61112085A 1986-05-16 1986-05-16 Electrolyte for lithium battery Pending JPS62271370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112085A JPS62271370A (en) 1986-05-16 1986-05-16 Electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112085A JPS62271370A (en) 1986-05-16 1986-05-16 Electrolyte for lithium battery

Publications (1)

Publication Number Publication Date
JPS62271370A true JPS62271370A (en) 1987-11-25

Family

ID=14577712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112085A Pending JPS62271370A (en) 1986-05-16 1986-05-16 Electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JPS62271370A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148569A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPH01281677A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery of nonaqueous electrolyte
EP0397248A2 (en) * 1989-05-08 1990-11-14 Eastman Kodak Company Electrochemical cell modules
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106771A (en) * 1981-12-18 1983-06-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte for lithium secondary battery
JPS60175380A (en) * 1984-02-20 1985-09-09 Hitachi Maxell Ltd Lithium organic cell
JPS6168864A (en) * 1984-09-11 1986-04-09 Bridgestone Corp Battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106771A (en) * 1981-12-18 1983-06-25 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte for lithium secondary battery
JPS60175380A (en) * 1984-02-20 1985-09-09 Hitachi Maxell Ltd Lithium organic cell
JPS6168864A (en) * 1984-09-11 1986-04-09 Bridgestone Corp Battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148569A (en) * 1986-12-10 1988-06-21 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte cell
JPH01281677A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery of nonaqueous electrolyte
EP0397248A2 (en) * 1989-05-08 1990-11-14 Eastman Kodak Company Electrochemical cell modules
EP0397248A3 (en) * 1989-05-08 1992-05-20 Eastman Kodak Company Electrochemical cell modules
US7939201B2 (en) 2005-08-08 2011-05-10 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8057936B2 (en) 2005-08-08 2011-11-15 A123 Systems, Inc. Nanoscale ion storage materials including co-existing phases or solid solutions
US8158090B2 (en) 2005-08-08 2012-04-17 A123 Systems, Inc. Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials

Similar Documents

Publication Publication Date Title
JP5125559B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2006012806A (en) Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this
JPH0864238A (en) Nonaqueous electrolyte battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP2007179956A (en) Negative electrode and battery using same
US20050019655A1 (en) Non-aqueous electrolytic secondary battery
US8377598B2 (en) Battery having an electrolytic solution containing difluoroethylene carbonate
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
WO2019095717A1 (en) Lithium primary cell
JP3223111B2 (en) Non-aqueous electrolyte battery
JP5153134B2 (en) Nonaqueous electrolyte secondary battery
JPS62271370A (en) Electrolyte for lithium battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2009129632A (en) Nonaqueous electrolyte battery
WO2007040114A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2001076725A (en) Nonaqueous electrolyte secondary battery
JP2002270222A (en) Non-aqueous electrolyte and secondary battery
JP2654553B2 (en) Electrolyte for lithium secondary battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH10208743A (en) Battery capable of reversibly performing plural times of charging/discharging
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte