JPS62265771A - Method for sealing photoelectric conversion element - Google Patents

Method for sealing photoelectric conversion element

Info

Publication number
JPS62265771A
JPS62265771A JP61110083A JP11008386A JPS62265771A JP S62265771 A JPS62265771 A JP S62265771A JP 61110083 A JP61110083 A JP 61110083A JP 11008386 A JP11008386 A JP 11008386A JP S62265771 A JPS62265771 A JP S62265771A
Authority
JP
Japan
Prior art keywords
transparent resin
photoelectric conversion
conversion element
mold
mirror face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61110083A
Other languages
Japanese (ja)
Inventor
Satoshi Machida
聡 町田
Hideaki Adachi
安立 英明
Masaaki Bandai
万代 雅昭
Kojin Kawahara
河原 行人
Hiroshi Konakano
浩志 向中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61110083A priority Critical patent/JPS62265771A/en
Publication of JPS62265771A publication Critical patent/JPS62265771A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To simply perform a sealing operation at low cost by a method wherein the mold having the mirror face consisting of the material non-adhesive to the poured transparent resin covering a photoelectric conversion element is positioned in such a manner that the mirror face is pushed against and comes in contact with the photo signal incident plane of the transparent resin, and the mold is exfoliated after the resin has been hardened. CONSTITUTION:The photoelectric conversion element 1 of an insulating substrate 6 is wire-bonded by performing a wire-bonding, and transparent resin 7 is poured on the photoelectric conversion element 1 until a wire 8 will be completely hidden using a dispenser and the like. Then, the spacer 9 is placed on the substrate 6 in such a manner that it does not come in contact with the transparent resin, and when the mold 11 having the mirror face 10, consisting of the material which is non-adhesive to the transparent resin 7, is placed on the spacer 9 in such a manner that the mirror face 10 comes in contact with the transparent resin 7, the transparent resin 7 is tightly adhered to the mirror face 10 by surface tension. Then, the transparent resin 7 is hardened, and when the mold 11 and the spacer 9 are removed, the photosignal incident plane 12 of the transparent resin 7 is turned to the state of mirror face. Accordingly, the photoelectric conversion element 1 can be simply sealed at low cost without using glass.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CCDやアモルファスシリコン等のイージセ
ンサやLEDアレイ等の光電変換素子の封止法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for sealing photoelectric conversion elements such as easy sensors such as CCDs and amorphous silicon, and LED arrays.

〔発明の概要〕[Summary of the invention]

本発明は、光電変換素子を透明樹脂で封止するとき、透
明樹脂を硬化させる前に、この透明樹脂に対して非粘着
性を有する素材からなる鏡面をもった型を、この透明樹
脂の光Iz号入射面にこの鏡面が接触するように押し当
て、透明樹脂が硬化した後、この型をIすがすことによ
り、簡華で安価に光電変換素子の封止を行うようにした
ものである。
In the present invention, when a photoelectric conversion element is sealed with a transparent resin, before the transparent resin is cured, a mold with a mirror surface made of a material that is non-adhesive to the transparent resin is molded with light of the transparent resin. This mirror surface is pressed against the Iz incident surface, and after the transparent resin has hardened, the mold is rinsed to seal the photoelectric conversion element in a simple and inexpensive manner. be.

〔従来の技術〕[Conventional technology]

CCD等のイメージセンサ−やLEDアレイ等の光電変
換素子は、外部環境からの保護と機械的保護のために封
止されている。これらの光電変換素子は、解像度を保つ
ために、封止保護層の表面は鏡面またはそ机に近い状態
にする必要がある。
Image sensors such as CCDs and photoelectric conversion elements such as LED arrays are sealed for protection from the external environment and mechanical protection. In order to maintain resolution in these photoelectric conversion elements, the surface of the sealing protective layer needs to be mirror-like or nearly mirror-like.

またレンズと組み合わせて使われる場合、各画素の光路
長を均一にする必要がある。従来、光電変換素子を透明
樹脂で封止する方法が考えられている。この方法は、デ
ィスペンサー等で光電変換素子をモールドし硬化させる
ものだが、上述の要求を満たすために透明樹脂が硬化し
た後、透明樹脂の表面を均一の高さにし、かつ鏡面状に
するために加工しなくてはならなかった。この加工は非
常に困難で有り高価なため実用的でなかった。
Furthermore, when used in combination with a lens, it is necessary to make the optical path length of each pixel uniform. Conventionally, a method of sealing a photoelectric conversion element with a transparent resin has been considered. In this method, the photoelectric conversion element is molded and cured using a dispenser, etc., but in order to meet the above requirements, after the transparent resin is cured, the surface of the transparent resin is made to have a uniform height and a mirror finish. I had to process it. This processing was extremely difficult and expensive, so it was not practical.

そこで、従来は、第2図や第3図に示すようにガラスを
用いた封止構造を用いている。第2図はCCD等を用い
たICイメージセンサにおける封止構造の一例を示す断
面図である。光電変換素子としてのイメージセンサチッ
プ1はアルミナ基板2上に実装され、透明ガラス板3と
アルミナ基板2とを低融点ガラスあるいはエポキシ等の
樹脂4により接触し、イメージセンサチップの封止を行
っている。
Therefore, conventionally, a sealing structure using glass is used as shown in FIGS. 2 and 3. FIG. 2 is a sectional view showing an example of a sealing structure in an IC image sensor using a CCD or the like. An image sensor chip 1 as a photoelectric conversion element is mounted on an alumina substrate 2, and a transparent glass plate 3 and alumina substrate 2 are brought into contact with a low melting point glass or a resin 4 such as epoxy to seal the image sensor chip. There is.

第3図は、COD等のICイメージセンサチップを複数
個、直線状または千鳥状に配列した密着型イメージセン
サにおける封止構造の一例を示す断面図である。イメー
ジセンサチップ1の封止は凹部を有するガラス材5をア
ルミナやガラス等の絶縁基板6へ、低融点ガラスあるい
はエポキシ等の樹脂4により接着して行っている。この
ような例は、特願昭58−150989号に示されてい
る。
FIG. 3 is a cross-sectional view showing an example of a sealing structure in a contact type image sensor in which a plurality of IC image sensor chips such as COD are arranged in a linear or staggered manner. The image sensor chip 1 is sealed by bonding a glass material 5 having a concave portion to an insulating substrate 6 such as alumina or glass with a resin 4 such as low melting point glass or epoxy. Such an example is shown in Japanese Patent Application No. 58-150989.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図または第3図に示した封止構造において低融点ガ
ラスで接着する場合、パフケージ全体を350℃以上に
加熱する必要があるが、このよう°な高温では光電変換
素子1と基板2または6との熱膨張係数の差による応力
により光電変換素子1が位置ずれする場合がある。密着
型イメージセンサの場合、隣同士の光7:i変換素子1
が相対的に位置ずれすると、画像読み取り時に画像のズ
レを生じる。また、光電変換素子1が高温に対して弱い
材料より成る場合、例えば、アモルファスシリコンやゼ
ラチンカラーフィルタ等より構成される場合は、低融点
ガラスの変わりに樹脂を用いなくてはならない、しかし
、第2図または第3図における部材4が樹脂の場合、高
い気密性が得られず、湿気がガラス内部の空間に侵入し
、IC表面やガラスの内面で結露し、ICの故障や、解
像度の劣化を引き起こす、密着型イメージセンサの場合
、接着範囲が広いので樹脂4の硬化収縮による応力によ
り、基板6がそったり、経時的にガラス材5が剥がれる
場合がある。また、第2回の構造は、アルミナ基板2の
加工が困難で高価なものとなる。
When bonding with low-melting glass in the sealing structure shown in FIG. 2 or 3, it is necessary to heat the entire puff cage to 350°C or higher, but at such high temperatures, photoelectric conversion element 1 and substrate 2 or The photoelectric conversion element 1 may be displaced due to stress due to the difference in thermal expansion coefficient between the photoelectric conversion element 1 and the photoelectric conversion element 1. In the case of a contact type image sensor, adjacent light 7: i conversion element 1
If there is a relative positional shift, an image shift occurs when reading an image. Furthermore, when the photoelectric conversion element 1 is made of a material that is sensitive to high temperatures, for example, when it is made of amorphous silicon or a gelatin color filter, a resin must be used instead of low-melting glass. If the member 4 in FIG. 2 or 3 is made of resin, high airtightness cannot be obtained, and moisture will enter the space inside the glass and condense on the IC surface and the inner surface of the glass, resulting in IC failure and resolution deterioration. In the case of a contact type image sensor, the bonding area is wide, so the substrate 6 may warp or the glass material 5 may peel off over time due to stress caused by curing and shrinkage of the resin 4. Further, in the second structure, processing of the alumina substrate 2 is difficult and expensive.

第3図の構造は、ガラス5の加工が困難であり高価なも
のとなる。
In the structure shown in FIG. 3, processing of the glass 5 is difficult and expensive.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、CODやアモルファスシリコン等のイメー
ジセンサやLEDアレイ等の光電変換素子の封止法にお
いて、光電変換素子を透明樹脂で封止するとき、透明樹
脂を硬化させる前に、この透明樹脂に対して非粘着性を
有する素材からなる鏡面をもった型を、この透明樹脂の
光信号入射面にこの鏡面が接触するように押し当て、透
明樹脂が硬化した後、この型を剥がすことにより、ガラ
スを用いないで、上記問題点を解決した。
In a method for encapsulating photoelectric conversion elements such as image sensors and LED arrays made of COD or amorphous silicon, when the photoelectric conversion element is encapsulated with a transparent resin, the transparent resin is sealed before the transparent resin is cured. On the other hand, a mold with a mirror surface made of a non-adhesive material is pressed against the optical signal incident surface of the transparent resin so that the mirror surface contacts it, and after the transparent resin has hardened, the mold is peeled off. The above problems were solved without using glass.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて詳細に説明する
。第1図fat fblは本発明の一実施例を示す断面
図である。アルミナやガラス等の絶縁基板6に光電変換
素子1をグイボンドしワイヤーボンディングを行う。光
電変換素子lは、CCD、フォトダイオード、フォトト
ランジスタ等の半導体受光素子チンプやLEDアレイ等
の発光素子チップであり、複数個でもよい。次に透明樹
脂7を、光電変換素子1の上に、ワイヤーボンディング
のワイヤー8が十分隠れるまで、ディスペンサー等を用
いて流し込む、透明樹脂7には、シリコン樹脂やエポキ
シ樹脂等のうち、光電変換素子1が検出しようとする波
長の光の透過率が裔<、不純物イオンの含有量が少ない
ものを使う。透明樹脂7の粘度が低い場合、透明樹脂7
が流れてしまいワイヤー8がむき出しになりやすいので
、モールドしたい範囲の周囲に粘度の高い樹脂等であら
かじめ土手を形成しておく必要がある。透明樹脂7に、
適度な非流動性すなわちチクソトロピック性をもたせれ
ば、モールドした時の状態を保持するので土手を形成す
る必要がない。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention. The photoelectric conversion element 1 is bonded to an insulating substrate 6 such as alumina or glass, and wire bonding is performed. The photoelectric conversion element 1 may be a semiconductor light receiving element chip such as a CCD, a photodiode, or a phototransistor, or a light emitting element chip such as an LED array, and may be plural in number. Next, pour the transparent resin 7 onto the photoelectric conversion element 1 using a dispenser or the like until the wire bonding wire 8 is sufficiently covered. 1. Use a material with a transmittance of light of the wavelength to be detected and a low content of impurity ions. When the viscosity of the transparent resin 7 is low, the transparent resin 7
Since the wire 8 tends to flow and become exposed, it is necessary to form a bank in advance using a highly viscous resin or the like around the area to be molded. Transparent resin 7,
If it has appropriate non-flowability, that is, thixotropic property, it will maintain its state when molded, so there is no need to form a bank.

次に透明樹脂と接触しないようにスペーサ9を基板6の
上に置く。スペーサ9はすべて同じ高さにしである。さ
らに透明樹脂7に対して非粘着性を有する素材からなる
鏡面10をもった型11を鏡面10が透明樹脂7に接触
するようにスペーサ9の上にのせる。このとき透明樹脂
7は表面張力により鏡面10に密着する。
Next, the spacer 9 is placed on the substrate 6 so as not to come into contact with the transparent resin. The spacers 9 are all at the same height. Further, a mold 11 having a mirror surface 10 made of a material that is non-adhesive to the transparent resin 7 is placed on the spacer 9 so that the mirror surface 10 is in contact with the transparent resin 7. At this time, the transparent resin 7 is brought into close contact with the mirror surface 10 due to surface tension.

i3明樹脂7の量は、境面1(lとの接触面が充電変換
素子1の受光面上を十分覆うように調整されている。透
明樹脂7を熱、紫外線または自然放置により、硬化させ
た後、型11とスペーサ9を取り除く。鏡面10は透明
樹脂7に対して非粘着性のある素材からなるので、鏡面
10と透明樹脂7は容易に剥離し、透明樹脂7の光信号
入射面12は第1図(blに示すように鏡面状になる。
The amount of i3 bright resin 7 is adjusted so that the contact surface with interface 1 (l) sufficiently covers the light-receiving surface of charge conversion element 1. After that, the mold 11 and the spacer 9 are removed.Since the mirror surface 10 is made of a material that is non-adhesive to the transparent resin 7, the mirror surface 10 and the transparent resin 7 are easily separated, and the optical signal incident surface of the transparent resin 7 is removed. 12 becomes a mirror surface as shown in FIG. 1 (bl).

スペーサ9の高さは均一なので透明樹脂7の厚さは均一
となり、光電変換素子1の各画素の光路長を一定とする
ことができる。またスペーサ9は型11に接着されてい
てもよい。
Since the height of the spacer 9 is uniform, the thickness of the transparent resin 7 is uniform, and the optical path length of each pixel of the photoelectric conversion element 1 can be made constant. Further, the spacer 9 may be bonded to the mold 11.

次に透明樹脂7に対して非粘着性を有する素材からなる
鏡面10の形成方法の例を説明する。鏡面の素材として
は、非粘着性に優れたふっ素樹脂を用いる。鏡面加工さ
れた型11の表面にFEPフィルムやPFAフィルムを
、熱圧着や接着剤により接着することにより非粘着性に
優れた鏡面10を形成することができる。また鏡面加工
された型11にテフロンコーティングを行ってもよい。
Next, an example of a method for forming the mirror surface 10 made of a non-adhesive material with respect to the transparent resin 7 will be described. Fluororesin, which has excellent non-adhesive properties, is used as the material for the mirror surface. By adhering an FEP film or a PFA film to the mirror-finished surface of the mold 11 by thermocompression bonding or an adhesive, a mirror surface 10 with excellent non-adhesion properties can be formed. Further, the mirror-finished mold 11 may be coated with Teflon.

このときコーティング条件を選ぶことにより、コーテイ
ング面を鏡面に近い状態にできる。またPTFHの板材
を鏡面研磨してもよい。ふっ素樹脂は耐熱性が高いので
、鏡面10は繰り返し使うことができる。
By selecting the coating conditions at this time, the coated surface can be made into a nearly mirror-like state. Further, the PTFH plate material may be mirror polished. Since fluororesin has high heat resistance, the mirror surface 10 can be used repeatedly.

透明樹脂7は透湿性があるが、光電変換素子1のパンシ
ベーション膜を強化し、透明樹脂7の光電変換素子Iと
の接着力を増すことにより、fieJI性を高くするこ
とができる。また、透明樹脂7にゴム状の樹脂を用いれ
ば、絶縁基板6との熱膨張係数の差による応力による絶
縁基板6のそりもおこらない。
Although the transparent resin 7 has moisture permeability, the fieJI property can be improved by strengthening the pansivation film of the photoelectric conversion element 1 and increasing the adhesive force between the transparent resin 7 and the photoelectric conversion element I. Furthermore, if a rubber-like resin is used for the transparent resin 7, the insulating substrate 6 will not warp due to stress due to the difference in thermal expansion coefficient with the insulating substrate 6.

以上の説明では、光電変換素子1を半導体チップよりな
る受光、発光素子で説明したが、封止される光電変換素
子は Cd、 、、 Cd□、アモルファスシリコン等
の材料よりなる光電変換膜でもよい。
In the above explanation, the photoelectric conversion element 1 has been described as a light-receiving and light-emitting element made of a semiconductor chip, but the photoelectric conversion element to be sealed may be a photoelectric conversion film made of a material such as Cd, , Cd□, or amorphous silicon. .

〔発明の効果] 以上述べたように、本発明によれば、ガラスを用いるこ
となく光電変換素子の封止を行うことができ、構造が面
車で安価である。熱工程は低温で済み、光電変換素子が
高温に対して弱い材料より成る場合にも用いることがで
きる。また通常透明樹脂の屈折率は、光電変換素子のバ
ンシベーシシン膜の屈折率よりも小さいので、反射防止
膜の働きをし、光電変換素子の悪魔が向上する。
[Effects of the Invention] As described above, according to the present invention, a photoelectric conversion element can be sealed without using glass, and the structure is a pulley and is inexpensive. The thermal process can be performed at a low temperature, and it can be used even when the photoelectric conversion element is made of a material that is sensitive to high temperatures. Further, since the refractive index of the transparent resin is usually smaller than the refractive index of the vancibasin film of the photoelectric conversion element, it functions as an antireflection film and improves the optical performance of the photoelectric conversion element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光電変換素子の封止法の一実施
例の断面図であり、第1図ta+は3明樹脂硬化前の断
面図、第1図[blは完成後の断面図である。第2図、
第3図は従来の封止法の実施例の断面図である。 l・・・先覚変化素子 2・・・アルミナ基(反 3・・・透明ガラス板 4・・・低融点ガラスやエポキシ等の樹脂5・・・凹部
ををするガラス材 6・・・絶縁基板 7・・・透明樹脂 8・・・ワイヤーボンディングのワイヤー9・・・スペ
ーサ 10・・・非粘着性を存する素材からなる鏡面11・・
・型 12・・・光信号入射面 以上 ′、″ 第1図(a) 12L侶芳入JF′r面 ど 第  1   図(bン 九屹呆の生す1ニョ阪のざ午面図 第2図 ダ米の壬す:;去の酌面図 第3図
FIG. 1 is a cross-sectional view of an embodiment of the method for sealing a photoelectric conversion element according to the present invention, and FIG. It is. Figure 2,
FIG. 3 is a cross-sectional view of an embodiment of a conventional sealing method. 1... Pre-sense change element 2... Alumina base (anti-3)... Transparent glass plate 4... Resin such as low melting point glass or epoxy 5... Glass material forming the concave portion 6... Insulating substrate 7...Transparent resin 8...Wire bonding wire 9...Spacer 10...Mirror surface 11 made of a non-adhesive material...
・Type 12...Above the optical signal incident plane','' Fig. 1 (a) Figure 2: The last cup of rice Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板と、この絶縁基板上に形成された光電変
換素子とこの光電変換素子を封止する透明樹脂を有する
光電変換素子の封止法において、前記透明樹脂を前記光
電変換素子を覆うように流し込んだ後、前記透明樹脂に
対して非粘着性を有する素材からなる鏡面をもった型を
、前記透明樹脂の光信号入射面に、前記鏡面が接触する
ように押し当て、前記透明樹脂を硬化させた後、前記型
を剥がすことを特徴とする光電変換素子の封止法。
(1) In a method for sealing a photoelectric conversion element having an insulating substrate, a photoelectric conversion element formed on the insulating substrate, and a transparent resin sealing the photoelectric conversion element, the transparent resin covers the photoelectric conversion element. After pouring the transparent resin, a mold with a mirror surface made of a material that is non-adhesive to the transparent resin is pressed against the light signal incident surface of the transparent resin so that the mirror surface is in contact with the transparent resin. 1. A method for encapsulating a photoelectric conversion element, which comprises curing and then peeling off the mold.
(2)前記鏡面を形成する素材は、ふっ素樹脂であるこ
とを特徴とした特許請求の範囲第1項記載の光電変換素
子の封止法。
(2) The method for sealing a photoelectric conversion element according to claim 1, wherein the material forming the mirror surface is a fluororesin.
(3)前記透明樹脂はチクソトロピック性をもっている
ことを特徴とした特許請求の範囲第1項記載の光電変換
素子の封止法。
(3) The method for sealing a photoelectric conversion element according to claim 1, wherein the transparent resin has thixotropic properties.
JP61110083A 1986-05-14 1986-05-14 Method for sealing photoelectric conversion element Pending JPS62265771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61110083A JPS62265771A (en) 1986-05-14 1986-05-14 Method for sealing photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110083A JPS62265771A (en) 1986-05-14 1986-05-14 Method for sealing photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS62265771A true JPS62265771A (en) 1987-11-18

Family

ID=14526598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110083A Pending JPS62265771A (en) 1986-05-14 1986-05-14 Method for sealing photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS62265771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682374A1 (en) * 1994-05-09 1995-11-15 Euratec B.V. Method for encapsulating an integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136254A (en) * 1983-12-23 1985-07-19 Toshiba Corp Solid-state image pickup device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136254A (en) * 1983-12-23 1985-07-19 Toshiba Corp Solid-state image pickup device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682374A1 (en) * 1994-05-09 1995-11-15 Euratec B.V. Method for encapsulating an integrated circuit
NL9400766A (en) * 1994-05-09 1995-12-01 Euratec Bv Method for encapsulating an integrated semiconductor circuit.
US5863810A (en) * 1994-05-09 1999-01-26 Euratec B.V. Method for encapsulating an integrated circuit having a window

Similar Documents

Publication Publication Date Title
KR970005706B1 (en) Ccd and the manufacturing method
US8411197B2 (en) Image pickup device and production method thereof
US7616250B2 (en) Image capturing device
EP1139435B1 (en) Chip scale packaging method for optical image sensor integrated circuits
US6774481B2 (en) Solid-state image pickup device
KR20070011106A (en) Solid-state image sensing device and method for fabricating the same
US20100155917A1 (en) Semiconductor device and method for fabricating the same
US20090085139A1 (en) Solid-state image sensing device and method for manufacturing the same
EP0561964A1 (en) Optoelectronic device component package and method of making the same
WO2010001524A1 (en) Solid-state image pickup element, method for manufacturing the same, and solid-state image pickup device
JP2000323692A (en) Solid-state image sensing device
JP4871690B2 (en) Solid-state imaging device manufacturing method and solid-state imaging device
JPH03155671A (en) Solid-state image sensing device
US7267603B2 (en) Back grinding methods for fabricating an image sensor
JPS62265771A (en) Method for sealing photoelectric conversion element
WO2014027476A1 (en) Semiconductor device
KR20080108668A (en) Image sensor module and method for manufacturing thereof
JPH04286159A (en) Solid-state image sensing device
JP2823726B2 (en) Clear molded solid-state imaging device
US20100044553A1 (en) Cmos image sensor package and camera module with same
JPH04114456A (en) Photoelectric converter
JP2002100751A (en) Solid-state image pickup device
US20230154953A1 (en) Color image sensor and manufacturing method thereof
JP2002176157A (en) Solid-state image pickup device
JP2009111130A (en) Imaging apparatus and its manufacturing method