JPS622712B2 - - Google Patents

Info

Publication number
JPS622712B2
JPS622712B2 JP56137331A JP13733181A JPS622712B2 JP S622712 B2 JPS622712 B2 JP S622712B2 JP 56137331 A JP56137331 A JP 56137331A JP 13733181 A JP13733181 A JP 13733181A JP S622712 B2 JPS622712 B2 JP S622712B2
Authority
JP
Japan
Prior art keywords
thickness
layer
substrate
solar cell
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56137331A
Other languages
Japanese (ja)
Other versions
JPS5839074A (en
Inventor
Susumu Yoshida
Takao Oda
Kotaro Mitsui
Yoshinori Yukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56137331A priority Critical patent/JPS5839074A/en
Publication of JPS5839074A publication Critical patent/JPS5839074A/en
Publication of JPS622712B2 publication Critical patent/JPS622712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 この発明は、光エネルギーを電気エネルギーに
交換する太陽電池の製造方法に係り、特にその機
械的強度を保持しつつ、軽量化を計るための製造
方法の効良に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a solar cell that exchanges light energy into electrical energy, and particularly relates to the effectiveness of the manufacturing method for reducing weight while maintaining mechanical strength. It is.

近年、人工衛星などの宇宙空間用機器の電源と
して太陽電池が広く用いられつつあり、現在主と
してシリコン太陽電池が広く用いられている。し
かし、このような用途に対しては限られた容積
で、より多くの電力を得るために、高い変換効率
をもつた太陽電池が要望され、さらに、宇宙空間
においては放射線が降りそそいでいるので、放射
線による特性の劣化のないことが要求される。こ
のような要求に対して、現在最も高い変換効率を
有し、耐放射線性にも優れているヒ化ガリウム
(GaAs)太陽電池が注目されている。
In recent years, solar cells have been widely used as a power source for space equipment such as artificial satellites, and silicon solar cells are currently widely used. However, for such applications, solar cells with high conversion efficiency are required in order to obtain more power in a limited volume, and furthermore, since radiation is pouring down in outer space, , it is required that there is no deterioration of characteristics due to radiation. In response to these demands, gallium arsenide (GaAs) solar cells, which currently have the highest conversion efficiency and excellent radiation resistance, are attracting attention.

第1図は従来のGaAs太陽電池の一例を示す平
面図、第2図は第1図の―線での断面図であ
る。この従来のGaAs太陽電池は、250〜300μm
の厚さをもつn形のGaAs基板1の上にp形GaAs
層2を形成して、両者間にpn接合3が形成され
ており、さらに、p形GaAs層2の上にp形アル
ミニウム・ガリウム・ヒ素(AlGaAs)層4が形
成されている。そして、n側電極5はn形GaAs
基板1の裏面に形成され、p側電極6はp形
AlGaAs層4の表面に、同表面への光入射をあま
り妨げないように部分的に(この例では第1図に
示すように櫛状に)形成されている。p形
AlGaAs層4の表面の上記p側電極6が形成され
ていない部分には反射防止膜7が形成されてい
る。さらに、太陽光に対して透明な板、例えば、
100〜250μmの厚さをもつ溶融シリカまたはセリ
ウームをドープしたマイクロシートのカバーガラ
ス8が透明シリコーン樹脂9によつてp側電極6
および反射防止膜7の上に接着されている。
FIG. 1 is a plan view showing an example of a conventional GaAs solar cell, and FIG. 2 is a sectional view taken along the line - in FIG. This conventional GaAs solar cell is 250-300 μm
A p-type GaAs substrate 1 is placed on an n-type GaAs substrate 1 with a thickness of
A p-n junction 3 is formed therebetween, and a p-type aluminum gallium arsenide (AlGaAs) layer 4 is formed on the p-type GaAs layer 2 . And the n-side electrode 5 is n-type GaAs
Formed on the back surface of the substrate 1, the p-side electrode 6 is a p-type
They are formed partially on the surface of the AlGaAs layer 4 (in this example, in a comb shape as shown in FIG. 1) so as not to significantly impede the incidence of light onto the surface. p-type
An antireflection film 7 is formed on a portion of the surface of the AlGaAs layer 4 where the p-side electrode 6 is not formed. Additionally, plates transparent to sunlight, e.g.
A cover glass 8 made of a microsheet doped with fused silica or cerium and having a thickness of 100 to 250 μm is attached to the p-side electrode 6 by a transparent silicone resin 9.
and is adhered onto the antireflection film 7.

このような構造のGaAs太陽電池11において
は、光電流発生に有効な光キヤリヤは主としてp
形GaAs層2内で発生する。p形GaAs層2の上に
はp形AlGaAs層4が設けられているので、発生
した光キヤリヤのp形GaAs層2表面での再結合
による損失をかなり防ぐことができ、高効率の太
陽電池が実現されている。さらに、空乏層領域、
およびn形GaAs基板1内のpn接合3からホール
の拡散長さ程度までの領域内で発生した光キヤリ
ヤも光電流発生に寄与する。これより奥深いn形
GaAs基板1内で発生する光キヤリヤは非常にわ
ずかであり、かつ、pn接合3に到達しないの
で、光電流発生には寄与しない。なお、p形
AlGaAs層4内で発生する光キヤリヤは、表面再
結合するので光電流発生には寄与できない。従つ
て、この層4での光の吸収はできるだけ少なくす
ることが望ましく、この層4の厚さは1μm以下
というように薄くされている。通常p形GaAs層
2の厚さは数μm以下、空乏層の厚さは1μm以
下、n形GaAs基板1中のホールの拡散長さは数
μm以下であり、有効な受光領域はp形AlGaAs
層4とp形GaAs層2との界面から10μm程度、
深くても20μm以下という極めて薄い厚さであ
る。従つて、表面から10〜20μm以上離れた所で
生じる放射線損傷は変換効率には影響せず、表面
から200〜300μmの有効受光領域を有するシリコ
ン太陽電池に比して耐放射線性に優れているとい
える。
In the GaAs solar cell 11 having such a structure, the optical carrier effective for photocurrent generation is mainly p.
This occurs within the GaAs layer 2. Since the p-type AlGaAs layer 4 is provided on the p-type GaAs layer 2, loss due to recombination of generated optical carriers on the surface of the p-type GaAs layer 2 can be significantly prevented, resulting in a highly efficient solar cell. has been realized. Furthermore, the depletion layer region,
In addition, optical carriers generated within the region from the pn junction 3 to the hole diffusion length within the n-type GaAs substrate 1 also contribute to photocurrent generation. Deeper n-type than this
The optical carriers generated within the GaAs substrate 1 are very small and do not reach the pn junction 3, so they do not contribute to photocurrent generation. In addition, p-type
Optical carriers generated within the AlGaAs layer 4 recombine on the surface and cannot contribute to photocurrent generation. Therefore, it is desirable to minimize light absorption in this layer 4, and the thickness of this layer 4 is made as thin as 1 μm or less. Normally, the p-type GaAs layer 2 has a thickness of several μm or less, the depletion layer has a thickness of 1 μm or less, the diffusion length of holes in the n-type GaAs substrate 1 is several μm or less, and the effective light-receiving region is p-type AlGaAs.
About 10 μm from the interface between layer 4 and p-type GaAs layer 2,
It is extremely thin, less than 20 μm deep. Therefore, radiation damage that occurs at a distance of 10 to 20 μm or more from the surface does not affect the conversion efficiency, and the solar cell has superior radiation resistance compared to silicon solar cells, which have an effective light-receiving area of 200 to 300 μm from the surface. It can be said.

このように、GaAs太陽電池は宇宙空間機器用
として優れた特性を有しているが、GaAsはシリ
コンに比して比重が大きいので、同一寸法のシリ
コン太陽電池より重くなる。これは人工衛星の打
上げ時などに重大な欠点となる。一方上述のよう
にGaAs太陽電池の有効受光領域は厚さ10〜20μ
mの領域であるので、太陽電池の厚さはこの程度
で十分であるが、宇宙機器用太陽電池の標準寸法
である2cm×2cmの受光面の大きさで、上記厚さ
の結晶を得ることは現在の技術ではかなり困難で
あり、たとえ、得られたとしても非常に割れ易
く、電極形成等の組立て工程での取扱いが極めて
困難であり、太陽電池製作歩留りが極めて悪く、
太陽電池の価格をおし上げていた。
As described above, GaAs solar cells have excellent characteristics for use in space equipment, but because GaAs has a higher specific gravity than silicon, it is heavier than a silicon solar cell of the same size. This is a serious drawback when launching artificial satellites. On the other hand, as mentioned above, the effective light-receiving area of GaAs solar cells has a thickness of 10 to 20μ.
m region, so the thickness of the solar cell is sufficient, but it is possible to obtain a crystal with the above thickness with a light-receiving surface size of 2 cm x 2 cm, which is the standard size for solar cells for space equipment. is quite difficult with current technology, and even if it could be obtained, it would be extremely fragile, extremely difficult to handle during assembly processes such as electrode formation, and the yield of solar cell production would be extremely low.
They were pushing up the price of solar cells.

この発明は以上のような点に鑑みてなされたも
ので、ある程度の厚さの結晶基板を用いて接合、
表面側電極等の形成およびカバーガラスの接着を
完了した後に、基板の裏面をエツチングして所要
の結晶厚さにすることによつて、高効率で、耐放
射特性にすぐれ、しかも軽量で、かつ十分な機械
的強度を有する太陽電池を歩留りよく得る製作方
法を提供することを目的としている。
This invention was made in view of the above points, and uses crystal substrates of a certain thickness to bond,
After completing the formation of the front side electrodes and adhesion of the cover glass, the back side of the substrate is etched to the required crystal thickness, resulting in high efficiency, excellent radiation resistance, lightweight, and It is an object of the present invention to provide a manufacturing method for obtaining solar cells having sufficient mechanical strength with a high yield.

第3図A〜Gはこの発明による太陽電池の製造
方法の一実施例を説明するための、その主要工程
段階における状態を示す断面図である。まず、用
意するものとしては、(i)融液槽および基板収納部
を有するカーボン製治具(図示せず)、(ii)300μm
程度の厚さをもつn形GaAs基板1(第3図A)、
(iii)3元化合物半導体、例えばGaにAl、並びにAs
もしくはGaAsを含んだ融液に族元素例えば亜
鉛(Zn)を添加した結晶成長融液(図示せず)
である。
FIGS. 3A to 3G are cross-sectional views showing states at main process steps for explaining one embodiment of the method for manufacturing a solar cell according to the present invention. First, the following items must be prepared: (i) a carbon jig (not shown) having a melt tank and a substrate storage area; (ii) a 300μm
An n-type GaAs substrate 1 (Fig. 3A) with a thickness of about
(iii) Ternary compound semiconductors, such as Ga, Al, and As
Or a crystal growth melt made by adding a group element such as zinc (Zn) to a melt containing GaAs (not shown)
It is.

まず、上記カーボン製治具の融液槽に上記結晶
成長融液を入れるとともに、その基板収容部に上
記n形GaAs基板1を収容する。そして、このカ
ーボン製治具を石英反応管(図示せず)内に入
れ、この石英反応管内を充分水素(H2)ガスで置
換したのち、H2ガスを流しながら所定温度まで
昇温する。温度が所定温度に安定したのち、上記
結晶成長融液をn形GaAs基板1に接触させた状
態で所定の温度で、この結晶成長融液からZnが
n形GaAs基板1内に拡散してp形GaAs層2の厚
さが所定の値になるように、一定時間保持する。
次に、p形AlxGa1-xAs層4の厚さが1μm以下
になるように、例えば0.2℃/分〜1.0℃/分の冷
却速度で所定温度降温させる。この状態を第3図
Bに示す。次に第3図Cに示すように反射防止膜
およびp形AlxGa1-xAs層4の保護膜として効果
をもつ、例えばシリコン窒化(Si3N4)膜7を形成
する。つづいて、写真蝕刻技術を用いて、Si3N4
膜7およびp形AlxGa1-xAs層4に穴あけを行な
つた後、この穴を通してp形GaAs層2の表面に
オーミツクコンタクトする、例えば金(Au)―
亜鉛(Zn)からなるグリツド状のp側電極6を
形成する。この状態を第3図Dに示す。次にp側
電極6の一部に外部リードのコネタ(図示せず)
を半田付けまたは溶接した後、太陽光に対して透
明な板、例えば、100〜250μmの厚さをもつ溶融
シリカまたはセリウムをドープしたマイクロシー
トのカバーガラス8を透明シリコーン樹脂9で反
射防止膜7の表面に接着される。この状態を第3
図Eに示す。次に、第3図Fに示すように、この
カバーガラス8の接着されたGaAs太陽電池を例
えば、GaAsのエツチング液(HNO3:H2O:FH
=3:2:1の混合液)に浸し、n形GaAs基板
1の裏面をエツチングし、p形GaAs層2とn形
GaAs基板1とからなる素子基体10の厚さを50
μm程度にする。つづいて、第3図Gに示すよう
に、上記エツチングされたn形GaAs層1の面に
n側電極5を形成してGaAs太陽電池は完成す
る。
First, the crystal growth melt is poured into the melt bath of the carbon jig, and the n-type GaAs substrate 1 is accommodated in the substrate accommodating portion thereof. Then, this carbon jig is placed in a quartz reaction tube (not shown), and after the inside of the quartz reaction tube is sufficiently replaced with hydrogen (H 2 ) gas, the temperature is raised to a predetermined temperature while flowing H 2 gas. After the temperature stabilizes at a predetermined temperature, Zn is diffused from the crystal growth melt into the n-type GaAs substrate 1 at a predetermined temperature with the crystal growth melt in contact with the n-type GaAs substrate 1, and p The thickness of the GaAs layer 2 is kept at a predetermined value for a certain period of time.
Next, the temperature is lowered to a predetermined temperature at a cooling rate of 0.2° C./min to 1.0° C./min, for example, so that the thickness of the p-type Al x Ga 1-x As layer 4 becomes 1 μm or less. This state is shown in FIG. 3B. Next, as shown in FIG. 3C, a silicon nitride (Si 3 N 4 ) film 7, for example, which is effective as an antireflection film and a protective film for the p-type Al x Ga 1-x As layer 4 is formed. Next, using photo-etching technology, Si 3 N 4
After drilling holes in the film 7 and the p-type Al x Ga 1-x As layer 4, a layer of, for example, gold (Au) is made to make ohmic contact with the surface of the p-type GaAs layer 2 through the hole.
A grid-like p-side electrode 6 made of zinc (Zn) is formed. This state is shown in FIG. 3D. Next, connect an external lead connector (not shown) to a part of the p-side electrode 6.
After soldering or welding, a plate transparent to sunlight, for example, a cover glass 8 made of fused silica or cerium-doped microsheet with a thickness of 100 to 250 μm is coated with an antireflection coating 7 using a transparent silicone resin 9. is adhered to the surface of This state is the third
Shown in Figure E. Next, as shown in FIG .
The back surface of the n-type GaAs substrate 1 is etched, and the p-type GaAs layer 2 and the n-type
The thickness of the element substrate 10 consisting of the GaAs substrate 1 is 50
The size should be about μm. Subsequently, as shown in FIG. 3G, an n-side electrode 5 is formed on the surface of the etched n-type GaAs layer 1 to complete the GaAs solar cell.

このようにして得られたGaAs太陽電池は、そ
の重量が従来のものに比較して1/5以下となり、
充に軽量化の効果がみられ、しかもカバーガラス
が接着されているので充分な機械的強度を有して
いる。
The weight of the GaAs solar cells obtained in this way is less than 1/5 of that of conventional ones.
It has a significant weight reduction effect, and since the cover glass is bonded, it has sufficient mechanical strength.

なお、上記実施例ではGaAsを用いた太陽電池
について説明したが、他の半導体を用いた太陽電
池の製造にもこの発明は適用できる。
In the above embodiments, a solar cell using GaAs was explained, but the present invention can also be applied to manufacturing a solar cell using other semiconductors.

以上、詳述したように、この発明になる太陽電
池の製造方法では、取扱い容易な程度の厚さの結
晶基板を用いて、接合、表面側電極等の形成およ
び表面側にカバーガラスを接着した後に、基板の
裏面にエツチングして所要の結晶厚さにするの
で、特性のすぐれ、軽量で、機械的強度の十分な
太陽電池を歩留りよく製造することができる。
As detailed above, in the method for manufacturing a solar cell according to the present invention, a crystal substrate having a thickness that is easy to handle is used, bonding, formation of surface side electrodes, etc., and bonding of a cover glass on the surface side are performed. Afterwards, the back surface of the substrate is etched to obtain the required crystal thickness, so solar cells with excellent characteristics, light weight, and sufficient mechanical strength can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaAs太陽電池の一例を示す平
面図、第2図は第1図の―線での断面図、第
3図A〜Gはこの発明による太陽電池の製造方法
の一実施例を説明するための、その主要工程段階
における状態を示す断面図である。 図において、1はn形GaAs基板(第1伝導形
の半導体基板)、2はp形GaAs層(第2伝導形の
半導体層)、3はpn接合、5はn側電極(第2の
電極、6はp側電極(第1の電極)、8はカバー
ガラス、10は素子基体である。なお、図中符号
は同一または相当部分を示す。
FIG. 1 is a plan view showing an example of a conventional GaAs solar cell, FIG. 2 is a sectional view taken along the line - in FIG. 1, and FIGS. FIG. 2 is a cross-sectional view showing the state at the main process stage for explaining the process. In the figure, 1 is an n-type GaAs substrate (first conductivity type semiconductor substrate), 2 is a p-type GaAs layer (second conductivity type semiconductor layer), 3 is a pn junction, and 5 is an n-side electrode (second electrode). , 6 is a p-side electrode (first electrode), 8 is a cover glass, and 10 is an element substrate.The reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 取り扱いが安全容易な程度の厚さの第1伝導
形の半導体基板の一方の主面側に第2伝導形の半
導体層を形成し上記半導体基板との間にpn接合
を構成させ、上記半導体層の表面に第1の電極の
形成などの所要の処理を施した後に当該表面上に
太陽光に対して透明なカバーガラスを被着させ、
しかる後に、上記半導体基板の他方の主面側をエ
ツチングして上記半導体基板と上記半導体層とか
らなる素子基体の厚さを所要厚さにして、当該主
面に第2の電極を形成することを特徴とする太陽
電池の製造方法。 2 半導体としてヒ化ガリウムを用い、半導体基
板エツチング後の素子基体の厚さを50μm程度に
することを特徴とする特許請求の範囲第1項記載
の太陽電池の製造方法。
[Claims] 1. A semiconductor layer of a second conductivity type is formed on one main surface side of a semiconductor substrate of a first conductivity type having a thickness that is safe and easy to handle, and a p-n junction is formed between the semiconductor layer and the semiconductor substrate. After performing necessary processing such as forming a first electrode on the surface of the semiconductor layer, a cover glass transparent to sunlight is applied on the surface,
Thereafter, the other main surface side of the semiconductor substrate is etched to make the element substrate composed of the semiconductor substrate and the semiconductor layer have a required thickness, and a second electrode is formed on the main surface. A method for manufacturing a solar cell characterized by: 2. The method for manufacturing a solar cell according to claim 1, characterized in that gallium arsenide is used as the semiconductor, and the thickness of the element substrate after etching the semiconductor substrate is about 50 μm.
JP56137331A 1981-08-31 1981-08-31 Manufacture of solar battery Granted JPS5839074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137331A JPS5839074A (en) 1981-08-31 1981-08-31 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137331A JPS5839074A (en) 1981-08-31 1981-08-31 Manufacture of solar battery

Publications (2)

Publication Number Publication Date
JPS5839074A JPS5839074A (en) 1983-03-07
JPS622712B2 true JPS622712B2 (en) 1987-01-21

Family

ID=15196158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137331A Granted JPS5839074A (en) 1981-08-31 1981-08-31 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS5839074A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272179A (en) * 1985-09-25 1987-04-02 Sharp Corp Manufacture of thin compound semiconductor device
DE3536299A1 (en) * 1985-10-11 1987-04-16 Nukem Gmbh SOLAR CELL MADE OF SILICON
JPH01307277A (en) * 1988-06-04 1989-12-12 Nippon Mining Co Ltd Manufacture of solar cell
US9412884B2 (en) * 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes

Also Published As

Publication number Publication date
JPS5839074A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
US5458694A (en) Multispectral photovoltaic component comprising a stack of cells, and method of manufacture
US5258077A (en) High efficiency silicon solar cells and method of fabrication
US6331208B1 (en) Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor
JP5032496B2 (en) Stacked solar cell device
JP2637922B2 (en) Method for manufacturing thin film photovoltaic device
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
CN102017188A (en) Solar cell having crystalline silicon P-N homojunction and amorphous silicon heterojunctions for surface passivation
CN102013443A (en) Solar cell receiver subassembly for use in a concentrating solar system
US4673770A (en) Glass sealed silicon membrane solar cell
EP1153423A1 (en) Method for fabricating thin film semiconductor devices
US20090217976A1 (en) Solar cell with integrated thermally conductive and electrically insulating substrate
JP3269668B2 (en) Solar cell
JP5078415B2 (en) Method for manufacturing solar cell and method for manufacturing solar cell module
US3982265A (en) Devices containing aluminum-V semiconductor and method for making
JP2015138959A (en) Photovoltaic device and photovoltaic device manufacturing method
JPWO2009157053A1 (en) Photovoltaic device and manufacturing method thereof
JP6115806B2 (en) Photovoltaic device
KR101023144B1 (en) Solar cell using layer transfer process and fabrication method thereof
JPS622712B2 (en)
JP4467337B2 (en) Solar cell module
CN102790098A (en) Back reflective solar battery and manufacturing method thereof
JP5452755B2 (en) Method for manufacturing photovoltaic device
JP4558461B2 (en) Solar cell and method for manufacturing the same
JP5360818B2 (en) Tandem solar cell and production method thereof
JP3103737B2 (en) Solar cell element