JPS6227037B2 - - Google Patents

Info

Publication number
JPS6227037B2
JPS6227037B2 JP12391678A JP12391678A JPS6227037B2 JP S6227037 B2 JPS6227037 B2 JP S6227037B2 JP 12391678 A JP12391678 A JP 12391678A JP 12391678 A JP12391678 A JP 12391678A JP S6227037 B2 JPS6227037 B2 JP S6227037B2
Authority
JP
Japan
Prior art keywords
parts
metal
weight
ceramic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12391678A
Other languages
Japanese (ja)
Other versions
JPS5551774A (en
Inventor
Naruyoshi Yamamoto
Yasuyoshi Kunimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12391678A priority Critical patent/JPS5551774A/en
Publication of JPS5551774A publication Critical patent/JPS5551774A/en
Publication of JPS6227037B2 publication Critical patent/JPS6227037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐高温、高強度材料、耐摩材料等の用
途に使用される非酸化物系セラミツク体を金属化
するための組成物並びにそれを用いた金属化方法
に関するものである。 セラミツク体、特にアルミナ(Al2O3)セラミ
ツク体への金属化法は古くからセラミツクコンデ
ンサーの電極付けや真空管、気密端子などの金属
封着技術として用いられ、更に、真空管がトラン
ジスタ、集積回路に移行するにつれ配線用導体と
しての利用が急速に進み、最近ではセラミツク多
層配線基板の導体部形成のためには欠くことので
きない重要な技術となつている。 このようなセラミツク体上への金属化法として
は厚膜や薄膜による方法、無電界メツキ法による
ほか、高温処理による耐熱金属化粉末焼結法、活
性金属法などが知られている。 アルミナセラミツク体の金属化方法としては、
一般的に蒸着法を用いて金属を高真空中で活性な
超微粒子状にしてセラミツク体表面に物理的に被
着させる方法、あるいは例えばモリブデン
(Mo)粉末とマンガン(Mn)粉末を含む金属化
用組成物を適当な粘結剤と溶剤とから成るバイン
ダーを用いてペースト状となし、これをセラミツ
ク体上に塗布した後、水蒸気を含む弱酸性の水素
雰囲気あるいは水素と窒素の混合雰囲気中で焼成
して金属化層を形成する方法が採用されている。 後者の方法においては、水蒸気を含む水素もく
いは更に窒素を含有する雰囲気中での焼成過程
で、MnがMnOに酸化され、セラミツク体中の
Al2O3,SiO2と反応してMnO−Al2O3−SiO2の流
動性ガラスが形成され、これがAl2O3粒子間に浸
透してマトリツクスを形成するため、金属化層と
Al2O3焼結体との強固な接着が得られる。このた
め、ガラス形成を促進し、より強固な接着を得る
ため前記金属化用組成物にAl2O3,SiO2,CaO等
のガラス成分を添加することが一般的に行われて
いる。 上記の方法で形成された金属化層は、その上に
Niメツキが施された後、半田付けやロウ付けを
行うことができる。 このように従来から一般に広く用いられている
アルミナ、ベリリア等の酸化物系セラミツク体上
への金属化方法は数多く開発され、基本的には上
記のように高活性化された蒸着金属粒子による方
法と酸化物系セラミツクとなじみの良いガラスを
介して金属成分を接着する方法とが技術的には確
立している。 しかるに、近年セラミツクの新規材料の開発に
伴い、従来の酸化物系セラミツクにはない優れた
性質、例えば高温高強度、高耐熱衝撃性、耐薬品
性をもち、物理的、化学的にも安定な窒化珪素、
炭化珪素等の非酸化物系セラミツク材料が使用さ
れるに至り、その用途も電子部品材料に留まら
ず、ガスタービンやシーリング等の産業機械用材
料へと広がつている。 非酸化物系セラミツクをこれら産業機械部品と
して使用する場合、セラミツク体同士接合した
り、セラミツク体と金属部材とを接合することは
必要不可欠であり、その方法の一つとしてセラミ
ツク体の接合部分に金属化層を施した後、金属を
接着することは有効な手段である。 しかしながら、非酸化物系セラミツク体は従来
のアルミナセラミツク体等に用いていた金属化組
成物及びそれを用いた方法によつては、セラミツ
ク体と金属化層との強固な接着が得られなかつ
た。 従つて、本発明の目的は、非酸化物系セラミツ
ク体の表面に強固に接着された金属化層を形成す
るための組成物並びにそれを用いた金属化方法を
提供することにある。 本発明によれば、粉末状のタングステン又はモ
リブデンの単独もしくは両者の配合物80〜100重
量部に対し、非酸化物系セラミツクの構成要素物
質20重量部以下と、金属あるいは金属酸化物20重
量部以下とを含有せしめて成る非酸化物系セラミ
ツク体の金属化用組成物が提供される。 更に、本発明によれば、非酸化物系セラミツク
の未焼結成形体の所要箇所に、粉末状のタングス
テン又はモリブデンの単独もしくは両者の配合物
80〜100重量部に対し、非酸化物系セラミツクの
構成要素物質20重量部以下と、金属あるいは金属
酸化物20重量部以下とを含有せしめて成る金属化
用組成物のペーストを塗布した後、非酸化性雰囲
気中で焼成することを特徴とする非酸化物系セラ
ミツク体の金属化方法が提供される。 本発明の金属化用組成物においては、主成分で
ある金属化用高融点金属粉末として周知なW(タ
ングステン)或いはMo(モリブデン)の単独も
しくはそれらの配合物が用いられる。 また、上記高融点金属粉末80〜100重量部に対
して、金属化される非酸化物系セラミツクの構成
要素物質粉末、例えば窒化珪素質セラミツクの場
合にはSi3N4粉末を20重量部以下と、更にAl2O3
SiO2,MgO,CaO,Y2O3,Mn,Mg,Ti,Co等
の金属或いは金属酸化物20重量部以下とが添加配
合される。 上記配合により、窒化珪素、炭化珪素等の比較
的高温で焼結される非酸化物系セラミツクの未焼
結成形体表面に、前記金属化用組成物のペースト
を塗布した後、未焼結成形体と金属化用組成物を
高温で同時焼成しても、良好な金属化表面状態及
び接着状態が得られることが実験上、確認され
た。 前記非酸化物系セラミツクの構成要素物質はW
やMoの高融点金属の金属層と金属化される非酸
化物系セラミツクとの強固な接着に寄与してお
り、また、Al2O3,SiO2,Mn等の金属或いは金
属酸化物は非酸化物系セラミツクの漏れ性を向上
させ、或いは非酸化物系セラミツクの構成要素物
質が分散されたガラス質相を形成することによ
り、金属化層の強固な接着に寄与しているものと
考えられる。 次に、上述した金属化用組成物を用いて非酸化
物系セラミツクの表面を金属化する方法の具体例
を挙げると、前記金属化用組成物の粉末にα−テ
ルピノール、アセトン等の周知の溶剤、エチルセ
ルローズ、ポリビニルアルコール等の周知の粘結
剤から成るバインダーを添加して流動性を備えた
ペーストを調製し、これをスクリーン印刷、刷毛
塗り、ブラシユバンド、スプレー或いは浸漬等の
手段でもつて未焼結の非酸化物系セラミツク成形
体の被金属化対象面に塗布した後、或いは更に該
塗布面上に位置するようにスルーホールを持つ前
記被酸化物系セラミツクと同組成の生シートを積
層するか、又はコーテイングし、前記スルーホー
ル内に前記ペーストを充填し、更に該スルーホー
ル周辺に所定の金属化面を形成すべく前記ペース
トを塗布する工程を経た後、非酸化性雰囲気中で
前記非酸化物系セラミツクの所定温度、例えば
1500℃〜2100℃の範囲の適宜温度で焼成する。か
くして、非酸化物系セラミツク体の焼結とその所
要箇所の金属化が同時に行われる。 以下、本発明の実施例について説明する。 (実施例 1) Si3N4(窒化珪素)粉末95%とMgO,Al2O3
SiO2等の鉱化剤5%から成る窒化珪素質セラミ
ツク原料に有機質粘結剤と可塑剤を適当量配合し
てスラリー状となし、ドクターブレード法によつ
て製造したグリーン(生)シートから20mm×50mm
の角板の未焼結成形体を作成した。 一方、これに適用する金属化用組成物として、
表1に示す割合で、主成分及び添加成分を配合
し、この配合物に有機バインダーを添加して金属
化用組成物のペースト(メタライズペースト)を
調製し、次いで前記未焼結成形体表面にスクリー
ン印刷した後、窒素雰囲気の炉中において1550℃
で焼成し、未焼結成形体を焼結すると共に前記メ
タライズペースト塗布面を金属化させた。 次にこの金属化された表面にNiメツキを施
し、銀ロウ(Ag:72%,Cu:28%)を使つてFe
−Ni合金の金属リードをロウ付けした。 表1に掲げた表面状態は金属リードのロウ付け
前に金属化された層の表面を目視観察した結果で
ある。この結果は金属化層の表面に亀裂やボイド
の発生状態に応じて優劣をつけたものである。 また、表1中の接着状態は金属化層上にロウ付
けされた金属リードに直角方向の外力を加えた際
に、セラミツク体と金属層との接合面が剥される
度合により、金属化層のセラミツク体に対する接
着状態の優劣を判定したものである。
The present invention relates to a composition for metallizing non-oxide ceramic bodies used as high temperature resistant, high strength materials, wear resistant materials, etc., and a metallization method using the same. Metallization of ceramic bodies, especially alumina (Al 2 O 3 ) ceramic bodies, has been used for a long time as a metal sealing technique for attaching electrodes to ceramic capacitors and for vacuum tubes and airtight terminals. With this transition, its use as a wiring conductor has rapidly progressed, and recently it has become an indispensable and important technology for forming conductor parts of ceramic multilayer wiring boards. Known methods for metallizing ceramic bodies include thick film, thin film methods, electroless plating, heat-resistant metallized powder sintering using high temperature treatment, and active metal methods. The method for metallizing alumina ceramic bodies is as follows:
Generally, metals are formed into active ultrafine particles in a high vacuum using vapor deposition and physically deposited on the ceramic surface, or metallization including, for example, molybdenum (Mo) powder and manganese (Mn) powder. The composition is made into a paste using a binder consisting of a suitable binder and a solvent, and after being applied onto a ceramic body, it is applied in a weakly acidic hydrogen atmosphere containing water vapor or a mixed atmosphere of hydrogen and nitrogen. A method of forming a metallized layer by firing is employed. In the latter method, Mn is oxidized to MnO during the firing process in an atmosphere containing water vapor, hydrogen, and nitrogen.
Reacts with Al 2 O 3 and SiO 2 to form a fluid glass of MnO−Al 2 O 3 −SiO 2 , which penetrates between Al 2 O 3 particles to form a matrix, forming a metallized layer.
Strong adhesion with Al 2 O 3 sintered body can be obtained. For this reason, it is common practice to add glass components such as Al 2 O 3 , SiO 2 , CaO, etc. to the metallizing composition in order to promote glass formation and obtain stronger adhesion. The metallization layer formed by the method described above is
After Ni plating has been applied, soldering and brazing can be performed. In this way, many methods have been developed for metallizing oxide-based ceramic bodies such as alumina and beryllia, which have been widely used in the past.Basically, methods using highly activated vapor-deposited metal particles as described above are used. The method of adhering metal components through glass, which is compatible with oxide ceramics, has been technically established. However, in recent years, with the development of new ceramic materials, materials with excellent properties not found in conventional oxide ceramics, such as high strength at high temperatures, high thermal shock resistance, chemical resistance, and physical and chemical stability, have been developed. silicon nitride,
BACKGROUND OF THE INVENTION Non-oxide ceramic materials such as silicon carbide have come into use, and their applications are not limited to electronic component materials, but are also expanding to materials for industrial machinery such as gas turbines and sealing. When non-oxide ceramics are used as these industrial machine parts, it is essential to bond ceramic bodies to each other or to join ceramic bodies and metal parts, and one of the ways to do this is to Bonding the metal after applying the metallization layer is an effective measure. However, with non-oxide ceramic bodies, strong adhesion between the ceramic body and the metallized layer could not be obtained depending on the metallization composition and method using the same, which were used for conventional alumina ceramic bodies. . SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a composition for forming a metallized layer firmly adhered to the surface of a non-oxide ceramic body, and a metallization method using the composition. According to the present invention, for 80 to 100 parts by weight of powdered tungsten or molybdenum alone or a combination of both, 20 parts by weight or less of the constituent material of the non-oxide ceramic and 20 parts by weight of the metal or metal oxide. A composition for metallizing a non-oxide ceramic body is provided, comprising: Furthermore, according to the present invention, powdered tungsten or molybdenum, alone or a combination of both, is applied to the required locations of the green body of non-oxide ceramic.
After applying a paste of a metallizing composition containing 80 to 100 parts by weight, 20 parts by weight or less of a non-oxide ceramic constituent material and 20 parts by weight or less of a metal or metal oxide, A method for metallizing a non-oxide ceramic body is provided, which is characterized by firing in a non-oxidizing atmosphere. In the metallizing composition of the present invention, the well-known W (tungsten) or Mo (molybdenum) alone or a mixture thereof is used as a high melting point metal powder for metallizing as a main component. In addition, to 80 to 100 parts by weight of the above-mentioned high melting point metal powder, 20 parts by weight or less of Si 3 N 4 powder in the case of a powder of a constituent material of the non-oxide ceramic to be metallized, such as silicon nitride ceramic. and further Al 2 O 3 ,
Up to 20 parts by weight of metals or metal oxides such as SiO 2 , MgO, CaO, Y 2 O 3 , Mn, Mg, Ti, Co, etc. are added and blended. According to the above formulation, after applying the paste of the metallizing composition to the surface of the green compact made of non-oxide ceramic such as silicon nitride or silicon carbide which is sintered at a relatively high temperature, the green compact is formed. It has been experimentally confirmed that good metallized surface conditions and adhesion conditions can be obtained even when the metallization composition is co-fired at high temperatures. The constituent material of the non-oxide ceramic is W.
It contributes to strong adhesion between the metal layer of high melting point metals such as Al 2 O 3 , SiO 2 , Mn, etc. and the non-oxide ceramic to be metallized. It is thought that it contributes to strong adhesion of the metallized layer by improving the leakage properties of oxide ceramics or by forming a glassy phase in which constituent substances of non-oxide ceramics are dispersed. . Next, to give a specific example of a method for metallizing the surface of a non-oxide ceramic using the above-mentioned metallizing composition, a well-known method such as α-terpinol, acetone, etc. is added to the powder of the metallizing composition. A fluid paste is prepared by adding a binder consisting of a solvent, a well-known binder such as ethyl cellulose or polyvinyl alcohol, and this can be applied by means such as screen printing, brushing, brush banding, spraying or dipping. After coating the surface to be metallized of an unsintered non-oxide ceramic molded body, or further, a green sheet having the same composition as the oxidized ceramic having a through hole located above the coating surface. After passing through the steps of laminating or coating, filling the through hole with the paste, and applying the paste to form a predetermined metallized surface around the through hole, the paste is placed in a non-oxidizing atmosphere. At a predetermined temperature of the non-oxide ceramic, e.g.
It is fired at an appropriate temperature in the range of 1500°C to 2100°C. In this way, the sintering of the non-oxide ceramic body and the metallization of the required parts are performed simultaneously. Examples of the present invention will be described below. (Example 1) 95% Si 3 N 4 (silicon nitride) powder and MgO, Al 2 O 3 ,
20 mm from a green (raw) sheet manufactured by the doctor blade method by mixing appropriate amounts of organic binder and plasticizer with a silicon nitride ceramic raw material containing 5% of mineralizing agent such as SiO 2 to form a slurry. ×50mm
An unfired shaped body of square plate was created. On the other hand, as a metallizing composition applied to this,
The main component and additive components are blended in the proportions shown in Table 1, an organic binder is added to this blend to prepare a paste of the metallizing composition (metallizing paste), and then a screen is applied to the surface of the green compact. After printing, heat at 1550℃ in a nitrogen atmosphere furnace.
The green body was sintered and the surface to which the metallizing paste was applied was metallized. Next, Ni plating was applied to this metallized surface, and Fe was applied using silver solder (Ag: 72%, Cu: 28%).
-Ni alloy metal leads were brazed. The surface conditions listed in Table 1 are the results of visual observation of the surface of the metallized layer before brazing the metal lead. The results were determined based on the degree of occurrence of cracks and voids on the surface of the metallized layer. In addition, the adhesion state in Table 1 depends on the degree to which the bonding surface between the ceramic body and the metal layer is peeled off when an external force is applied in the perpendicular direction to the metal lead brazed on the metallized layer. The quality of adhesion to the ceramic body was determined.

【表】【table】

【表】 表1の結果から判るように、窒化珪素質セラミ
ツク体に対しては、主成分である高融点金属80〜
100重量部に対して、その構成要素物質である
Si3N4微粉末を20重量部以下と、他の金属或いは
金属酸化物を20重量部以下とを添加した場合に
は、金属化層の表面状態、接着状態ともに良好で
あり、銀ロウを用いて信頼性の高い金属リード取
付構造が得られる。なお、試料No.23及び26のよう
にSi3N4微粉末を全く添加しなかつた場合には、
外部リードに対する1Kg以下の直角方向の外力で
金属化層の剥れ現象が顕著に発生した。 (実施例 2) SiC(炭化珪素)の微粉末原料に焼結助剤(ホ
ウ素化合物、炭素等)から成る炭化珪素質セラミ
ツク原料に有機質粘結剤と可塑剤を配合してスラ
リー状と成し、ドクターブレード法により製造し
たグリーンシートから実施例1と同様の未焼結成
形体を作成した。 次に、この未焼結成形体に適用する金属化用組
成物としては、実施例1におけるSi3N4微粉末に
代えてSiC微粉末を用いた以外は実施例1と同様
とし、表1に示す割合で主成分及び添加成分を配
合し、この配合物に有機バインダーを添加して調
製したメタライズペーストを前記未焼結成形体表
面にスクリーン印刷した後、窒素雰囲気の炉中に
おいて2000℃で焼成し、未焼結成形体を焼結する
と共に前記メタライズペースト塗布面を金属化さ
せた。以後実施例1と同様の方法で金属化層の表
面状態及び接着状態を観察した所、表1と同様の
結果が得られることを確認した。 なお、上述した実施例においては、非酸化物系
セラミツクとして窒化珪素質セラミツクと炭化珪
素質セラミツクを代表例として記載したが、
TiC,B4C,AlN等の非酸化物系セラミツクに対
しても良好な金属化層が形成されることを確認し
ている。 以上の通り、本発明の金属化用組成物及びそれ
を用いた金属化方法によれば、非酸化物系セラミ
ツク体、特に窒化珪素質セラミツク体や炭化珪素
質セラミツク体に対しても、アルミナ等の酸化物
系セラミツク体と同様、極めて良好な金属化層を
形成することが可能となり、しかる後、該金属化
層上にリード等の金属部材を接合することが可能
となり、その結果、非酸化物系セラミツク体の用
途分野が拡大されるという効果を奏する。
[Table] As can be seen from the results in Table 1, for silicon nitride ceramic bodies, the high melting point metal, which is the main component,
per 100 parts by weight of its constituent substances.
When 20 parts by weight or less of Si 3 N 4 fine powder and 20 parts by weight or less of other metals or metal oxides are added, the surface condition and adhesion condition of the metallized layer are both good, and the silver solder is Using this method, a highly reliable metal lead attachment structure can be obtained. In addition, when no Si 3 N 4 fine powder was added as in Samples No. 23 and 26,
The peeling phenomenon of the metallized layer occurred significantly when an external force of 1 kg or less was applied in the perpendicular direction to the external lead. (Example 2) A slurry is formed by blending an organic binder and a plasticizer with a silicon carbide ceramic raw material consisting of a fine powder raw material of SiC (silicon carbide) and a sintering aid (boron compound, carbon, etc.). An unsintered compact similar to that in Example 1 was prepared from a green sheet produced by the doctor blade method. Next, the metallizing composition applied to this green compact was the same as in Example 1 except that SiC fine powder was used in place of the Si 3 N 4 fine powder in Example 1, and the composition is shown in Table 1. A metallized paste prepared by blending the main component and additive components in the proportions shown and adding an organic binder to this blend was screen printed on the surface of the green compact, and then fired at 2000°C in a nitrogen atmosphere furnace. The green compact was sintered and the surface coated with the metallization paste was metallized. Thereafter, the surface state and adhesion state of the metallized layer were observed in the same manner as in Example 1, and it was confirmed that the same results as in Table 1 were obtained. In the above embodiments, silicon nitride ceramics and silicon carbide ceramics were described as representative examples of non-oxide ceramics.
It has been confirmed that a good metallized layer can be formed on non-oxide ceramics such as TiC, B 4 C, and AlN. As described above, according to the metallizing composition of the present invention and the metallizing method using the same, alumina, etc. can be applied to non-oxide ceramic bodies, especially silicon nitride ceramic bodies and silicon carbide ceramic bodies. Similar to the oxide-based ceramic body, it is possible to form an extremely good metallized layer, and then it is possible to bond metal parts such as leads on the metallized layer. This has the effect of expanding the field of application of physical ceramic bodies.

Claims (1)

【特許請求の範囲】 1 粉末状のタングステン又はモリブデンの単独
もしくは両者の配合物80〜100重量部に対し、非
酸化物系セラミツクの構成要素物質20重量部以下
と、金属或いは金属酸化物20重量部以下とを含有
せしめて成る非酸化物系セラミツク体の金属化用
組成物。 2 非酸化物系セラミツクの未焼結成形体の所要
箇所に、粉末状のタングステン又はモリブデンの
単独もしくは両者の配合物80〜100重量部に対
し、非酸化物系セラミツクの構成要素物質20重量
部以下と、金属或いは金属酸化物20重量部以下と
を含有せしめて成る金属化用組成物のペーストを
塗布した後、非酸化性雰囲気中で焼成することを
特徴とする非酸化物系セラミツク体の金属化方
法。
[Scope of Claims] 1. 80 to 100 parts by weight of powdered tungsten or molybdenum alone or a combination of both, 20 parts by weight or less of a constituent material of non-oxide ceramic, and 20 parts by weight of a metal or metal oxide. A composition for metallizing a non-oxide ceramic body comprising: 2. Add up to 20 parts by weight of a component substance of non-oxide ceramic to 80 to 100 parts by weight of powdered tungsten or molybdenum alone or a combination of both at the required locations of the green compact of non-oxide ceramic. and 20 parts by weight or less of a metal or metal oxide, and after applying a paste of a metallizing composition, the metal is fired in a non-oxidizing atmosphere. method.
JP12391678A 1978-10-06 1978-10-06 Composition and method for metallizing nonnoxide ceramic body Granted JPS5551774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12391678A JPS5551774A (en) 1978-10-06 1978-10-06 Composition and method for metallizing nonnoxide ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12391678A JPS5551774A (en) 1978-10-06 1978-10-06 Composition and method for metallizing nonnoxide ceramic body

Publications (2)

Publication Number Publication Date
JPS5551774A JPS5551774A (en) 1980-04-15
JPS6227037B2 true JPS6227037B2 (en) 1987-06-11

Family

ID=14872511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12391678A Granted JPS5551774A (en) 1978-10-06 1978-10-06 Composition and method for metallizing nonnoxide ceramic body

Country Status (1)

Country Link
JP (1) JPS5551774A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848926A (en) * 1981-09-18 1983-03-23 Hitachi Ltd Insulated type semiconductor device
JPS59182283A (en) * 1983-03-29 1984-10-17 株式会社東芝 Manufacture of electroconductive ceramic sintered body
JPS6140871A (en) * 1984-07-25 1986-02-27 住友電気工業株式会社 Solderable si3n4 ceramic composite composition and manufacture
JPH0679988B2 (en) * 1984-11-30 1994-10-12 京セラ株式会社 Metallization method for nitride ceramics
JPS61248302A (en) * 1985-04-25 1986-11-05 株式会社日立製作所 Metalization base for silica carbide sintered body
JPH0699200B2 (en) * 1986-02-20 1994-12-07 株式会社東芝 Insulation board for high frequency transistors
JPH05863A (en) * 1991-08-26 1993-01-08 Kyocera Corp Joined structure
JPH05860A (en) * 1991-08-26 1993-01-08 Kyocera Corp Metallizing structure
JPH05862A (en) * 1991-08-26 1993-01-08 Kyocera Corp Metallizing composition for nitride-based ceramic body
JPH05861A (en) * 1991-08-26 1993-01-08 Kyocera Corp Metallizing composition for nitride-based ceramic body
KR102240635B1 (en) * 2017-10-18 2021-04-15 다이킨 고교 가부시키가이샤 Crosslinkable elastomer composition and fluororubber molded product

Also Published As

Publication number Publication date
JPS5551774A (en) 1980-04-15

Similar Documents

Publication Publication Date Title
JPS6227037B2 (en)
JPH0561236B2 (en)
JP3095490B2 (en) Ceramic-metal joint
JPS6365635B2 (en)
JPH0323512B2 (en)
JP4348112B2 (en) Metallized layer forming ceramic sintered body, metallized paste, and metallized layer forming ceramic sintered body manufacturing method
JPS6111912B2 (en)
JP3370060B2 (en) Ceramic-metal joint
JPS6357394B2 (en)
JPH0292872A (en) Bonding between ceramic material and copper material
JPS6054914B2 (en) Composition and method for metallizing silicon nitride ceramic bodies
JPH0816033B2 (en) Composition of metallizing paste for silicon nitride and metallizing method using the same
JP3778949B2 (en) Insulating paste and method for forming insulating layer using insulating paste
JPH0544434B2 (en)
JPH03146487A (en) Production of aluminum nitride sintered body with metallizing layer
JPH0218371A (en) Tungsten metallizing structure of aln body
JP3928645B2 (en) Insulating paste and method for forming insulating layer using insulating paste
JPS5948778B2 (en) Method for manufacturing ceramic-metal composite
JPH0313198B2 (en)
JPH0669914B2 (en) Metallizing composition
JPS631279B2 (en)
JPH0825826B2 (en) Metallization composition for zirconia ceramics
JPH0324431B2 (en)
JPH0571198B2 (en)
JPS61222978A (en) Metallization composition