JPS62268165A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS62268165A
JPS62268165A JP11217186A JP11217186A JPS62268165A JP S62268165 A JPS62268165 A JP S62268165A JP 11217186 A JP11217186 A JP 11217186A JP 11217186 A JP11217186 A JP 11217186A JP S62268165 A JPS62268165 A JP S62268165A
Authority
JP
Japan
Prior art keywords
inp
layer
doped gaas
field effect
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11217186A
Other languages
Japanese (ja)
Inventor
Tomohiro Ito
伊東 朋弘
Takemoto Kasahara
健資 笠原
Keiichi Ohata
恵一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11217186A priority Critical patent/JPS62268165A/en
Publication of JPS62268165A publication Critical patent/JPS62268165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an ultra-high-frequency InP FET having high withstanding voltage and a high output by forming a non-doped GaAs layer onto an InP layer on a semi-insulating substrate and shaping a gate electrode controlling a channel formed to the InP layer and a source electrode and a drain electrode brought into ohmic contact with the InP layer onto the non-doped GaAs layer. CONSTITUTION:N-type InP 2 is grown on a semi-insulating InP substrate 1 in 0.2mum through a vapor phase epitaxial method. A non-doped GaAs layer 6 is grown in 200Angstrom through a molecular beam epitaxial method, non-doped GaAs 6 in an ohmic contact section is removed through etching, and lastly a gate electrode 3 and source-drain electrodes 4, 5 are shaped through a normal method, thus realizing a field effect transistor. Since the interface level density of the interface of GaAs 6 and InP 2 is made extremely smaller than the interface of the insulator 1 and InP 2, the surface Fermi level of InP can transfer through the whole band gap, and channel charges in InP can be modulated largely by a gate via, thus also acquiring a depletion type FET. Accordingly, an ultra-high-frequency InP FET having high withstanding voltage and a high output can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ、特にInP動作層を用
いた電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor, and particularly to a field effect transistor using an InP active layer.

〔従来技術〕[Prior art]

InP半導体結晶は電子の飽和速度が大きく、また熱伝
導率がGaAsの3倍程度大きいことから超高速素子、
特に高出力用の超高周波素子材料として注目され、これ
を用い友電界効果トランジスタ(PET)の検討がいく
つか行なわれている。
InP semiconductor crystal has a high electron saturation velocity and a thermal conductivity that is about three times higher than GaAs, making it suitable for ultra-high-speed devices.
In particular, it has attracted attention as a material for ultra-high frequency devices for high output, and several studies have been conducted on field effect transistors (PETs) using it.

第4図は例えばバレン(Barrera )及びアーチ
ャ−(Archer )Kより米国の雑誌アイ・イー・
イー・イー、)ランス オン エレクトロン デバイス
(I BEE、 Trans、 on Electro
n、 Devices。
Figure 4 is, for example, from Barrera and Archer K.
I BEE, Trans, on Electron device (I BEE, Trans, on Electron device)
n, Devices.

voCED−22,No、11 、Nov、1975.
 pp、1023−1030)に報告された従来技術に
よるシ馴フトキーゲートを用いた電界効果トランジスタ
(MBSFET)の基本構造を示す断面図で、1は半絶
縁性InP基板、2はNチャネルInP動作層、3とゲ
ート電極、4はソース電極、5けドレイン電極である。
voCED-22, No. 11, Nov. 1975.
This is a cross-sectional view showing the basic structure of a field effect transistor (MBSFET) using a conventional shift gate, which was reported in 1999 (pp. , 3 is a gate electrode, 4 is a source electrode, and 5 is a drain electrode.

一方、第5図はライル(Lile)等によってエレクト
ロニクス レター誌(Electron、 Lett、
 vol。
On the other hand, Figure 5 shows the results of electronics letters (Electron, Lett,
vol.

14 、 pp、657−659.8ept、1978
 )に報告されたSin、膜をゲート絶縁膜1c用いた
M I S (Metal −Irsulator−8
omiconcbu(tor )型ゲート電界効果トラ
ンジスタ(MISFET)の晴造断面図で第4図と同一
部分は同一番号をつけである。但し、2′はN+InP
コンタクト層で、7は5i02膜である。
14, pp, 657-659.8ept, 1978
) reported in MIS (Metal-Irsulator-8) using the gate insulating film 1c.
In this Haruzo cross-sectional view of an omicon cbu (tor) type gate field effect transistor (MISFET), the same parts as in FIG. 4 are given the same numbers. However, 2' is N+InP
In the contact layer, 7 is a 5i02 film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前記構造のInP f用い7tFETでは、
まずMESFETの場合、ゲート電極とN型InP動作
層の間のシ側ットキー接合のパリアハイトク。
By the way, in the 7tFET using InP f with the above structure,
First, in the case of MESFETs, there is a barrier high junction between the gate electrode and the N-type InP active layer.

が0.3〜0.4eV程度しか力く従って逆方向のリー
ク電流が大きい、ゲート耐圧が小さい等、実用上大き々
問題点があり几。
The voltage is only about 0.3 to 0.4 eV, so there are major problems in practical use, such as a large reverse leakage current and a low gate breakdown voltage.

一方、5iot等の絶縁層音用い几MI 5FETでは
前述のリーク電流の問題は力いものの界面準位が犬きく
良好な特性を得るのが困難であり、特にハツトギャップ
(M+dgap)から価電子帯に向って界面準位が極め
て大きく、従ってツールミレベルがMid gapから
伝導帯近くの間しか変化し危いために、ディプレッジ・
ンモードの動作を得るのが困難で、大きな電流をとる必
要のある高出力系子ができない々ど多くの問題を有して
いる。
On the other hand, in MI 5FETs using insulating layer sound such as 5iot, although the aforementioned leakage current problem is strong, the interface state is too strong and it is difficult to obtain good characteristics, especially from the heart gap (M+dgap) to the valence band. The interfacial state is extremely large towards
There are many problems in that it is difficult to obtain a mode of operation, and it is impossible to create a high-power system that requires a large current.

本発明の目的は、上述の問題点を解消し、高耐圧・高出
力の超高周波InP F F、 T f提供することで
ある。
An object of the present invention is to solve the above-mentioned problems and provide a high-voltage, high-output ultra-high frequency InPF, Tf.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明によれは半絶@性基板上にN型InP層を設け、
該TnP層上にノンドープGaAs層を設け、該ノンド
ープGaAs層上に前記TnI’liに形成されるチャ
ネル全制御するゲート電極と前記InPiにオーム性接
触するソース電ジ及びドレイン電極を具備したことを特
徴とする電界効果トランジスタが得られる。
According to the present invention, an N-type InP layer is provided on a semi-isolated substrate,
A non-doped GaAs layer is provided on the TnP layer, and a gate electrode for controlling the entire channel formed in the TnI'li and a source electrode and a drain electrode in ohmic contact with the InPi are provided on the non-doped GaAs layer. A field effect transistor with characteristics can be obtained.

〔作用〕[Effect]

以下、本発明と実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

第1図は本発明にこる電界効果トランジスタの構造断面
図である。第4図と同一構成部分には同じ番号を付しで
ある。但し、6はノンドープGaAs層である。ま之、
この時の熱平衡状態でのゲート1!極下のエネルギー帯
図全第2図に示す。ここで、21はゲート電極の領域、
22框ノンド一プGaAs層、23はNチャネルInP
動作層、24は半絶縁性InP基板の領域全島られす。
FIG. 1 is a cross-sectional view of the structure of a field effect transistor according to the present invention. Components that are the same as those in FIG. 4 are given the same numbers. However, 6 is a non-doped GaAs layer. Man,
Gate 1 in thermal equilibrium state at this time! The entire energy band diagram at the bottom is shown in Figure 2. Here, 21 is a gate electrode region,
22 non-doped GaAs layer, 23 N-channel InP
The active layer 24 is formed over the entire area of the semi-insulating InP substrate.

第2図に示す様にGaAsとInPの電子親和度rri
0.33eV程度の違いがありInPの方が太きいため
に、GaAsとInPの界面ては0.33 eVの伝導
帯の不連続がありInP中の電子はこのバリアによって
GaAs中へ拡散t−ることけ々い。一方GaAsのゲ
ートメタルに対するバリアハイドは約0.8eVあり、
従ってゲートのリーク電流についてもこの大きなバリア
てよって十分小さくすることができる。す彦わち、上述
のことから明らかな様に本発明にエリInPに対する実
効的彦シ冒ットキーゲートのバリアハイドを大きくする
ことができ、かつ伝導帯不連続の存在によりゲートをあ
る程度順方向にバイアスしてもゲートヲ流れる電流を十
分小さくすることができる。
As shown in Figure 2, the electron affinity of GaAs and InP is
There is a difference of about 0.33 eV, and since InP is thicker, there is a discontinuity in the conduction band of 0.33 eV at the interface between GaAs and InP, and electrons in InP are diffused into GaAs by this barrier. There are so many things. On the other hand, the barrier hydride for GaAs gate metal is about 0.8 eV,
Therefore, the gate leakage current can also be sufficiently reduced by this large barrier. In other words, as is clear from the above, the present invention can increase the barrier hide of the effective Hikoshi gate for InP, and also bias the gate in the forward direction to some extent due to the presence of conduction band discontinuity. Even if the current flows through the gate, the current flowing through the gate can be made sufficiently small.

一方、絶縁物とInPとの界面に比べてGaAsとIn
Pの界面の界面準位密度は極めて小さく、従ってInP
の表面ツールミレベルはバンドギャップ中全体を動くこ
とができゲートバイアによりInP中のチャネル電荷を
大きく変調することができてディプレッジ譚ン型のFE
Tも得らレル。
On the other hand, compared to the interface between an insulator and InP, GaAs and In
The interface state density at the interface of P is extremely small, so InP
The surface tool level of the InP can move throughout the bandgap, and the channel charge in InP can be significantly modulated by the gate via, resulting in a depression-type FE.
I also got T.

以上の様にリーク電流の小さい高電流のとれる高出力・
高耐圧1nP F B Tが容易に実現できる。
As mentioned above, high output and high current with low leakage current.
A high breakdown voltage 1nP FBT can be easily realized.

〔実施例〕〔Example〕

本実施例の電界効果トランジスタの製造方法の一例を第
1図を用いて説1明する。
An example of a method for manufacturing the field effect transistor of this embodiment will be explained with reference to FIG.

まず半絶縁性InP基板1上に例えば気相成長エピタキ
シー法(vpg法)てより不純物濃度IXIQ17cy
−3のN形InP f 0.2 A”成長する。次((
例えば分子線エピタキシー法(MF3E法)Kjり/ノ
ンドープaA s層を2ooi成長してオーミックコン
タクト部のノンドープGaAs ?エツチング除去する
。最後に通常の方法でゲート電極及びソース・ドレイン
電極を形成して電界効果トランジスタが実現できる。
First, an impurity concentration of IXIQ17cy is deposited on a semi-insulating InP substrate 1 by, for example, vapor phase epitaxy (VPG) method.
–3 N-type InP f 0.2 A” is grown.Next ((
For example, by using the molecular beam epitaxy method (MF3E method), two layers of KJ/non-doped AAs are grown and the non-doped GaAs layer is grown in the ohmic contact area. Remove by etching. Finally, a gate electrode and source/drain electrodes are formed using a conventional method to realize a field effect transistor.

第3図は本発明による電界効果トランジスタのゲート・
ソース間O電流−電圧特性を示したもので、図には従来
技術によるシロットキーゲートの電界効果トランジスタ
における電流−先玉%註も示しである。図に示す様に従
来技術て比べて、本発明による電界効果トランジスタの
ソース・ゲート間電流−躍圧特性は実効的な立上り1¥
L圧が太きく、シかも逆方向の電流も小さく、耐圧もき
わめて大きく、良好な特性が得られ友。
FIG. 3 shows the gate of the field effect transistor according to the present invention.
This figure shows the source-to-source O current-voltage characteristics, and the figure also shows the current-to-lead % note in a conventional Sirotchi gate field effect transistor. As shown in the figure, compared to the conventional technology, the source-gate current-voltage characteristic of the field effect transistor according to the present invention has an effective rise of 1
The L voltage is large, the reverse current is small, the withstand voltage is extremely high, and good characteristics can be obtained.

一方トランジスタ動作も従来のMISFETでは実現で
き々かつ次良好なディプレッジ震ン型のInP F E
 Tが実現でき、ゲート特性とあわせて従来技術では困
難であった高出力・高耐圧のFETが得られ友。
On the other hand, the transistor operation is impossible to achieve with conventional MISFETs, and the second best transistor operation is the depression-type InP FET.
This makes it possible to realize FETs with high output and high voltage resistance, which were difficult to achieve with conventional technology, along with good gate characteristics.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らか々様に、本発明によれば高耐圧・
高出力の超高周波InP F E Tが実現でき、今後
の通信・情報技術に寄与するところが極めて大である。
As is clear from the above explanation, according to the present invention, high voltage resistance and
High-power ultra-high frequency InP FET can be realized, which will greatly contribute to future communication and information technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電界効果トランジスタの構造断面
図、第2図はゲート電極下のエネルギー帯図、第3図は
ソース・ゲート間の電流−電圧特性、第4図第5図は各
々は従来技術による電界効果トランジスタの構造断面図
である。 図において、 1・・・半絶縁性InP基板 2・・・NチャネルInP動作層 2′・・・N”InPコンタクト層 3・・・ゲート電極 4・−・ソース電極 5・・・ドレイン電極 6・・・アンドープGaAs層 7・・・Sin、膜 である。 門人弁理上 内 原   替 第1図 第2図 第3図
Fig. 1 is a cross-sectional view of the structure of a field effect transistor according to the present invention, Fig. 2 is an energy band diagram under the gate electrode, Fig. 3 is the current-voltage characteristic between the source and gate, and Fig. 4 and Fig. 5 are the respective diagrams. 1 is a structural cross-sectional view of a field effect transistor according to the prior art; FIG. In the figure, 1... Semi-insulating InP substrate 2... N channel InP active layer 2'... N'' InP contact layer 3... Gate electrode 4... Source electrode 5... Drain electrode 6 ...Undoped GaAs layer 7...Sin, film. Figure 1, Figure 2, Figure 3.

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性基板上にN型InP層を設け、該InP層上
にノンドープGaAs層を設け、該ノンドープGaAs
層上に前記InP層に形成されるチャネルを制御するゲ
ート電極と前記InP層にオーム性接触するソース電極
及びドレイン電極を具備したことを特徴とする電界効果
トランジスタ。
An N-type InP layer is provided on a semi-insulating substrate, a non-doped GaAs layer is provided on the InP layer, and the non-doped GaAs
A field effect transistor comprising a gate electrode for controlling a channel formed in the InP layer, and a source electrode and a drain electrode in ohmic contact with the InP layer.
JP11217186A 1986-05-15 1986-05-15 Field effect transistor Pending JPS62268165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11217186A JPS62268165A (en) 1986-05-15 1986-05-15 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11217186A JPS62268165A (en) 1986-05-15 1986-05-15 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS62268165A true JPS62268165A (en) 1987-11-20

Family

ID=14580022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11217186A Pending JPS62268165A (en) 1986-05-15 1986-05-15 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS62268165A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161874A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Semiconductor device and its manufacture
US5180681A (en) * 1990-03-15 1993-01-19 North Carolina State University Method of making high current, high voltage breakdown field effect transistor
WO2001097274A3 (en) * 2000-06-12 2002-04-11 Motorola Inc Heterostructure field effect transistor and method of manufacturing it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882570A (en) * 1981-11-11 1983-05-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS62171164A (en) * 1986-01-23 1987-07-28 Sumitomo Electric Ind Ltd Field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882570A (en) * 1981-11-11 1983-05-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS62171164A (en) * 1986-01-23 1987-07-28 Sumitomo Electric Ind Ltd Field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161874A (en) * 1987-12-18 1989-06-26 Hitachi Ltd Semiconductor device and its manufacture
US5180681A (en) * 1990-03-15 1993-01-19 North Carolina State University Method of making high current, high voltage breakdown field effect transistor
WO2001097274A3 (en) * 2000-06-12 2002-04-11 Motorola Inc Heterostructure field effect transistor and method of manufacturing it
US6821829B1 (en) 2000-06-12 2004-11-23 Freescale Semiconductor, Inc. Method of manufacturing a semiconductor component and semiconductor component thereof

Similar Documents

Publication Publication Date Title
US5479033A (en) Complementary junction heterostructure field-effect transistor
EP0144242B1 (en) Compound semiconductor integrated circuit device
EP0114962B1 (en) Double heterojunction field effect transistors
US5001536A (en) Semiconductor device
JPH027532A (en) Laminated channel field effect transistor
JPH024140B2 (en)
US4652896A (en) Modulation doped GaAs/AlGaAs field effect transistor
KR920010671B1 (en) Semiconductor devices
JPS62268165A (en) Field effect transistor
JPS61147577A (en) Complementary semiconductor device
JPS6312392B2 (en)
US5945695A (en) Semiconductor device with InGaP channel layer
JPS59184573A (en) Field effect transistor
JPH0261149B2 (en)
JPS63244779A (en) Field effect transistor
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JPS61171170A (en) Semiconductor device
JP3006792B2 (en) Heterostructure field effect transistor
JP2680821B2 (en) Heterostructure field effect transistor
JPS6255316B2 (en)
JPS6052062A (en) Field-effect transistor
JPS634684A (en) Field-effect transistor
JPS59149063A (en) Semiconductor device
JPS62209866A (en) Semiconductor device
JPS63188972A (en) Field-effect transistor