JPS6226907B2 - - Google Patents

Info

Publication number
JPS6226907B2
JPS6226907B2 JP8101977A JP8101977A JPS6226907B2 JP S6226907 B2 JPS6226907 B2 JP S6226907B2 JP 8101977 A JP8101977 A JP 8101977A JP 8101977 A JP8101977 A JP 8101977A JP S6226907 B2 JPS6226907 B2 JP S6226907B2
Authority
JP
Japan
Prior art keywords
polypropylene
ethylene
weight
propylene
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8101977A
Other languages
Japanese (ja)
Other versions
JPS5416583A (en
Inventor
Takeo Inoe
Yasunori Sugita
Jun Ootsu
Keigo Suehiro
Kenichi Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8101977A priority Critical patent/JPS5416583A/en
Publication of JPS5416583A publication Critical patent/JPS5416583A/en
Publication of JPS6226907B2 publication Critical patent/JPS6226907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ナイロン又は/及びエチレン―ビニ
ルアルコール共重合体又はこれら2種の混合物と
ポリプロピレンとから構成される接着強度、透明
性、耐寒衝撃強度及び成形性の改良された樹脂積
層物に関するものである。 従来、押出成形シート又は押出吹込成形容器に
はポリプロピレンがそのバランスのとれた物性、
衛生性、低価格の点から多く使われているが酸
素、炭酸ガス等の気体透過率が大きい事、耐油性
に乏しい事から醤油、ソースなど、気体、特に酸
素の透過を嫌う食品又は食用油等の食品包装材と
しては単体では殆ど使用されていない。一方、ナ
イロン及びエチレン―ビニルアルコール共重合部
は気体透過率が低く、耐油性に優れる素材である
が、価格が高く、又、水分透過率が大きいこと
と、経時的に吸水して物性が低下するという欠点
を有するため、単体では必ずしも、これらの包装
材料とては適さない。 以上の問題の解決手段として、現在ポリプロピ
レンを一方の層とし、もう一層がナイロン又はエ
チレン―ビニルアルコール共重合部から成る2層
以上の積層体を形成し押出成形シート又は押出吹
込成形容器とする技術が知られているが、ポリプ
ロピレンが極性基を有さぬため、異樹脂との接着
性に乏しく、単にポリプロピレンとナイロン又
は、エチレン―ビニルアルコール共重合部を押出
成形しても両層は殆ど又は全く接着しないという
問題がある。この解決のためには (1) ポリプロピレン層自体又は、ポリプロピレン
層との層間の接着剤として極性モノマーをグラ
フトしたポリプロピレンを用いる方法 (2) アイオノマーなどカルボニル基を含有する熱
可塑性樹脂をいずれか一方又は両方の層に一定
量ブレンドさせる方法 (3) エラストマー系などの接着剤を介して両層を
接着させる方法 (4) いずれか一方又は両方の層に夫々相手方の樹
脂をブレンドさせる方法。 などが知られている。そして前記(1)の方法ではグ
ラフト化ポリプロピレン自体をポリプロピレン層
としてそのまま使うことも、又末変性ポリプロピ
レンにそのグラフト化ポリプロピレンを配合、希
釈して使う事も、公知であり、多くは後者の技術
が使用されている。このグラフト化ポリプロピレ
ンの種類とその製造方法などについても数多くの
技術が提示されている。しかしグラフト化ポリプ
ロピレンを希釈する配合用ポリプロピレンについ
ては、密度、メルトインデツクス(ASTM D
1238)を単に指定するだけで通常のプロピレンホ
モポリマーを使用する程度でしかなく、これでは
ナイロン又はエチレン―ビニルアルコール共重合
部との接着強度は必ずしも十分ではなかつた。接
着強度を高めるために通常のポリプロピレンに低
密度ポリエチレン又はエチレン―酢酸ビニル共重
合部を混合する方法も知られてはいるが、これに
よつて接着強度はいくらか増加するが必ずしも満
足すべきものではなく、同時に生産工程が増えて
コストアツプとなり、又混合の要素が加わつて、
物性バラツキの原因となり得る。かくして他樹脂
を加えぬ場合には、成形後の接着強度が充分でな
いと共に特に、積層押出成形後、室温下で経時的
に接着強度が低下したり、延伸加工を施すと、そ
の低下が著しいという欠点が生じる。例えばポリ
プロピレンの無水マレイン酸によるグラフト化ポ
リプロピレン/ナイロン又はエチレン―ビニルア
ルコール共重合部の複層構造から成る積層押出吹
込成形容器を成形後、室温下で3ケ月放置する
と、ポリプロピレンとナイロン又はエチレン―ビ
ニルアルコール共重合部との間の接着強度は1/
5〜1/10に低下し、例えば、この容器を1米の高
さから床上に、垂直落下させると、界面が剥離し
てしまい、その部分が白化して商品価値を失うも
のもある。又、同じ構成から成る積層2軸延伸吹
込成形容器を成形すると、延伸加工時に接着強度
は著しい低下を示し、前述の無延伸品に比較して
その強度は1/10以下となり、実用強度を示さない
ものとする。かかる欠点は、グラフトさせるべき
ラジカル重合性不飽和化合物の種類、グラフト反
応率などのグラフト重合条件を通常知られている
方法で変えても大きな改良を示さない。 更に他の欠点として成形加工時のスクラツプを
粉砕しリサイクルしてポリプロピレン層か、ナイ
ロン又はエチレン―ビニルアルコール共重合体層
に混合せしめると、両層の相溶性が低いため、透
明性、衝撃強度の大幅な低下を伴ない極端な場合
には流れむらを生じて商品価値を有しない場合が
ある。 かかる背景のもとに、本発明の完成について、
我々の掲げた目標は次の如くであつた。即ち (1) 上述の積層物において配合用ポリプロピレン
について検討し、ポリオレフインとナイロン又
はエチレン―ビニルアルコール共重合体の層間
接着強度を高め、延伸加工を付与しても、又、
通常包装材のシエルライフの目安である3ケ月
経過後も実用強度を有する事 (2) 従来品より透明性を増す事 (3) 低温下でも大きい落下強度を有する事 (4) 成形工程より生じるスクラツプを回収使用し
ても(2)(3)の特徴を失わぬ事 の4点を併せて解決する事であつた。 本発明者らは、これらの点について鋭意研究し
た結果、配合用ポリプロピレンとしてプロピレン
―エチレン共重合体特にエチレン含有量が1〜10
重量%のプロピレン―エチレンランダム共重合部
を80重量%以上含むものを用い、これにグラフト
化ポリプロピレンを適宜配合し、ナイロン樹脂等
と積層化させることによつて、前記の技術課題を
解決できることを見出したが、まだ接着強度及び
耐衝撃性に問題がある場合のあることもわかり、
更に検討を進め、前記のプロピレン―エチレン共
重合体よりも優れた配合用プロピレン―エチレン
共重合体を見出し、遂に本発明を完成した。すな
わちラジカル重合性不飽和化合物をグラフトさせ
たグラフト化ポリプロピレンを、(A)エチレン含有
率が1〜5重量%であるプロピレン―エチレンラ
ンダム共重合部が50〜95重量%と(B)エチレン含有
率が20〜95重量%であるプロピレン―エチレンラ
ンダム共重合部が50〜5重量%とから成るプロピ
レン―エチレンランダム共重合部を80重量部以上
含むプロピレン―エチレン共重合体に配合したポ
リプロピレン樹脂組成物(以下、変性ポリプロピ
レンと略記する)を層間接着乃至はポリプロピレ
ン層として用いると、ナイロン又はエチレン―ビ
ニルアルコール共重合体との積層押出成形シート
又は吹込成形容器の接着強度が著るしく高くな
り、2軸延伸加工を施しても、成形後経時的にも
殆どその強度は低下しないのである。更にかかる
特殊プロピレン―エチレン共重合体を用いるため
に得られた成形物の耐衝撃強度が大幅に増大す
る。 また、従来技術では押出成形で通常行われるス
クラツプのリサイクルに当つて、ポリプロピレン
層とナイロン又はエチレン―ビニルアルコール共
重合体層との相溶性が低いために、混合層の耐衝
撃強度の低下を生じるが、本発明ではこの強度低
下を充分補償して尚、従来の変性ポリプロピレン
を用いてスクラツプリサイクルを行う前の積層成
形物と比較しても高い衝撃強度を有するものであ
る。 本発明に規定する範囲外即ち(A)のプロピレン―
エチレンランダム共重合部のエチレン含有率が1
〜5重量%又は(B)のプロピレン―エチレン共重合
部のエチレン含有率が20〜95重量%を外した範囲
又は(A)と(B)とが全ポリプロピレンポリマー中の80
重量%未満である範囲では接着強度、耐衝撃強度
の低下、特に経時的又は2軸延伸加工後の接着強
度低下及びスクラツプのリサイクル時の耐衝撃強
度の低下が著しくなるものである。 本発明において使用されるグラフト化ポリプロ
ピレンの製造方法は公知の方法のいずれでもよく
特に限定されるものではない。例えば通常の重合
方法にて得られたポリプロピレンを有機溶媒(例
えば、クロルベンゼン)とを所定量混合加熱し、
溶液状態とし、これに窒素雰囲気下で所定量の有
機過酸化物(例えば、ジ―t―ブチルパーオキサ
イド)、有機溶媒ラジカル重合性不飽和化合物
(例えば無水マレイン酸)の混合溶液を加え、加
熱下で撹拌、一定時間反応せしめた後、冷却、洗
浄、過、乾燥して、グラフト化ポリプロピレン
を得る方法がある。この他に押出機内で、混合溶
融反応せしめる事もある。グラフト率は通常5重
量%以下である。グラフト化反応をせしめるポリ
プロピレンの種類も特に限定されるものではな
く、アイソタクチツクポリプロピレン、アタクチ
ツクポリプロピレンいずれでもよく、又本発明で
規定する変性ポリプロピレンを製造するための配
合用ポリプロピレンに用いるが如き特殊プロピレ
ン―エチレン共重合体でも通常のプロピレン単独
重合体又はエチレンとの共重合体更にはブテン―
1、ペンテン―1などC4以上のα―オレフイン
との共重合体でもいずれでもよいが反応溶液相の
粘度は低い方が好ましいという理由から、メルト
インデツクス(ASTM D1238)は1以上が好ま
しい。 グラフト反応せしめるラジカル重合性不飽和化
合物とは、α,β―不飽和脂肪族モノ及びジ―カ
ルボン酸及びそれらの誘導体であり、特に限定さ
れないが、例えば、アクリル酸、メタクリル酸、
及びこれらのメチル化合物、イタコン酸、マレイ
ン酸又はその無水物エステル、アミド化合物など
であり、特に、無水マレイン酸、アクリル酸が好
ましい。 かかるグラフト化ポリプロピレンを希釈配合し
変性ポリプロピレンを製造するための配合用ポリ
プロピレンとしては、本発明に規定せる如く、エ
チレン含有率1―5重量%であるプロピレン―エ
チレンランダム共重合部が50〜95重量%とエチレ
ン含有率20〜95重量%であるプロピレン―エチレ
ンランダム共重合部が50〜5重量%であるプロピ
レン―エチレンランダム共重合部を80重量%以上
含むポリプロピレンであれば特に製造方法は限定
されない。例えば触媒としてハロアルキルアルミ
ニウム化合物を三塩化チタンとを用い、不活性有
機溶媒(例えばヘプタン)中で窒素雰囲気下、所
定時間、所定の圧力、温度条件のもとに所定量の
プロピレン及びエチレンを所定の順序、所定の混
合比で接触反応せしめ反応終了後、触媒を不活性
化せしめて洗浄、過、乾燥させて得るものであ
る。但しポリプロピレン中80〜100重量部を占め
るプロピレン―エチレンランダム共重合部を合成
する工程では両モノマーの混合比は段階的に変化
させても構わぬが、同時に装入し反応させ、統計
的ランダム共重合部を構成させるものであり、残
りの20〜0重量%部分のポリプロピレンはプロピ
レン単独共重合部であつても、エチレン単独重合
部であつてもよいが、通常は前者である。メルト
インデツクスは特に制限されないが、本発明で
は、押出成形によるシート又は吹込成形容器であ
るので成形加工上0.3〜10好ましくは0.5〜3であ
る。 グラフト化ポリプロピレンはポリプロピレン樹
脂組成物中で0.1〜10重量%、好ましくは0.5〜5
重量%であることが望ましい。0.1重量%未満で
は接着力がほとんど得られない。また、10重量%
を超えると、コストは上昇し、逆に接着強度は低
下する傾向ある。配合方法は材料が均一に分散す
る方法であれば何でもよい。例えば、所定量の酸
化防止剤等の安定剤を加えて押出機によりペレツ
ト化する。 本発明において押出成形シート、押出吹込成形
容器の製造方法は特に限定されないが通常シート
の場合は複数(2台以上)の押出機よりダイを経
て樹脂を加熱、溶融し、積層の板状に押出し、チ
ルロール又は水槽等にて冷却、固化し製品と成
す。容器の場合は押出機ダイを経て各樹脂を同様
に加熱溶融し、積層パリソンを押出し、製品形状
を堀り込んだ割金型に導入して圧力空気を吹込ん
でのち冷却固化し、製品と成す。積層化はダイ内
で行うことが好ましい。 以上に加えて本発明には、延伸成形物をも対象
とするが、この製造方法も詳細は特に限定されな
いが、例えば一定寸法の積層シート(又はパリソ
ン)を押出後結晶凝固点以下に冷却、固化したの
ち、加熱炉(熱風循環室又は赤外線ヒーター室
等)にてポリプロピレン又はナイロン又はエチレ
ン―ビニルアルコール共重合体の延伸配合適温に
再加熱し、そののちシートの場合にはテンターに
て逐次又は同時に両軸方向に数倍に延伸し(容器
の場合にはパリソンの両端を把持して割金型内、
又は外にてパリソン軸方向に数倍に延伸し、その
のち又は同時に割金型内にて圧力空気を吹き込ん
で製品形状に拡張し)冷却固化し、製品と成す。
得られた積層シートに更に真空成形圧空成形など
の2次加工を施してカツプ等の容器とする事も本
発明の対象となり得るのは勿論である。積層体の
構成はポリプロピレン層が第一成分、ナイロン、
エチレン・ビニルアルコール共重合体又はこれら
の混合物が第二成分であれば、2層以上何層でも
よく又、層の配列、厚み比率も自由に選択でき
る。 例えば、容器の場合ではコスト、成形性、使用
機能などから最内層よりポリプロピレン(厚み
0.4mm)変性ポリプロピレン(厚み0.05mm)ナイ
ロン(又はエチレン―ビニルアルコール共重合
体)(又は両者の混合物)(厚み0.05mm)が1例で
ある。最内層に用いるポリプロピレンは、積層押
出成形に使用できる通常のものでよいが、好まし
くは接着層の変性ポリプロピレンに用いた配合用
ポリプロピレンと同じものが物性の上から適切で
ある。ナイロンとエチレン―ビニルアルコール共
重合体の混合物を用いる場合にはその混合比はい
ずれが過半でもよい。スクラツプのリサイクル
は、最大厚みの構成層に混合するのが通常であ
り、この場合最内層のポリプロピレン層となる。
本発明に規定する変性ポリプロピレンはこのよう
に層間接着層としても、又ポリプロピレン層自体
としても使用できるが、コスト上から通常は接着
層として用いる事が多い。 更に本発明においてナイロンは、ナイロン6、
ナイロン6.6、ナイロン6.10、ナイロン11、ナイ
ロン12又はこられの2種ないし、それ以上の共重
合体ブレンド物が使用できるが、ポリプロピレン
と積層押出成形をすることから粘度について適切
なものを選択する方がよい。エチレン―ビニルア
ルコール共重合体はエチレン―酢酸ビニル共重合
体の鹸化物を用いエチレン含有率10〜80モル%、
好ましくは20〜50モル%鹸化度90モル%以上、好
ましくは5モル%以上のものであれば、特に制限
はない。ナイロン、エチレン―ビニルアルコール
共重合体は共に40℃、0%RHに於ける酸素透過
率が5×10-12c.c..CM/CM2、sec CMHg以下の
ものが適切である。かくして得られた本発明に依
る積層シート又は積層容器は接着強度、衝撃強度
が通常の変性ポリプロピレンに依る方法に比し大
いに増大する。更には、特に経時的又は延伸加工
時の大幅な接着強度の低下が抑制できる事が大き
な利点をもたらす。 以下本発明を更に具体的に説明するために実施
例を挙げる。 実施例 1〜9 230℃におけるメルトインデツクス8.0、20℃に
おける密度0.91のアイソタクチツクポリプロピレ
ン単独共重合体に、ラジカル重合開始剤としてジ
―t―ブチルパーオキサイド、有機溶媒としてク
ロルベンゼンを用い125℃、4時間で窒素雰囲気
下無水マレイン酸を3.0重量%グラフト化反応さ
せたのち洗浄、過、乾燥しグラフト化ポリプロ
ピレンを得た。一方プロピレン単独重合部6重量
%、及びエチレン含有率5重量%のプロピレン―
エチレンランダム共重合部70重量%とエチレン含
有率95重量%のプロピレン―エチレンランダム共
重合部30重量%からなる共重合部が94重量%とか
らなるポリプロピレン共重合体をジエチルアルミ
ニウム モノクロライド、三塩化チタンを触媒と
し、ヘプタンを有機溶媒として80℃、4時間窒素
雰囲気下合成し、洗浄、過、乾燥し配合用ポリ
プロピレンを得た。メルトインデツクスは1.0に
調整した。密度は0.90であつた。このグラフト化
ポリプロピレン2重量%とポリプロピレン共重合
体98重量%とを所定量の安定剤を加えてヘンシエ
ルミキサーにて充分混合したのち、210℃で押出
機によりペレツト化した。かくして作られた変性
ポリプロピレンを一方の層(厚み0.35mm)に、ナ
イロン―6(東レ(株)製アミランCM―1021)を
もう一方の層(厚み0.15mm)として押出機に2層
ダイを取付けて250℃にて0.5mmの積層シートと押
出し、表面温度20℃のキヤストロールにて冷却固
化せしめた。更に前記と同様の方法で、但し配合
用ポリプロピレンとして本発明に規定する範囲内
で組成を変化させた各種のポリプロピレン共重合
体8種(但し共重合部以外はプロピレン単独重合
部とした。)を用いて製造した変性ポリプロピレ
ンを用いて積層シートを成形した。これらのシー
トについて室温放置1日後及び沸騰水処理40時間
後の180゜剥離強度、を測定した。この結果を表
―1に示す。 比較例 1〜6 実施例1と同様の方法で、但し、グラフト化ポ
リプロピレンを希釈、配合せしめるポリプロピレ
ンとして本発明に規定するポリプロピレンの組成
範囲を外れるもの計6種を用意し、積層シートを
成形し、同様に物性を測定した。結果を表―1に
示す。
The present invention relates to a resin laminate that has improved adhesive strength, transparency, cold impact strength, and moldability, and is composed of nylon or/and ethylene-vinyl alcohol copolymer, or a mixture of these two, and polypropylene. be. Conventionally, extrusion molded sheets or extrusion blow molded containers have been made using polypropylene due to its well-balanced physical properties,
Although it is widely used due to its hygiene and low cost, it has a high permeability to gases such as oxygen and carbon dioxide, and has poor oil resistance, so it is used in soy sauce, sauces, and other foods or edible oils that do not allow the permeation of gases, especially oxygen. It is rarely used as a single food packaging material. On the other hand, nylon and ethylene-vinyl alcohol copolymer parts are materials with low gas permeability and excellent oil resistance, but they are expensive, have high moisture permeability, and deteriorate physical properties due to water absorption over time. These packaging materials are not necessarily suitable for use alone. As a means of solving the above problems, the current technology is to form a laminate of two or more layers, one layer of polypropylene and the other layer of nylon or ethylene-vinyl alcohol copolymer, to produce an extrusion molded sheet or an extrusion blow molded container. However, since polypropylene does not have a polar group, it has poor adhesion with other resins, and even if polypropylene and nylon or ethylene-vinyl alcohol copolymer parts are simply extruded, both layers will hardly be bonded to each other. There is a problem that it does not adhere at all. To solve this problem, (1) a method using polypropylene grafted with a polar monomer as an adhesive between the polypropylene layer itself or the polypropylene layer; (2) a method using either one of the polypropylene layers or a thermoplastic resin containing a carbonyl group such as an ionomer; A method in which a certain amount of resin is blended into both layers (3) A method in which both layers are bonded together using an elastomer-based adhesive or the like (4) A method in which one or both layers are blended with each other's resin. etc. are known. In the method (1) above, it is known that the grafted polypropylene itself can be used as it is as a polypropylene layer, or that the grafted polypropylene can be blended and diluted with terminally modified polypropylene, and in most cases, the latter technique is used. It is used. Many techniques have been proposed regarding the types of grafted polypropylene and methods for producing the same. However, the density, melt index (ASTM D
1238), it is sufficient to use an ordinary propylene homopolymer, which does not necessarily provide sufficient adhesive strength with nylon or ethylene-vinyl alcohol copolymer. It is also known to mix low-density polyethylene or ethylene-vinyl acetate copolymer parts with ordinary polypropylene in order to increase the adhesive strength, but although this increases the adhesive strength to some extent, it is not necessarily satisfactory. At the same time, the number of production processes increases, increasing costs, and adding the element of mixing.
This may cause variations in physical properties. Thus, when other resins are not added, the adhesive strength after molding is not sufficient, and especially after laminated extrusion molding, the adhesive strength decreases over time at room temperature, and when stretching is performed, the decrease is significant. There are drawbacks. For example, if a laminated extrusion blow-molded container consisting of a multilayer structure of polypropylene grafted with maleic anhydride or polypropylene/nylon or an ethylene-vinyl alcohol copolymer is left at room temperature for three months after molding, polypropylene and nylon or ethylene-vinyl The adhesive strength between alcohol copolymerized part is 1/
For example, if this container is vertically dropped from a height of 1 meter onto the floor, the interface will peel off, and that part will turn white, causing some products to lose their commercial value. Furthermore, when a laminated biaxially stretched blow-molded container with the same structure is formed, the adhesive strength significantly decreases during the stretching process, and the strength is less than 1/10 of that of the non-stretched product described above, indicating that it has no practical strength. Make it not exist. Such drawbacks cannot be significantly improved even if the graft polymerization conditions such as the type of radically polymerizable unsaturated compound to be grafted and the graft reaction rate are changed by commonly known methods. Another drawback is that when scraps from molding are crushed and recycled and mixed into a polypropylene layer, nylon or ethylene-vinyl alcohol copolymer layer, the compatibility between the two layers is low, resulting in poor transparency and impact strength. In extreme cases with a significant drop, uneven flow may occur and the product may have no commercial value. With this background in mind, regarding the completion of the present invention,
The goals we set were as follows. That is, (1) Even if the polypropylene used in the above-mentioned laminate was studied, the interlayer adhesion strength between polyolefin and nylon or ethylene-vinyl alcohol copolymer was increased, and stretching was applied,
It has practical strength even after 3 months, which is the average shell life of packaging materials. (2) It has higher transparency than conventional products. (3) It has high drop strength even at low temperatures. (4) It is caused by the molding process. The aim was to solve the four points (2) and (3) that the characteristics of (2) and (3) would not be lost even if the scraps were collected and used. As a result of intensive research on these points, the present inventors found that propylene-ethylene copolymers, especially those with an ethylene content of 1 to 10
We have found that the above technical problem can be solved by using a material containing 80% by weight or more of a propylene-ethylene random copolymer portion, appropriately blending grafted polypropylene with this, and laminating it with a nylon resin, etc. However, we found that there may still be problems with adhesive strength and impact resistance.
After further investigation, they discovered a propylene-ethylene copolymer for blending that was superior to the propylene-ethylene copolymer described above, and finally completed the present invention. That is, grafted polypropylene grafted with a radically polymerizable unsaturated compound is prepared by combining (A) a propylene-ethylene random copolymer portion with an ethylene content of 1 to 5% by weight, and (B) an ethylene content of 50 to 95% by weight. A polypropylene resin composition blended with a propylene-ethylene copolymer containing 80 parts by weight or more of a propylene-ethylene random copolymer part consisting of 50-5 weight% of a propylene-ethylene random copolymer part of 20 to 95 wt%. When polypropylene (hereinafter abbreviated as modified polypropylene) is used as an interlayer adhesive or a polypropylene layer, the adhesive strength of laminated extrusion molded sheets or blow molded containers with nylon or ethylene-vinyl alcohol copolymer becomes significantly high. Even after axial stretching, the strength hardly decreases over time after molding. Furthermore, since the special propylene-ethylene copolymer is used, the impact strength of the molded product obtained is greatly increased. In addition, in the conventional technology, when recycling scrap that is usually performed in extrusion molding, the impact resistance strength of the mixed layer decreases due to the low compatibility between the polypropylene layer and the nylon or ethylene-vinyl alcohol copolymer layer. However, the present invention sufficiently compensates for this decrease in strength and still has a high impact strength compared to a laminated molded product made of conventional modified polypropylene before being subjected to scrap recycling. Propylene outside the scope defined in the present invention, i.e. (A)
The ethylene content of the ethylene random copolymerization part is 1
~5% by weight or within a range where the ethylene content of the propylene-ethylene copolymer part of (B) is outside the range of 20 to 95% by weight, or (A) and (B) are 80% by weight of the total polypropylene polymer.
If the amount is less than % by weight, the adhesive strength and impact strength will decrease, especially over time or after biaxial stretching, and the impact strength will decrease significantly when scraps are recycled. The method for producing the grafted polypropylene used in the present invention may be any known method and is not particularly limited. For example, a predetermined amount of polypropylene obtained by a normal polymerization method is mixed and heated with an organic solvent (e.g., chlorobenzene),
A predetermined amount of a mixed solution of an organic peroxide (e.g., di-t-butyl peroxide) and an organic solvent radically polymerizable unsaturated compound (e.g., maleic anhydride) is added to the solution in a nitrogen atmosphere, and heated. There is a method in which grafted polypropylene is obtained by stirring the mixture under water and reacting for a certain period of time, followed by cooling, washing, filtering, and drying. In addition to this, a mixing and melting reaction may be carried out in an extruder. The grafting rate is usually 5% by weight or less. The type of polypropylene used for the grafting reaction is not particularly limited, and may be either isotactic polypropylene or atactic polypropylene. Propylene-ethylene copolymer, normal propylene homopolymer or copolymer with ethylene, butene-
1. It may be a copolymer with an α-olefin of C4 or higher, such as pentene-1, but the melt index (ASTM D1238) is preferably 1 or higher because the viscosity of the reaction solution phase is preferably lower. The radically polymerizable unsaturated compounds to be grafted include α,β-unsaturated aliphatic mono- and di-carboxylic acids and derivatives thereof, including, but not limited to, acrylic acid, methacrylic acid,
and their methyl compounds, itaconic acid, maleic acid or their anhydride esters, amide compounds, etc. Maleic anhydride and acrylic acid are particularly preferred. The blending polypropylene for producing modified polypropylene by diluting and blending such grafted polypropylene has a propylene-ethylene random copolymer portion of 50 to 95% by weight with an ethylene content of 1 to 5% by weight, as specified in the present invention. % and a propylene-ethylene random copolymerization portion with an ethylene content of 20 to 95% by weight, and a propylene-ethylene random copolymerization portion of 50 to 5% by weight of polypropylene containing 80% or more of a propylene-ethylene random copolymerization portion, the manufacturing method is not particularly limited. . For example, using a haloalkylaluminium compound and titanium trichloride as a catalyst, a predetermined amount of propylene and ethylene are heated under a nitrogen atmosphere for a predetermined time under predetermined pressure and temperature conditions in an inert organic solvent (e.g., heptane). It is obtained by carrying out a catalytic reaction in a predetermined order and mixing ratio, and after the reaction is completed, the catalyst is inactivated, washed, filtered, and dried. However, in the process of synthesizing the propylene-ethylene random copolymer portion that accounts for 80 to 100 parts by weight in polypropylene, the mixing ratio of both monomers may be changed stepwise, but if they are charged at the same time and reacted, statistical random copolymerization may be performed. The remaining 20 to 0% by weight of polypropylene may be a propylene homopolymerization portion or an ethylene homopolymerization portion, but usually the former. The melt index is not particularly limited, but in the present invention, it is 0.3 to 10, preferably 0.5 to 3, in view of the molding process since the sheet or blow molded container is formed by extrusion molding. The grafted polypropylene is present in the polypropylene resin composition in an amount of 0.1 to 10% by weight, preferably 0.5 to 5% by weight.
Preferably, it is % by weight. If the amount is less than 0.1% by weight, almost no adhesive strength will be obtained. Also, 10% by weight
If it exceeds this, the cost tends to increase and the adhesive strength tends to decrease. Any blending method may be used as long as the materials are uniformly dispersed. For example, a predetermined amount of a stabilizer such as an antioxidant is added and pelletized using an extruder. In the present invention, there are no particular limitations on the manufacturing method for extrusion molded sheets and extrusion blow molded containers, but in the case of ordinary sheets, the resin is heated and melted through a die from a plurality of extruders (two or more), and then extruded into a laminated plate shape. , cool and solidify in a chill roll or water tank to form a product. In the case of containers, each resin is heated and melted in the same way through an extruder die, extruded into a laminated parison, introduced into a split mold with the product shape drilled in it, blown with pressurized air, and then cooled and solidified to form the product. . Preferably, the lamination is performed within the die. In addition to the above, the present invention also covers stretched products, and the manufacturing method is not particularly limited in detail, but for example, after extruding a laminated sheet (or parison) of a certain size, the product is cooled to below the crystal freezing point and solidified. After that, the stretched polypropylene, nylon, or ethylene-vinyl alcohol copolymer is reheated in a heating furnace (hot air circulation room or infrared heater room, etc.) to an appropriate temperature, and then, in the case of a sheet, it is heated sequentially or simultaneously in a tenter. Stretch it several times in both axial directions (for containers, hold both ends of the parison and place it in a split mold,
Alternatively, the parison is stretched several times in the axial direction outside, and then or simultaneously expanded into a product shape by blowing pressurized air into a split mold) and cooled and solidified to form a product.
Of course, it is also possible to subject the obtained laminated sheet to secondary processing such as vacuum forming and pressure forming to form containers such as cups. The composition of the laminate is a polypropylene layer as the first component, nylon,
As long as the ethylene/vinyl alcohol copolymer or a mixture thereof is the second component, it may have two or more layers, and the arrangement and thickness ratio of the layers can be freely selected. For example, in the case of containers, polypropylene (thickness
Examples include modified polypropylene (0.4 mm) (thickness 0.05 mm), nylon (or ethylene-vinyl alcohol copolymer) (or a mixture of both) (thickness 0.05 mm). The polypropylene used for the innermost layer may be any ordinary polypropylene that can be used in laminated extrusion molding, but preferably the same compounding polypropylene used for the modified polypropylene of the adhesive layer is suitable from the viewpoint of physical properties. When a mixture of nylon and ethylene-vinyl alcohol copolymer is used, the mixing ratio may be either in the majority. Recycled scrap is usually mixed into the thickest constituent layer, in this case the innermost polypropylene layer.
Although the modified polypropylene defined in the present invention can be used as an interlayer adhesive layer or as the polypropylene layer itself, it is usually used as an adhesive layer from the viewpoint of cost. Furthermore, in the present invention, nylon includes nylon 6,
Nylon 6.6, nylon 6.10, nylon 11, nylon 12, or a copolymer blend of two or more of these can be used, but since it will be laminated and extruded with polypropylene, it is best to select one with an appropriate viscosity. Good. The ethylene-vinyl alcohol copolymer is a saponified ethylene-vinyl acetate copolymer with an ethylene content of 10 to 80 mol%.
There is no particular restriction as long as the saponification degree is preferably 20 to 50 mol%, 90 mol% or more, preferably 5 mol% or more. Both nylon and ethylene-vinyl alcohol copolymer have an oxygen permeability of 5×10 -12 cc. at 40°C and 0% RH. CM/CM 2 , sec CMHg or less is appropriate. The thus obtained laminated sheet or laminated container according to the present invention has significantly increased adhesive strength and impact strength compared to a method using ordinary modified polypropylene. Furthermore, the ability to suppress a significant decrease in adhesive strength over time or during stretching processing brings about a great advantage. Examples will be given below to further specifically explain the present invention. Examples 1 to 9 An isotactic polypropylene homocopolymer having a melt index of 8.0 at 230°C and a density of 0.91 at 20°C, using di-t-butyl peroxide as a radical polymerization initiator and chlorobenzene as an organic solvent125 A grafting reaction of 3.0% by weight of maleic anhydride was carried out in a nitrogen atmosphere at 10°C for 4 hours, followed by washing, filtering and drying to obtain grafted polypropylene. On the other hand, propylene with a propylene homopolymerized portion of 6% by weight and an ethylene content of 5% by weight.
A polypropylene copolymer consisting of 70% by weight of an ethylene random copolymer part and 94% by weight of a copolymer part consisting of a propylene with an ethylene content of 95% by weight and a 30% by weight random ethylene copolymer part is mixed with diethylaluminum monochloride, trichloride. Synthesis was carried out under a nitrogen atmosphere at 80° C. for 4 hours using titanium as a catalyst and heptane as an organic solvent, followed by washing, filtering and drying to obtain polypropylene for compounding. Melt index was adjusted to 1.0. The density was 0.90. 2% by weight of this grafted polypropylene and 98% by weight of the polypropylene copolymer were thoroughly mixed in a Henschel mixer with the addition of a predetermined amount of stabilizer, and then pelletized in an extruder at 210°C. A two-layer die was attached to the extruder with the modified polypropylene thus produced as one layer (thickness 0.35 mm) and nylon-6 (Amiran CM-1021 manufactured by Toray Industries, Inc.) as the other layer (thickness 0.15 mm). A 0.5 mm laminated sheet was extruded at 250°C and cooled and solidified using a cast roll with a surface temperature of 20°C. Furthermore, in the same manner as above, however, 8 types of various polypropylene copolymers whose compositions were changed within the range specified in the present invention as polypropylene for blending (however, the parts other than the copolymerized part were treated as propylene homopolymerized parts) were mixed. A laminated sheet was molded using the modified polypropylene produced using the same method. The 180° peel strength of these sheets was measured after being left at room temperature for 1 day and after being treated with boiling water for 40 hours. The results are shown in Table-1. Comparative Examples 1 to 6 In the same manner as in Example 1, however, a total of six types of polypropylene with which the grafted polypropylene was diluted and blended were prepared outside the composition range of polypropylene specified in the present invention, and a laminated sheet was formed. , the physical properties were measured in the same manner. The results are shown in Table-1.

【表】【table】

【表】 本表より本発明に依る配合用ポリプロピレンを
用いた変性ポリプロピレンとナイロン6の積層シ
ートの接着強度は高く、特に沸騰水処理40時間後
(室温放置約3ケ月後に相当する促進試験)でも
2Kg/cm以上の強度を保持しており、これは実用
上充分な水準にある。 実施例 10―18 実施例1と同じ方法で、但しナイロン6の代わ
りにエチレン―ビニルアルコール共重合体(エチ
レン含有率30モル%、鹸化度98モル%以上クラレ
(株)製エバール)95重量%とナイロン―6を5重
量%の混合物を使つて成形を行ない物性を測定し
た。結果を表―2に示す。 比較例 7―12 比較例1と同じ方法で、但し、ナイロン―6の
代りにエチレン―ビニルアルコール共重合体(実
施例1―6と同じもの)95重量%とナイロン―
6、5重量%との混合物を使つて成形を行ない、
物性を測定した。結果を表―2に示す。
[Table] This table shows that the adhesive strength of the laminated sheet of modified polypropylene and nylon 6 using the compounded polypropylene according to the present invention is high, especially after 40 hours of boiling water treatment (an accelerated test equivalent to about 3 months after being left at room temperature). It maintains a strength of 2 kg/cm or more, which is at a practically sufficient level. Example 10-18 Using the same method as in Example 1, but using ethylene-vinyl alcohol copolymer (ethylene content: 30 mol%, saponification degree of 98 mol% or more, Kuraray) instead of nylon 6.
A mixture of 95% by weight of EVAL (manufactured by Co., Ltd.) and 5% by weight of nylon-6 was molded and its physical properties were measured. The results are shown in Table-2. Comparative Example 7-12 Same method as Comparative Example 1, except that 95% by weight of ethylene-vinyl alcohol copolymer (same as Example 1-6) and nylon-6 were used instead of nylon-6.
Molding is carried out using a mixture of 6.5% by weight,
Physical properties were measured. The results are shown in Table-2.

【表】【table】

【表】 本表より、エチレン―ビニルアルコール共重合
体主体層についても、本発明に依る変性ポリプロ
ピレンの接着強度は上昇しており、特に沸騰水処
理後でも約1Kg/cmの強度を保持している。 実施例 19―27 実施例1―9と同じ変性ポリプロピレン計9種
を夫々層間接着層とし夫々に対応して用いた配合
用ポリプロピレン単味を内層にナイロン―6(ア
ミランCM 1021)を外層とし、3台の押出
機、3層ダイを用いて230℃で、積層パリソンを
溶融押出しし、割金型内(水冷20℃)に導入し、
圧力空気(5Kg/cm2)を吹き込んで内容積750c.c.
の丸型ボトルを成形した。目付50g、平均厚み
0.6mm、厚み比率は内層/接着層/外層=7/
1/2であつた。 更に成形時に生じたスクラツプ(バリ)を回
収、粉砕して20重量%を内層のポリプロピレン層
にリサイクルさせたボトルも同時に成形した。そ
の他の条件は全て、リサイクルせぬボトルと同一
にした。 これらのボトルについて接着強度、衝撃強度を
測定した。結果を表3に示す。 比較例 13〜18 比較例1―6と同じ変性ポリプロピレン計6種
を層間接着層とし夫々に対応して用いた配合用ポ
リプロピレン単味を内層にナイロン6を外層に
し、実施例19〜27と同じ方法でボトルを成形し同
様の物性を測定した。結果を表―3に示す。
[Table] This table shows that the adhesive strength of the modified polypropylene according to the present invention has increased even for the ethylene-vinyl alcohol copolymer-based layer, and in particular, it maintains a strength of about 1 kg/cm even after boiling water treatment. There is. Example 19-27 A total of nine types of modified polypropylene as in Example 1-9 were used as interlayer adhesive layers, and the polypropylene single compound used corresponding to each layer was used as an inner layer, and nylon-6 (Amilan CM 1021) was used as an outer layer. The laminated parison is melt-extruded at 230℃ using three extruders and a three-layer die, and introduced into a split mold (water-cooled at 20℃).
By blowing in pressurized air (5Kg/cm 2 ), the internal volume is 750c.c.
A round bottle was formed. Weight: 50g, average thickness
0.6mm, thickness ratio is inner layer/adhesive layer/outer layer = 7/
It was 1/2. Furthermore, a bottle was also molded at the same time, with 20% by weight of the scrap (burr) generated during molding being collected and crushed and recycled into the inner polypropylene layer. All other conditions were the same as for non-recycled bottles. The adhesive strength and impact strength of these bottles were measured. The results are shown in Table 3. Comparative Examples 13 to 18 Same as Examples 19 to 27, with a total of 6 types of modified polypropylene as in Comparative Examples 1 to 6 used as interlayer adhesive layers, a single blended polypropylene used in correspondence to each as an inner layer, and nylon 6 as an outer layer. Bottles were molded using this method and similar physical properties were measured. The results are shown in Table-3.

【表】 本表から本発明に依る実施例のボトルは接着強
度、特に沸騰水処理後の接着強度が高い。又、低
温衝撃強度も従つて高く、スクラツプのリサイク
ルを行なつた場合でも、比較例のリサイクルなし
のボルトに比べ尚衝撃強度の高い事が認められ
る。 実施例 20〜24 実施例1―9に挙げられた変性ポリプロピレン
の内5種を選び夫々これを層間接着層とし内層よ
りポリプロピレン/変性ポリプロピレン/ナイロ
ン6/変性ポリプロピレン/ポリプロピレンの構
成になる様に3台の押出機を配し、5層ダイを取
り付けて外径25mm、内径15mmのパリソンを溶融、
押出しし、これを水槽(水温15℃)にて冷却後
150mm長さに切断した。これを熱風炉にて延伸配
向度に再加熱し、のち両端を把持して、縦方向に
2倍に延伸し、そのまま割金型に導入し、圧力空
気(10Kg/cm2)を吹き込み拡張し、冷却後金型よ
り取り出し、内容積500c.c.の2軸延伸吹込成形内
型ボトルを得た。 目付25g、平均肉厚0.5mm各層の厚み比率は内
層より3.5/1/1/1/3.5とした。これらのボ
トルについて接着強度、耐衝撃強度を測定した。
結果を表―4に示す。 比較例 19―22 比較例1―6に挙げられた変性ポリプロピレン
のうち4種を選び実施例20〜24と同じ方法でボト
ルを成形し同様の物性を測定した。 結果は表―4に示す。
[Table] From this table, the bottles of Examples according to the present invention have high adhesive strength, especially adhesive strength after boiling water treatment. Furthermore, the low-temperature impact strength is also high, and even when the scrap is recycled, it is recognized that the impact strength is still higher than the bolt of the comparative example without recycling. Examples 20 to 24 Select five types of modified polypropylene listed in Examples 1 to 9 and use them as interlayer adhesive layers so that the inner layer has a composition of polypropylene/modified polypropylene/nylon 6/modified polypropylene/polypropylene. A stand extruder is installed, a 5-layer die is attached, and a parison with an outer diameter of 25 mm and an inner diameter of 15 mm is melted.
After extruding and cooling it in a water tank (water temperature 15℃)
It was cut into a length of 150mm. This was reheated in a hot air oven to a degree of stretching orientation, then gripped at both ends, stretched to double the length in the longitudinal direction, introduced into a split mold as it was, and expanded by blowing pressurized air (10 kg/cm 2 ). After cooling, it was taken out from the mold to obtain a biaxially stretched blow-molded inner bottle with an inner volume of 500 c.c. The basis weight was 25g, and the average wall thickness was 0.5mm.The thickness ratio of each layer was 3.5/1/1/1/3.5 from the inner layer. The adhesive strength and impact strength of these bottles were measured.
The results are shown in Table-4. Comparative Examples 19-22 Four types of modified polypropylenes listed in Comparative Examples 1-6 were selected, bottles were molded in the same manner as in Examples 20-24, and the same physical properties were measured. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリプロピレンにラジカル重合性不飽和化合
物をグラフト重合したグラフト化ポリプロピレン
0.1〜10重量%を含むポリプロピレン樹脂組成物
層とナイロン、エチレン―ビニルアルコール共重
合体又はこれらの混合物層を構成層とする積層押
出吹込成形容器又は積層押出成形シート状ポリプ
ロピレン系樹脂積層物であつて、 該ポリプロピレン樹脂組成物の配合用ポリプロ
ピレンがその少なくとも80重量%が、 (A) エチレン含有率1〜5重量%であるプロピレ
ン―エチレンランダム共重合部50〜95重量%と (B) エチレン含有率20〜95重量%であるプロピレ
ン―エチレンランダム共重合部50〜5重量%か
らなるプロピレン―エチレンランダム共重合部
であるものである ことを特徴とするポリプロピレン系樹脂積層物。
[Claims] 1. Grafted polypropylene obtained by graft polymerizing a radically polymerizable unsaturated compound to polypropylene.
A laminated extrusion blow-molded container or a laminated extrusion-molded sheet-like polypropylene resin laminate comprising a polypropylene resin composition layer containing 0.1 to 10% by weight and a layer of nylon, ethylene-vinyl alcohol copolymer, or a mixture thereof. At least 80% by weight of the polypropylene for blending in the polypropylene resin composition comprises (A) 50 to 95% by weight of a propylene-ethylene random copolymer portion having an ethylene content of 1 to 5% by weight, and (B) an ethylene content. A polypropylene resin laminate, characterized in that the polypropylene resin laminate is a propylene-ethylene random copolymerized portion comprising a propylene-ethylene random copolymerized portion of 50-5% by weight and a propylene-ethylene random copolymerized portion of 20-95% by weight.
JP8101977A 1977-07-08 1977-07-08 Polypropylene resin laminate Granted JPS5416583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8101977A JPS5416583A (en) 1977-07-08 1977-07-08 Polypropylene resin laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8101977A JPS5416583A (en) 1977-07-08 1977-07-08 Polypropylene resin laminate

Publications (2)

Publication Number Publication Date
JPS5416583A JPS5416583A (en) 1979-02-07
JPS6226907B2 true JPS6226907B2 (en) 1987-06-11

Family

ID=13734768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8101977A Granted JPS5416583A (en) 1977-07-08 1977-07-08 Polypropylene resin laminate

Country Status (1)

Country Link
JP (1) JPS5416583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527672Y2 (en) * 1990-11-07 1997-03-05 三菱電機株式会社 Antenna device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611826B2 (en) * 1985-09-20 1994-02-16 三井東圧化学株式会社 Resin composition
AT403695B (en) * 1993-07-26 1998-04-27 Danubia Petrochem Polymere Blends made from elastomeric polypropylenes and from nonolefinic thermoplastics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889261A (en) * 1972-02-29 1973-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889261A (en) * 1972-02-29 1973-11-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527672Y2 (en) * 1990-11-07 1997-03-05 三菱電機株式会社 Antenna device

Also Published As

Publication number Publication date
JPS5416583A (en) 1979-02-07

Similar Documents

Publication Publication Date Title
US5346950A (en) Resin composition
US5240525A (en) Method of fabricating a multilayer barrier packaging material
AU647046B2 (en) Plastics articles with compatibilized barrier layers
US6544661B1 (en) Compositions of polyolefin and polyvinyl alcohol, and films, sheets and articles processed therefrom and multilayer products using the same
JPS63230757A (en) Resin composition and multi-layer structure prepared by using the same
JP2002166511A (en) Polyolefinic resin foamed sheet
JPH0717806B2 (en) Resin composition
US5114795A (en) Multilayered high barrier packaging materials method for the preparation thereof
JPS614752A (en) Gas-barrier molding material having excellent stretchability
JP2652507B2 (en) Resin composition and biaxially stretched film, production method thereof, and food packaging material
JPS6215349B2 (en)
WO1992002581A1 (en) Polyethylene resin composition
JPS6226907B2 (en)
JPS63264656A (en) Resin composition and multilayer structure prepared by using the same
JPS5941865B2 (en) Polypropylene resin laminate
JPH0641197B2 (en) Heat-stretched multilayer structure
JPH0735108B2 (en) Thermoformed product
JPH04110336A (en) Resin composition and multilayer structure prepared by using same
JPH03115447A (en) Ethylene-vinyl alcohol copolymer composition and multilayered structure
JPH0524155A (en) Thermoplastic resin laminated stretched sheet
JPH0376646A (en) Laminate
JPH03178435A (en) Laminate
JPH04202549A (en) Resin composition and multilayer structure material
JPH02255747A (en) Ethylene-vinyl alcohol copolymer composition and multilayer structure therefrom
KR960005629B1 (en) Resin composition