JPS62268161A - Thin-film transistor element - Google Patents

Thin-film transistor element

Info

Publication number
JPS62268161A
JPS62268161A JP11080786A JP11080786A JPS62268161A JP S62268161 A JPS62268161 A JP S62268161A JP 11080786 A JP11080786 A JP 11080786A JP 11080786 A JP11080786 A JP 11080786A JP S62268161 A JPS62268161 A JP S62268161A
Authority
JP
Japan
Prior art keywords
transistor
plasma treatment
hydrogen plasma
channel
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080786A
Other languages
Japanese (ja)
Inventor
Masaru Takahata
勝 高畠
Junichi Owada
淳一 大和田
Kikuo Ono
記久雄 小野
Yoshikazu Hosokawa
細川 義和
Nobutake Konishi
信武 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11080786A priority Critical patent/JPS62268161A/en
Publication of JPS62268161A publication Critical patent/JPS62268161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To obtain a thin-film transistor element having a large hydrogen plasma treatment effect by forming the removing sections of a semiconductor film at at least one position or more so that transistor elements are connected in parallel with the whole region or one part in a channel section. CONSTITUTION:Transistor structure in which semiconductors having narrow channel width W and long channel length L are connected in parallel is formed. Voltage is applied to an N<+> polysilicon film 8 used as a gate electrode in the state in which potential difference V is applied between the source section, a source electrode 4, of carriers for injecting carriers into a transistor and the discharging section, a drain electrode 5, of carriers in the transistor, and the resistance of a semiconductor film 6 is controlled, and currents flowing between the source electrode 4 and the drain electrode 6 are controlled. A hydrogen plasma treatment effect is displayed sufficiently because of narrow channel width W, and sufficient currents are caused to flow between a source and a drain in the state in which the transistor is turned ON because of the large effective width W of a channel section. Accordingly, the effect of hydrogen plasma treatment can be expected, thus displaying the effects of the reduction of threshold voltage, the increase of field-effect mobility, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明に薄膜トランジスタ素子(TJ”T素子)K係り
、特に平面ディスプレイNA動用に好適なTPT素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film transistor element (TJ"T element), and particularly to a TPT element suitable for NA operation of a flat display.

〔従来の技術〕[Conventional technology]

ガラス等の透明基板上にTPT素子を形成し、液晶等の
電気光学効果を有■る材料と積層した、いわゆるアクテ
ィブマトリクスディスプレイに使用される’r F T
素子のうち、多結晶シリコンIpoly−si)を用い
たTFT素子(poly−siT F ’r lに、高
い移動度を利用し表示部周辺に駆動回路を集積したディ
スプレイヤ、高精、細、多走査線のディスプレイが製作
できるため、アクティブマトリクスディスプレイに適し
た素子であるといえる。
'rF T used in so-called active matrix displays, in which a TPT element is formed on a transparent substrate such as glass and laminated with a material that has an electro-optic effect such as liquid crystal.
Among the elements, display devices that utilize high mobility and integrate drive circuits around the display area in TFT elements (poly-siT F'r l) using polycrystalline silicon (Ipoly-si), high definition, fine, and Since a scanning line display can be manufactured, it can be said that this element is suitable for an active matrix display.

poly−si T F Tの特性管改良するため、現
在各埋の方法が提案されている。その中で水素あるいに
水素プラズマによる処理?行い特許を改良した例として
ζ、ジャーナル オブ アプライドフィジックス 55
巻 第6号 パート1(1984年1第1590頁から
第1595頁(Journalof Applied 
physics Volume 55 Number 
6゜partl  (198411)I) 1590−
1595)  Vcおいて論じられており、TPT素子
のしさい1[5電圧ythが低減すること、さらVc電
界効果移@度μfe  が高くなることが記されている
。ざらに、窒fヒノリコン膜をケミカルベーパディボジ
ノヨン(CVL)1法により形成する際ビ発生Tる水素
プラズマl/cよt) poly−si TF’T  
ln特性ヲ改良し二側としてこ、アイ、イー、イー、イ
ー、トランザクンヨ/ オンエレクトaン デバイセズ
イーデイ−32第2号 2月1985年 第258頁か
ら第281頁(IgEE Tra−nsactions
  on  Electron 1)evices、V
at、)2D−32、No、2.February 1
985  PP258−281)K記されている。これ
らの報告でに単にpoly −3iTF’T を形成し
た後、水素プラズマ処理を行なえばTF’Tのtti気
的特件(リーク電流、  yth。
Various methods have been proposed to improve the characteristics of poly-Si TFTs. Among them, treatment with hydrogen or hydrogen plasma? ζ, Journal of Applied Physics 55, as an example of improving a patent by
Volume No. 6 Part 1 (1984, No. 1, pp. 1590 to 1595) (Journal of Applied
physics Volume 55 Number
6゜partl (198411)I) 1590-
1595) It is discussed in Vc that the voltage yth of the TPT element decreases, and that the Vc field effect mobility @ degree μfe increases. In general, when forming a nitrogen film using the chemical vapor deposition (CVL) method, hydrogen plasma is generated (poly-si TF'T).
I, E, E, E, I, E, E, I, E, E, I, E, E, I, I, E, E, Transactor, on the other hand, by improving ln characteristics / OnElectron Devices Eday-32 No. 2, February 1985, pages 258 to 281 (IgEE Transactions
on Electron 1) evices, V
at,)2D-32, No, 2. February 1
985 PP258-281)K marked. In these reports, if a poly-3i TF'T is simply formed and then subjected to hydrogen plasma treatment, the tti gas characteristics (leakage current, yth) of the TF'T can be improved.

μfelが向上するという報告に留っており、例えばど
のようなデバイス構造の時、最も水素プラズマ処理効果
がある、などの点についての報告汀なされていな(ハ。
There are only reports that μfel is improved, and there have been no reports on, for example, what kind of device structure has the most hydrogen plasma treatment effect (c).

〔発明が解決しようとTる問題点〕[Problems that the invention attempts to solve]

薄膜トランジスタの%叶改菩テ目的とした水素処理r+
:n(j)水素雰囲気中アニール(2)水素プラズマ(
3)室fヒソリコン膜の堆噴及び堆積後のアニールなど
があるか、これらの報告でに単に電気的fF曲が向上し
たという報告のみで、どのようなトランジスタ形状の時
に上記の処理が最も効果があるか、などの点Fついてに
配慮がされてない。本発明の目的に水素処理をした時に
電も効果があるトランジスタ構造を持つ薄膜トランジス
タ素子を提供することにある。
Hydrogen treatment for the purpose of improving thin film transistors
:n(j) Annealing in hydrogen atmosphere (2) Hydrogen plasma (
3) Is there a need for deposition of the chamber f-hysolicon film and annealing after the deposition?These reports simply indicate that the electrical fF curve has been improved, and for what transistor shape is the above treatment most effective? No consideration has been given to point F, such as whether there is a It is an object of the present invention to provide a thin film transistor element having a transistor structure that is effective when subjected to hydrogen treatment.

〔問題点を解決するための手段〕[Means for solving problems]

poly−si TFT Kおける水素プラズマ処理効
果のTF’Tのチャネル1賜Wとチャネル長りの依存曲
について実験を行ない、検討した結果、上記目的に比較
的チャネルI福が狭い(比較的チャネル長か長い)半導
体膜(チャネル;−)f−韮列に接続した構造を持つp
oly−si ’I’ p T  により達成される。
As a result of conducting experiments and examining the dependence of the hydrogen plasma treatment effect on the channel length of TF'T on the hydrogen plasma treatment effect in poly-si TFTs, we found that the channel I is relatively narrow (relatively channel length is required) for the above purpose. long) semiconductor film (channel; -) f- p with a structure connected to a diagonal
This is achieved by oly-si 'I' p T .

〔実施例〕〔Example〕

poly −si T F T Kおける水素プラズマ
処理効果のTJ”Tのチャネル幅Wとチャネル長りの依
存14vtついて実験を行い以下の知見が得られた。
An experiment was conducted regarding the dependence of the hydrogen plasma treatment effect on the channel width W and channel length of TJ''T in poly-si TFTK by 14vt, and the following findings were obtained.

TPTのゲート酸比膜厚Q、lAtm、 チャネル幅W
hoμm、一定にした状態でチャネル長りが10μm、
30μm、60μm、120μm。
TPT gate acid ratio film thickness Q, lAtm, channel width W
hoμm, the channel length is 10μm when kept constant,
30μm, 60μm, 120μm.

180μm の場合の水素プラズマ処理(90分)前後
のしきい値に圧vth、  電界効果移動度μfeの測
定結果を第2図に示す。この結果に水素処理の@後で%
ヰσ)ffヒがなくプラズマ処理の効果がほとんどない
ことを示している。次1’jTF’Tの酸化膜厚0.l
pm、チャネル長し15μm一定にした状態でチャネル
幅Wが10μm、30μm。
Figure 2 shows the measurement results of the threshold voltage vth and field effect mobility μfe before and after hydrogen plasma treatment (90 minutes) in the case of 180 μm. This result shows % after hydrogen treatment.
There was no ヰσ)ff, indicating that the plasma treatment had almost no effect. Next 1'jTF'T oxide film thickness 0. l
pm, channel width W is 10 μm, 30 μm with channel length kept constant at 15 μm.

60μm、120μm、180μmの場合の水素プラズ
マ処理+90分)前後のしきい値電圧vth、電界効果
移動(μfeI7)測定結果を第3図に示す。
FIG. 3 shows the measurement results of threshold voltage vth and field effect transfer (μfeI7) before and after hydrogen plasma treatment (+90 minutes) for 60 μm, 120 μm, and 180 μm.

この結果に第2図の実験結果と違A、水素プラズマ処理
効果がチャネル幅Wが短い程顕著にあられ21′Lると
いうことが分かる。ここで、水素プラズマ処理効果の典
型的な結果として、酸化膜厚0.1μm。
This result is different from the experimental results shown in FIG. 2, and it can be seen that the hydrogen plasma treatment effect becomes more pronounced as the channel width W becomes shorter. Here, as a typical result of the hydrogen plasma treatment effect, the oxide film thickness is 0.1 μm.

゛jヤネル長L 50 μm、チャネル1陽10μm+
7)TJ”Tの水素処理(90分)前後におけるVa 
  ID特注を第4図に示す。破線が水素プラズマ処理
前の#ヰで実瞭が水素プラズマ処理グ)特注である。
゛jYarnel length L 50 μm, channel 1 positive 10 μm+
7) Va before and after hydrogen treatment (90 minutes) of TJ”T
Figure 4 shows the ID custom order. The dashed line is before hydrogen plasma treatment, and the one clearly shown is hydrogen plasma treatment.

即ち、水素プラズマ処理#にしきい直電圧Vth22V
、醒界効果移動度μfe 9tyn”/VSだったもの
が、水素プラズマ処理90分m1Vthが】8V。
That is, the threshold direct voltage Vth22V for hydrogen plasma treatment #
, the 90-minute hydrogen plasma treatment m1Vth was 8V, whereas the mobility μfe was 9tyn"/VS during the 90-minute hydrogen plasma treatment.

μf e I’l  10tyn”/vsπなり、それ
ぞれ特姓が改善されている。上記の実験結果より、TF
’Tにおける水素プラズマ処理効果なチマネル長りにぼ
関係なく、チャネル幅Wが狭す程、しきい値電圧vth
か下がり、電界効果移動度μfeが高くなることが分か
った。
μf e I'l 10tyn"/vsπ, and the characteristics are improved. From the above experimental results, TF
Regardless of the length of the hydrogen plasma treatment effect at T, the narrower the channel width W, the higher the threshold voltage vth.
It was found that the field effect mobility μfe increased.

ソコで、水素プラズマ処理効果を充分発揮するためVc
dチャネル幅W?充分狭くすればよいのだが現在のpo
ly−siのμfeから充分高くない(単結晶siのμ
feが1000〜1500cn2/vsVc対し、po
ly−siのμfe B ] O〜30cm” / v
s )ので、チャネル幅Wが充分狭い(例えば1μm)
と、オーネル長LP短かくする(例えば1μm)と、今
度に周知の短チヤネル効果によって、電流を流したくな
い時まで、電流が流れてし萱う。従って、笑用土のTP
Tのチャネル長L1チャネル幅WDむやみに短かく、狭
くはできない。
In order to fully demonstrate the hydrogen plasma treatment effect, Vc
d channel width W? It would be fine if it was narrow enough, but the current po
It is not high enough from μfe of ly-si (μfe of single crystal Si
fe is 1000-1500cn2/vsVc, po
μfe B of ly-si] O~30cm”/v
s ), so the channel width W is sufficiently narrow (for example, 1 μm)
If the Ornel length LP is shortened (for example, 1 μm), then due to the well-known short channel effect, current will continue to flow until it is no longer desired to flow. Therefore, TP of lol soil
The channel length L1 of T and the channel width WD cannot be made unnecessarily short or narrow.

次に・本発明を実現する代表的な素子構造を第1図を用
いて説明する。
Next, a typical element structure for realizing the present invention will be explained using FIG.

第1図(a)に本発明の第1の実施例のトランジスタの
デバイス構造を真上から見y:Z、又・(b)i同構造
を側面から見た断面図、又、(C)な(a)のA−・(
7間を切断して見た断面図である。即ち、チャネル幅W
が狭く、チャネル長りが長い半導体や並列π饗続するト
ランジスタ構造である。トランジスタ動作としてはキャ
リア(二Vクトロノ又はホール)をトランジスタ内に注
入するためのキャリアの源泉部器チ、ソース1!事4と
トランジスタ内のキャリアを排出する部分即ち、ドレイ
ン1極5闇に電位差Vを加えた状態で、ゲート電I返と
して使lグ61L+i VC流れる電流を制剖するもの
である。第11却の構造にチャネル幅Wが狭いので、水
素プラズマ処理効果が充分に現れ、又、チャネル部の実
効的な幅W?大きくしているため、トランジスタON状
態でのソース、ドレイン間に充分な@流が流せる。
FIG. 1(a) shows the device structure of the transistor according to the first embodiment of the present invention viewed from directly above, and (b) i shows a cross-sectional view of the same structure viewed from the side. (a) A-・(
FIG. That is, the channel width W
This is a semiconductor with a narrow channel and a long channel length, or a transistor structure with a parallel π-connection. As for transistor operation, the source of carriers (source 1!) is used to inject carriers (2V electrons or holes) into the transistor. Item 4: With a potential difference V added to the part that discharges carriers in the transistor, that is, the drain 1 pole 5, the current flowing through the gate voltage 61L+i VC is analyzed. Since the channel width W is narrow in the structure of the eleventh section, the effect of hydrogen plasma treatment is sufficiently exhibited, and the effective width W of the channel portion is? Since it is made large, a sufficient @ current can flow between the source and drain when the transistor is in the ON state.

第1図の薄膜トランジスタを用いた応用例としてに嘔5
1交のような液晶KA動用のアクティブマトリクス基板
等がある。
As an application example using the thin film transistor shown in Figure 1,
There are active matrix substrates for liquid crystal KA operation such as 1X.

次に第6図によr)第1図の薄膜トランジスタの製作プ
ロセスf−説明する。
Next, referring to FIG. 6, r) the manufacturing process of the thin film transistor shown in FIG. 1 will be explained.

(a)ガラス基板上げポリシリコン膜0.3μm堆積し
島状に分割する。(b)酸化ンリコン@0.1μm、ポ
リ7リコン膜0.5μmを順次堆積しゲート部分以外の
酸化膜、ポリ7リコン膜を除去する。(C) Uノ(p
)を加速′送圧82KVで5 x ] 0” CI/c
rn” ]個打込む。(d)再び酸化ンリコン膜0.3
μ+n f堆積し、ソース、ドレイ7窓を開ける。(e
) kt F 0.3μm蒸着し、ソース、ドレイン部
以外は除去する。
(a) A polysilicon film of 0.3 μm is deposited on a glass substrate and divided into islands. (b) An oxidized silicon film @0.1 μm and a poly-7 silicon film of 0.5 μm are sequentially deposited, and the oxide film and poly-7 silicon film are removed from areas other than the gate portion. (C) U no (p
) at a pressure of 82KV 5 x ] 0” CI/c
(d) Re-implant silicon oxide film 0.3
μ+nf is deposited and the source and drain 7 windows are opened. (e
) ktF 0.3 μm is deposited and removed except for the source and drain portions.

(f)上記の工程で製作された#俣トランジスタをチギ
ンパ内(基円圧力0.1torr、水’A 流黛805
ccrn 。
(f) Place the #mata transistor manufactured in the above process in a chiginpa (base pressure 0.1 torr, water 'A' flow 805
ccrn.

カソード、アノード間の距4% 8 cm Iに入れ、
プラズマ放′心(パワー密90.3 w7cm” Iを
発生させ、90分間水素プラズマ処理を行う。
Put the distance between cathode and anode 4% 8 cm I,
Generate plasma radiation (power density 90.3 w7 cm"I) and perform hydrogen plasma treatment for 90 minutes.

この製造プロセスに代表的な一例について述べたもので
あり、各パラメータを変えた場合、あるいに、素子構造
を変えた場合にも水素処理の効果がありX発明の構造に
肩効である。
This is a typical example of this manufacturing process, and even when each parameter is changed or the element structure is changed, the hydrogen treatment has an effect and is more effective than the structure of invention X.

第7同VC第11AI7’)変形例を示す。7th VC, 11th AI7') A modification example is shown.

Ca1n水素イオンが半導体中に浸透しや■いように半
導俸俣円に数カ所の穴を開けたトランジスタ構造である
。(b)に(2) 17)−造のゲート部直下のチャネ
ル幅νVを狭くした構造である。この構造でにトランジ
スクリFF状態でのソース、ドレイン間の電流を抑える
ことができるという特長がある。(c)rx牟1図の構
造にくし状のゲートを組合わせた構造である。この構造
では実効チャネル長しが短かくなることにエワトランジ
スタON状、帰でのソース。
It has a transistor structure in which several holes are made in a semiconductive circle so that Ca1n hydrogen ions can easily penetrate into the semiconductor. (b) has a structure in which the channel width νV directly under the gate portion of (2) 17) is narrowed. This structure has the advantage of suppressing the current between the source and drain in the transistor FF state. (c) rx This is a structure in which the structure shown in Figure 1 is combined with a comb-shaped gate. In this structure, the effective channel length is shortened, and the source of the transistor in the ON state and the return state is shortened.

ドVイン間に大富流が供はでき、又、ゲート′府甑の無
力部分から水素イオ/が浸入してくるため、水素プラズ
マの@4−f上げることか−・−期待できる。(d)i
qゲートI下のチャネル部となるべき半樽体模及びゲー
ト’TIFdi(’MIYi:Jでαnゝボリンリコン
膜8)に比較的多数の八を開けた構造で、これも水素イ
オンの浸入を容易にした構造である。
Since the Otomi flow is generated between the gate and the V-in, and hydrogen ions enter from the inactive part of the gate, it can be expected that the hydrogen plasma will be raised by 4-f. (d)i
q It has a structure in which a relatively large number of holes are opened in the half-barrel body model and the gate 'TIFdi ('MIYi: αn Bolin Recon film 8 in J) which is to become the channel part under gate I, which also facilitates the intrusion of hydrogen ions. The structure is as follows.

ここに述べた構造以外にも水素プラズマ処理σ〕幼果を
上げろため、ゲート電)下の半導体喚の一部を冷去1−
た構造が考えられるが、こnらに本発明に含ブれること
汀菖うまでもない。
In addition to the structure described here, hydrogen plasma treatment σ] to raise the young fruit, a part of the semiconductor layer under the gate electrode) is cooled 1-
Although other structures are conceivable, it goes without saying that these are included in the present invention.

又、本実施例に水素プラズマ処理について、述べている
が薄膜トランジスタ素子において、他の水素処4(水素
雰囲気中7二−ル、窒fヒソリコン膜の堆積及び堆積後
のアニール)でも本発明の構造に有効である。
Although hydrogen plasma treatment is described in this example, the structure of the present invention can also be applied to other hydrogen treatments (7 nitrogen in a hydrogen atmosphere, deposition of a nitride-f hysolicon film, and post-deposition annealing) in a thin film transistor element. It is effective for

〔発明の効果] ぶ発明に工れば、千ヤ不ル幅Wが比較的狭い半導体?並
列に接続し、それらをチャネル層としたトランジスタを
製作することにより、水素プラズマ処理の絶大な効果が
期待できるので、しきい値阿王vthの低減、電界効果
移1勧度μfeの増大等の効果がある。
[Effects of the invention] If the invention is made, will it be possible to create a semiconductor with a relatively narrow width W? By connecting them in parallel and fabricating a transistor using them as a channel layer, we can expect great effects from hydrogen plasma treatment, such as reducing the threshold voltage vth and increasing the field effect transfer coefficient μfe. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のトランジスタの断面横1青
図で(a)11上in、(b)i−xイ則:fEIA 
、  (C)n(a)グ)AA/ 闇の断面図、嘱2図
はプラズマ水素処理前後のvth、μfe Vc対する
チャネル長り依存曲を示す将ヰ線同、第3向にプラズマ
水素処理前説グ〕Vth 、μfeVc対するチャネル
幅W依存注を示す特曲線図、第4図に水素プラズマ処理
前後のVa−Ion特注を示す特ヰ線図、第5図に本発
明の1専膜トランジスタの応用例の説明図、第6図に本
発明の一実施例の薄膜トランジスタ製作プロでス説明図
、第7図に第1図の変形例の断面向である。
FIG. 1 is a cross-sectional horizontal one blue diagram of a transistor according to an embodiment of the present invention, (a) 11 in, (b) i-x i law: fEIA
, (C)n(a)g)AA/ Dark cross-sectional view, Figure 2 shows the channel length dependence curve for vth and μfe Vc before and after plasma hydrogen treatment. 4 is a characteristic curve diagram showing the dependence of channel width W on Vth and μfeVc, FIG. 4 is a characteristic curve diagram showing Va-Ion customization before and after hydrogen plasma treatment, and FIG. 5 is a characteristic curve diagram showing the dependence of channel width W on Vth and μfeVc. FIG. 6 is an explanatory diagram of a thin film transistor manufacturing process according to an embodiment of the present invention, and FIG. 7 is a cross-sectional view of a modification of FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁基板上に形成された薄膜トランジスタ素子にお
いて、チャネル部内全域、或は一部分にトランジスタ素
子が並列接続となるように、少なくとも1箇所以上半導
体膜の除去部分を設けた事を特徴とした薄膜トランジス
タ素子。
1. A thin film transistor element formed on an insulating substrate, characterized in that at least one portion of the semiconductor film is removed so that the transistor elements are connected in parallel throughout or in a part of the channel part. .
JP11080786A 1986-05-16 1986-05-16 Thin-film transistor element Pending JPS62268161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080786A JPS62268161A (en) 1986-05-16 1986-05-16 Thin-film transistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080786A JPS62268161A (en) 1986-05-16 1986-05-16 Thin-film transistor element

Publications (1)

Publication Number Publication Date
JPS62268161A true JPS62268161A (en) 1987-11-20

Family

ID=14545155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080786A Pending JPS62268161A (en) 1986-05-16 1986-05-16 Thin-film transistor element

Country Status (1)

Country Link
JP (1) JPS62268161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005395A (en) * 2005-06-21 2007-01-11 Mitsubishi Electric Corp Thin-film transistor
JP2007279648A (en) * 2006-04-06 2007-10-25 Chunghwa Picture Tubes Ltd Pixel structure and repair method thereof
JP2009025822A (en) * 1998-03-27 2009-02-05 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013012748A (en) * 2005-06-10 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device and light-emitting device
JP2018064112A (en) * 2002-01-28 2018-04-19 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025822A (en) * 1998-03-27 2009-02-05 Semiconductor Energy Lab Co Ltd Semiconductor device
US8054270B2 (en) 1998-03-27 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
US9262978B2 (en) 1998-03-27 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Driving circuit of a semiconductor display device and the semiconductor display device
JP2018064112A (en) * 2002-01-28 2018-04-19 株式会社半導体エネルギー研究所 Semiconductor device
JP2013012748A (en) * 2005-06-10 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device and light-emitting device
JP2007005395A (en) * 2005-06-21 2007-01-11 Mitsubishi Electric Corp Thin-film transistor
JP2007279648A (en) * 2006-04-06 2007-10-25 Chunghwa Picture Tubes Ltd Pixel structure and repair method thereof
JP4642700B2 (en) * 2006-04-06 2011-03-02 中華映管股▲ふん▼有限公司 Pixel structure and repair method thereof

Similar Documents

Publication Publication Date Title
JP3277892B2 (en) Display substrate manufacturing method
KR101334181B1 (en) Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
JPH0777264B2 (en) Method of manufacturing thin film transistor
JP2001028448A (en) Manufacture if thin-film transistor
JPH0614548B2 (en) Method for manufacturing semiconductor device
JPH0566747B2 (en)
JPS62268161A (en) Thin-film transistor element
JP3741741B2 (en) Method for manufacturing complementary integrated circuit
US5898188A (en) Semiconductor device and method for its fabrication
JPS61252667A (en) Thin film transistor and manufacture thereof
JPS63204769A (en) Thin film transistor
JPS6489464A (en) Semiconductor device and manufacture thereof
JPH01309378A (en) Thin-film semiconductor element
JP2767413B2 (en) Thin film transistor and method of manufacturing the same
JP3057770B2 (en) Method for manufacturing thin film transistor
JPH05275701A (en) Thin-film transistor
JP3181901B2 (en) Thin film transistor
JPH0534837B2 (en)
JPH03165066A (en) Polycrystalline silicon thin film transistor and manufacture thereof
JPH11111985A (en) Manufacture of thin-film transistor and liquid crystal display device
JP4321828B2 (en) Method for manufacturing semiconductor device
JP3946690B2 (en) Inverter circuit fabrication method
JPS63284865A (en) Thin film semiconductor element
JP2837473B2 (en) Silicon thin film transistor
JPS60224278A (en) N type transistor