JPS6226772A - Power generation device including oxygen depolarization electrode - Google Patents

Power generation device including oxygen depolarization electrode

Info

Publication number
JPS6226772A
JPS6226772A JP16511485A JP16511485A JPS6226772A JP S6226772 A JPS6226772 A JP S6226772A JP 16511485 A JP16511485 A JP 16511485A JP 16511485 A JP16511485 A JP 16511485A JP S6226772 A JPS6226772 A JP S6226772A
Authority
JP
Japan
Prior art keywords
power generation
generation device
oxygen
contact
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16511485A
Other languages
Japanese (ja)
Inventor
Hajime Konishi
始 小西
Keigo Momose
百瀬 敬吾
Seiichi Mizutani
水谷 精一
Korenobu Morita
森田 是宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16511485A priority Critical patent/JPS6226772A/en
Publication of JPS6226772A publication Critical patent/JPS6226772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent any increase in the electric resistance of an oxygen depolarization electrode or the internal resistance of a power generation device including said electrode by making a cation exchanger in contact with the electrolyte- side surface of the positive body. CONSTITUTION:A positive body 11 consists of active carbon carrying a manganese oxide and is packed in a nickel-plated stainless screen used as the current collector. A porous film 10 made of an ion exchanger is made in contact with the positive body 11. Due to the above structure, even when carbon dioxide dissolves in the liquid electrolyte and as the result carbonate ions are produced, the cation exchanger 10 which is in contact with the electrolyte-side surface of the positive body 11 adsorbs carbonate ions which results in minimal production of carbonates. Consequently, it is possible to prevent any increase in the electric resistance of the oxygen depolarization electrode or the internal resistance of the power generation device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃料電池や空気電池などの発電装置の正極に用
いられる酸素減極電極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in oxygen depolarization electrodes used as positive electrodes in power generation devices such as fuel cells and air cells.

従来の技術 燃料電池はカルノーサイクルによる制約がなくエネルギ
ーの変換効率が非常に高く、理論的にはその変換効率は
100q6である。また、空気電池においては他のアル
カリ系電解液を用いたものと比較し、単位体積肖りエネ
ルギー密度が高い。以上の理由により酸素減極電極を用
いた発電装置は各方面で実用化あるいは民生化が図られ
ている。
Conventional fuel cells are not limited by the Carnot cycle and have very high energy conversion efficiency, theoretically having a conversion efficiency of 100q6. In addition, air batteries have a higher energy density per unit volume than those using other alkaline electrolytes. For the above reasons, power generation devices using oxygen depolarization electrodes are being put into practical use or for civilian use in various fields.

特にボタン型空気電池は水銀電池の代替として、その高
容量と低公害性が注目されるに至っている。
In particular, button-type air batteries are attracting attention as an alternative to mercury batteries due to their high capacity and low pollution.

第62鈍、燃料電池や空気電池に用いられている酸素減
極電極の概要を示した。この図において、1は電解液、
2は多孔性膜であり、一般的には多孔性ポリエチレン膜
あるいはポリプロピレン膜が用いられている。3は正極
体であり、活性炭に触媒を担持させている。触媒として
は貴金属、金属酸化物、金属化合物などから有機物まで
非常に広範囲のものが用いられている。4は集電体、5
は電解液の系外への離散を防止しかつ触媒層への空気あ
るいは酸素の拡散を妨げないことを目的とした撥水膜で
あり、一般に多孔性のポリ4弗化ポリエチレンあるいは
ポリ6弗化プロピレン膜が用いられている。6は空気あ
るいは酸素である。
No. 62 gave an overview of oxygen depolarization electrodes used in fuel cells and air cells. In this figure, 1 is an electrolytic solution,
2 is a porous membrane, and generally a porous polyethylene membrane or a polypropylene membrane is used. 3 is a positive electrode body, in which a catalyst is supported on activated carbon. A wide variety of catalysts are used, ranging from noble metals, metal oxides, metal compounds, and organic substances. 4 is a current collector, 5
is a water-repellent film intended to prevent the electrolyte from dissipating outside the system and not to impede the diffusion of air or oxygen into the catalyst layer. A propylene membrane is used. 6 is air or oxygen.

上記構成における酸素減極電極では触媒層中に、電解液
と空気(酸素)と活性炭による3層界面を形成し、アル
カリ溶液中では以下の反応式で表わされ、反応が進行す
る。
In the oxygen depolarized electrode having the above configuration, a three-layer interface is formed in the catalyst layer by the electrolyte, air (oxygen), and activated carbon, and the reaction proceeds in the alkaline solution as expressed by the following reaction formula.

一!−0+HO+2e−20H− 発明が解決しようとする問題点 第6図に示した電極構成において、1にアルカリ性電解
液6に空気を使用すれば、空気中の二酸化炭素が撥水膜
及び触媒層を通過し、二酸化炭素が電解液に溶解すると
、以下の反応が進行する。
one! -0+HO+2e-20H- Problems to be Solved by the Invention In the electrode configuration shown in FIG. However, when carbon dioxide is dissolved in the electrolyte, the following reaction proceeds.

一 2M +Co3−M2CQ3↓CM  idt解ff中
の陽イオン〕 (M2++Co2−→MCo3↓) 上記反応により生成した炭酸塩(M2CO3)は電解液
中及び多孔性膜周辺に析出する。保存に伴い、炭酸塩の
析出量が増大し、炭酸塩が不導体であるために電極の電
気抵抗が増大する。
-2M+Co3-M2CQ3↓Cation in CM idt solution] (M2++Co2-→MCo3↓) The carbonate (M2CO3) produced by the above reaction is deposited in the electrolyte and around the porous membrane. With storage, the amount of carbonate precipitated increases, and since carbonate is a nonconductor, the electrical resistance of the electrode increases.

この為に酸素減極電極を用いた発電装置自体の内部抵抗
が増大しその結果保存することにより発電装置の性能低
下が発生していた。
For this reason, the internal resistance of the power generation device itself using the oxygen depolarization electrode increases, and as a result, the performance of the power generation device decreases due to storage.

本発明は上記のような従来の問題点を解消し、炭酸塩の
析出による酸臭減極電極の電気抵抗の増大あるいは酸素
減極電極を用いた発電装置の内部抵抗の増大がない、酸
素減極電極を用いた発電装置を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and eliminates the increase in the electrical resistance of the acid-odor depolarization electrode due to carbonate precipitation or the increase in the internal resistance of the power generation device using the oxygen depolarization electrode. The purpose of the present invention is to provide a power generation device using polar electrodes.

問題点を解決するための手段 この問題点を解決するため、本発明は正極体の電解液に
接する面に陽イオン交換体を当接したものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a positive electrode body in which a cation exchanger is brought into contact with the surface of the positive electrode body that comes into contact with the electrolyte.

作  用 この構成によれば、二酸化炭素が電解液に溶解し、炭酸
イオンが生成しても、正極体の電解液に接する面に当接
している陽イオン交換体が炭酸イオンを吸着するので、
炭酸塩の生成が従来に比較して非常に少なくなる。その
結果、酸素減極電極の電気抵抗の増大あるいは酸素減筒
電極を用いた発電装置の内部抵抗の増大がなくなる。
Effect: According to this configuration, even if carbon dioxide is dissolved in the electrolyte and carbonate ions are generated, the cation exchanger that is in contact with the surface of the positive electrode that comes into contact with the electrolyte adsorbs the carbonate ions.
Carbonate generation is significantly reduced compared to conventional methods. As a result, there is no increase in the electrical resistance of the oxygen depolarizing electrode or increase in the internal resistance of the power generator using the oxygen depolarizing electrode.

実施例 以下本発明における実施例を説明する。Example Examples of the present invention will be described below.

本実施例では酸素減極電極を用いる発電装置として空気
ボタン電池を例に説明する。なお、空気ボタン電池のサ
イズはIEC規格44型を用いた。
In this embodiment, an air button battery will be explained as an example of a power generation device using an oxygen depolarized electrode. Note that the size of the air button battery used was IEC standard 44 type.

第1図に本実施例における空気ボタン電池の構成を示し
た。この図において7はニッケル/ステンレス鋼/銅の
三層クラツド板を用いた封口板、8は氷化亜鉛負極、9
は鉄にニッケルメッキした正極ケース、10は多孔性膜
で陽イオン交換体からなり、正極体に当接している。本
実施例ではグラフト重合したポリエチレンにメタアクリ
ル酸ソーダを置換したものを用いた。11は活性炭にマ
ンガン酸化物を担持し、集電体であるニッケルメッキし
たステンレススクリーンに充填した正極体、12はポリ
4弗化エチレンからなる撥水膜である。
FIG. 1 shows the configuration of the air button battery in this example. In this figure, 7 is a sealing plate using a three-layer clad plate of nickel/stainless steel/copper, 8 is a frozen zinc negative electrode, and 9
10 is a positive electrode case made of iron plated with nickel, and 10 is a porous membrane made of a cation exchanger, which is in contact with the positive electrode body. In this example, graft polymerized polyethylene substituted with sodium methacrylate was used. Reference numeral 11 denotes a positive electrode body in which manganese oxide is supported on activated carbon and filled in a nickel-plated stainless steel screen serving as a current collector, and 12 is a water-repellent film made of polytetrafluoroethylene.

13は空気孔である。なお、本実施例と比較する従来例
として、1oの多孔性膜に多孔性ポリプロピレン膜を用
いて他は第1図の構成と同一な空気ボタン電池を用いた
13 is an air hole. As a conventional example for comparison with this example, a porous polypropylene membrane was used as the 1o porous membrane, and an air button battery having the same configuration as that shown in FIG. 1 was used except for the porous membrane.

次に上記実施例及び従来例の空気ボタン電池を20’0
45%の条件で保存し、その内部抵抗の変化と保存後の
放電性能の検討を行なった。第2図に上記保存条件にお
ける内部抵抗の変化を示した。
Next, the air button batteries of the above embodiment and the conventional example were placed at 20'0
The battery was stored under conditions of 45%, and changes in internal resistance and discharge performance after storage were examined. FIG. 2 shows the change in internal resistance under the above storage conditions.

従来例では保存に伴って内部抵抗が増大し、4週間後で
は約100に増大するのに対して本実施例ではまったく
内部抵抗の増大は認められない。なお、内部抵抗は20
個測定しその平均値を示した。
In the conventional example, the internal resistance increases with storage and increases to about 100 after 4 weeks, whereas in the present example, no increase in internal resistance is observed at all. Note that the internal resistance is 20
Individual measurements were taken and the average value is shown.

第3図、第4図に初期及び4週間保存後のそれぞれの放
電曲線を示した放電条件は250Ω連続放電、20 ’
050%R,H,である。初期においては実施例と従来
例の間に差は認められないが、4週間保存後では内部抵
抗の差によると考えられる放電電圧の差が認められる。
The discharge conditions shown in Figures 3 and 4 are 250Ω continuous discharge, 20'
050% R, H. At the initial stage, no difference is observed between the example and the conventional example, but after storage for 4 weeks, a difference in discharge voltage is observed, which is thought to be due to a difference in internal resistance.

まだ、放電時間に関しても実施例が良好な結果を示した
However, the example also showed good results regarding the discharge time.

なお、陽イオン交換体について実施例以外の種々のもの
の検討を行なったが、はぼ同様傾向が認められた。しか
し、グラフト重合したポリエチレンにメタアクリル酸ソ
ーダあるいはアクリル酸ンーダを置換したものが特に良
好な特性を示した。
In addition, various cation exchangers other than the examples were investigated, and almost the same tendency was observed. However, graft polymerized polyethylene substituted with sodium methacrylate or sodium acrylate showed particularly good properties.

は正極体、16は多孔性膜である。16の多孔性膜につ
いて、前述の空気ボタン電池と同様に検討を行なった。
1 is a positive electrode body, and 16 is a porous membrane. No. 16 porous membranes were investigated in the same manner as the above-mentioned air button battery.

その結果、この様な箱型の空気電池ならびに図示しない
が筒型の空気電池についても、前述の空気ボタン電池の
同様の効果が得られた。
As a result, the same effects as those of the above-mentioned air button battery were obtained with such a box-shaped air battery as well as with a cylindrical air battery (not shown).

発明の効果 以上より明らかなように本発明の構成によれば、酸素減
極電極の電気抵抗あるいは酸素減極電極を用いた発電装
置の内部抵抗の増大がなく、保存性に優れた酸素減極電
極を用いた発電装置を提供できる。
Effects of the Invention As is clear from the above, according to the configuration of the present invention, there is no increase in the electrical resistance of the oxygen depolarization electrode or the internal resistance of the power generation device using the oxygen depolarization electrode, and the oxygen depolarization has excellent storage stability. A power generation device using electrodes can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における空気ボタン電池の断面
図、第2図は実施例及び従来例の電池の保存における内
部抵抗変化図、第3図、第4図は実施例及び従来例の製
造直後及び保存後の放電曲線を示す図、第5図は箱型空
気電池のための単セルを示す断面略図、第6図は酸素減
極電極の概略図である。 1・・・・・電解液、2・−・・多孔性膜、3−・・・
−正極体、4・・・・集電体、5・・・・・・撥水膜、
6・・・・・空気又は酸素、7−・−・封口板、8・・
・・・−汞化亜鉛、9・・・・・・正極ケース、10・
・−多孔性膜、11・・・・正極体、12−・・撥水膜
、13・−・空気孔、14・・−・・・亜鉛極、15・
・・・正極体、16−・−・・多孔性膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
−−封口辰 8−一−イヒ団ヒ鉛 9−−一王腸ケース ai  l  llA10−−−9’JLa/1t11
−−一正、極体 /Z−−一捜7に臘 /J−空気ル 第2図 0      /      Z      3   
  4(週) 第 3 図 第4図 &V峙r1()lr) 第5図 /4−−一生釦極 /−−一も解東 4−、lt# 5−−一撫水」( 6−−−!気ヌは#禾
Fig. 1 is a cross-sectional view of the air button battery in the embodiment of the present invention, Fig. 2 is a diagram of internal resistance change during storage of the battery of the embodiment and the conventional example, and Figs. 3 and 4 are the diagrams of the embodiment and conventional example. FIG. 5 is a schematic cross-sectional view showing a single cell for a box-type air battery, and FIG. 6 is a schematic view of an oxygen depolarization electrode. 1... Electrolyte, 2... Porous membrane, 3-...
- Positive electrode body, 4... Current collector, 5... Water repellent film,
6... Air or oxygen, 7-... Sealing plate, 8...
...-Zinc chloride, 9... Positive electrode case, 10.
- Porous membrane, 11... Positive electrode body, 12-... Water repellent membrane, 13... Air holes, 14... Zinc electrode, 15...
... Positive electrode body, 16-... Porous membrane. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
--Fukukuchatsu 8-1-Ihi group arsenic 9--1 Queen's intestine case ai l llA10---9'JLa/1t11
--Kazumasa, Polar Body/Z--Ichiso 7 ni 臘/J-Air Le Figure 2 0/Z 3
4 (week) 3 Figure 4 & V face r1 ()lr) Figure 5/4--Issei Button Goku/--Ichimo Kaito 4-, lt# 5--Ichifusui'' (6-- −!Kinu is #he

Claims (5)

【特許請求の範囲】[Claims] (1)酸素あるいは空気を減極材として用いる膜状、板
状あるいは塊状などの正極体の、電解液に接する面の全
面に、陽イオン交換体を当接したことを特徴とする酸素
減極電極を用いる発電装置。
(1) Oxygen depolarization characterized by a cation exchanger being brought into contact with the entire surface in contact with the electrolyte of a film-like, plate-like, or lump-like positive electrode body that uses oxygen or air as a depolarizing material. A power generation device that uses electrodes.
(2)陽イオン交換体が、アクリル酸ソーダあるいはメ
タアクリル酸ソーダで置換したグラフト重合ポリエチレ
ン膜であることを特徴とする特許請求の範囲第1項記載
の酸素減極電極を用いた発電装置。
(2) A power generation device using an oxygen depolarization electrode according to claim 1, wherein the cation exchanger is a graft polymerized polyethylene membrane substituted with sodium acrylate or sodium methacrylate.
(3)正極体が、膜状あるいは板状で、空気あるいは酸
素に接する面に撥水性の合成樹脂膜を当接したことを特
徴とする特許請求の範囲第1項に記載の酸素減極電極を
用いる発電装置。
(3) The oxygen depolarization electrode according to claim 1, wherein the positive electrode body is in the form of a film or a plate, and a water-repellent synthetic resin film is in contact with the surface in contact with air or oxygen. A power generation device using
(4)発電装置が、ボタン型であることを特徴とする特
許請求の範囲第1項に記載の酸素減極電極を用いる発電
装置。
(4) A power generating device using the oxygen depolarizing electrode according to claim 1, wherein the power generating device is button-shaped.
(5)発電装置が、筒型あるいは箱型であることを特徴
とする特許請求の範囲第1項に記載の酸素減極電極を用
いる発電装置。
(5) A power generation device using the oxygen depolarization electrode according to claim 1, wherein the power generation device is cylindrical or box-shaped.
JP16511485A 1985-07-26 1985-07-26 Power generation device including oxygen depolarization electrode Pending JPS6226772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16511485A JPS6226772A (en) 1985-07-26 1985-07-26 Power generation device including oxygen depolarization electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16511485A JPS6226772A (en) 1985-07-26 1985-07-26 Power generation device including oxygen depolarization electrode

Publications (1)

Publication Number Publication Date
JPS6226772A true JPS6226772A (en) 1987-02-04

Family

ID=15806175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16511485A Pending JPS6226772A (en) 1985-07-26 1985-07-26 Power generation device including oxygen depolarization electrode

Country Status (1)

Country Link
JP (1) JPS6226772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835656A1 (en) * 2002-05-13 2003-08-08 Commissariat Energie Atomique Metal-oxygen cell comprises electrolyte consisting of porous part that is impregnated with electrolyte at the anode and ion exchange material at the cathode, and that limits build up of carbonates at cathode-electrolyte interface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835656A1 (en) * 2002-05-13 2003-08-08 Commissariat Energie Atomique Metal-oxygen cell comprises electrolyte consisting of porous part that is impregnated with electrolyte at the anode and ion exchange material at the cathode, and that limits build up of carbonates at cathode-electrolyte interface

Similar Documents

Publication Publication Date Title
JP5721329B2 (en) Air battery, air battery stack
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
RU2119701C1 (en) Electrochemical device for feeding energy using air electrode
JP3056054B2 (en) Zinc secondary battery and zinc electrode
US3353999A (en) Conductive film battery
RU95119852A (en) Rechargeable Electrochemical Cell
JP3959749B2 (en) Metal hydride secondary battery with solid polymer electrolyte
US4076909A (en) Alkaline lead battery
JPH0529006A (en) Fuel cell
US3317349A (en) Ambipolar battery including electrodes of identical nickelous composition
KR20080106839A (en) Powdered fuel cell
JPS6226772A (en) Power generation device including oxygen depolarization electrode
JPH0787102B2 (en) Sealed nickel-zinc battery
JPH03245472A (en) Two-pack type battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JP2017004934A (en) Aluminum-manganese electrochemical cell
KR101897523B1 (en) Catalyst compelx material for metal air battery and metal air battery having the same
JPH03504297A (en) Catalytic recombination of oxygen produced in chemical cells
JP3006371B2 (en) Battery
CA1055566A (en) Load leveling battery device
US5654113A (en) Protonated cathode battery
JP3021517B2 (en) Organic electrolyte secondary battery
JPS61290668A (en) Sealed zinc alkaline storage battery
CN214672733U (en) High-energy-density charge-discharge battery
US5196274A (en) Electrochemical energy device