JPS62265532A - Torsional oscillation measuring instrument - Google Patents

Torsional oscillation measuring instrument

Info

Publication number
JPS62265532A
JPS62265532A JP10766286A JP10766286A JPS62265532A JP S62265532 A JPS62265532 A JP S62265532A JP 10766286 A JP10766286 A JP 10766286A JP 10766286 A JP10766286 A JP 10766286A JP S62265532 A JPS62265532 A JP S62265532A
Authority
JP
Japan
Prior art keywords
rotor shaft
shaft
main body
intervals
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10766286A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Umemoto
義幸 梅本
Noboru Hasegawa
昇 長谷川
Kazuhiro Hirayama
平山 和洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10766286A priority Critical patent/JPS62265532A/en
Publication of JPS62265532A publication Critical patent/JPS62265532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure torsional oscillations continuously with high accuracy by finding the torsional oscillations from intervals of time when respective (n) equally divided points on the circumference of a rotor shaft pass one certain point during the rotation of a rotor shaft. CONSTITUTION:When a contact 1 fitted to the rotor shaft 2 is pressed against to an end of a shaft to be measured to rotate, the rotor shaft 2 is also put in the same rotary motion with the shaft to be measured. At this time, when a light source lamp 10 is turned on, its light passes through a condenser lens 19 and reaches the tip of an optical fiber 3 at the edge of the collar of the rotor shaft 2. As (n) optical fibers 3 are embedded atop the rotor shaft 2 at equal intervals of an angle theta, every time the rotor shaft 1 makes one rotation, a photodetecting element 9 generates (n) pulse signals. If the shaft to be measured rotates irregularly owing to its torsional oscillations, the intervals of the generated pulses are disordered, so the measurement result of the torsional oscillations is calculated from the generation intervals of those pulses.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関、タービン、ポンプ、モーター、その
他回転機械における回転軸系を有する機械装置の回転軸
の捩り!辰動を計測覆”る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to twisting of a rotating shaft of a mechanical device having a rotating shaft system in an internal combustion engine, a turbine, a pump, a motor, or other rotating machinery! This article relates to a device that measures and covers kinetic motion.

[従来の技術] 回転機械における回転軸の捩り振動を訓測する装置とし
て、従来ガイゲル捩り振動計測装置のような機械式のも
のがある。第4図に示すJ:うに1回転機械aの回転!
kllbにガイゲル捩り振動計Cを取付け、その出ノj
にもとづいきインクペンでチャート紙(またはフィルム
)dに振動波形を描き振動イC析は手動の調和解析器e
にょり行なうようにしたものである。また、ガイゲル捩
り振動計測装置の作動原理を第5図に示す。
[Prior Art] As a device for measuring torsional vibration of a rotating shaft in a rotating machine, there is a conventional mechanical device such as a Geigel torsional vibration measuring device. J shown in Figure 4: Rotation of sea urchin one rotation machine a!
Attach Geigel torsional vibration meter C to kllb and check its output j
Based on this, draw the vibration waveform on chart paper (or film) with an ink pen and use a manual harmonic analyzer to analyze the vibration.
This is what I tried to do. Furthermore, the operating principle of the Geigel torsional vibration measuring device is shown in FIG.

第5図において、ff車fはベルトjにより計測しよう
とする軸の先端に取付けられた滑車kにより駆動する。
In FIG. 5, the ff wheel f is driven by a pulley k attached to the tip of the shaft to be measured by a belt j.

滑車fの内部には、軸iと同芯の位置に回転可能に納車
qが取イ」けられている。滑車fと納車qは渦巻バネk
にて連結されている。計測軸の滑車kが捩り撮動を起こ
しながら回転するとき、滑車fも同じ回転運動をする。
A carriage q is rotatably arranged inside the pulley f at a position coaxial with the axis i. Pulley f and delivery q are spiral springs k
are connected. When the pulley k on the measurement axis rotates while causing torsional imaging, the pulley f also performs the same rotational movement.

ところが納車qは大きな貫性モーメントを持っており、
ざらに渦巻バネにで連結されているため納車qは等速回
転する。滑車fと納車qの回転角停を検出すれば捩り振
動変位が求められる。
However, delivery q has a large penetrating moment,
Since it is connected to a spiral spring, delivery q rotates at a constant speed. By detecting the rotational angle stop of the pulley f and the delivery vehicle q, the torsional vibration displacement can be determined.

[発明が解決しようとする問題点] しかしながら、上記した従来例では滑車をベル1〜で駆
動するため、捩り振動の振幅値がベルトの張り方や外気
の湿度により変化してしまったり1回転角差検出用のリ
ンク機構の使用頻度に従って摩耗してしまったりしてl
f’i¥度の低下をまねくという問題があった。
[Problems to be Solved by the Invention] However, in the conventional example described above, since the pulley is driven by bell 1, the amplitude value of the torsional vibration changes depending on the tension of the belt and the humidity of the outside air, and the angle of one rotation changes. The link mechanism for difference detection may become worn out depending on the frequency of use.
There was a problem in that it caused a decrease in f'i¥ degree.

また、可動部の質量が大きいため、応答撮動数が低く、
高精度が19にくいという問題もある。
In addition, because the mass of the moving part is large, the number of response shots is low.
There is also the problem that high accuracy is difficult to achieve.

さらに、計測装置を固定する固定台か必要で。Additionally, a fixed stand is required to secure the measuring device.

滑車の芯出しが必要であり、多くの人力を費ず割に解析
の精度が悪く、また計測装置の使用できる範囲も限定さ
れるというfQJ題があった。
The fQJ problem was that the centering of the pulley was required, the accuracy of the analysis was poor despite the large amount of human effort, and the usable range of the measuring device was limited.

[発明の目的] 本発明はかかる実情に鑑み、捩り振動の検出器を被訓測
軸の軸端に押しあてるだけで振動を検出できるように、
光ファイバーと受光素子を用い検出器をコンパクトにし
、検出信号をデジタル処理することで捩り振動を調和解
析できる処理部を備えた高精度かつ連続的な計測が可能
な捩り振動計測装置を提供することを目的とする。
[Object of the Invention] In view of the above-mentioned circumstances, the present invention provides a torsional vibration detector that can detect vibration simply by pressing it against the shaft end of the shaft to be measured.
The present invention aims to provide a torsional vibration measuring device capable of highly accurate and continuous measurement, which is equipped with a processing section that can perform harmonic analysis of torsional vibration by making the detector compact using optical fibers and light-receiving elements, and by digitally processing the detection signal. purpose.

[問題の解決するための手段] かかる目的を達成するために2本発明は、検出器本体ケ
ースと、鍔を有する回転体状のローター軸と、該ロータ
ー軸の一端に同軸上に設けた接触子と、該ローター軸の
他端と該ローター軸の鍔の先端との間に等間隔に周設し
た複数の光フッ・イバーと、該光ファイバーを囲繞した
回転体状の軸カバーと、前記検出器本体ケース内に前記
ローター軸と前記光ファイバーと前記軸カバーを回転体
状に一体化し回転可能に支承し。
[Means for Solving the Problems] In order to achieve the above object, two aspects of the present invention include: a detector body case; a rotor shaft in the form of a rotating body having a flange; and a contact coaxially provided at one end of the rotor shaft. a plurality of optical fibers disposed at equal intervals between the other end of the rotor shaft and the tip of the collar of the rotor shaft; a shaft cover in the form of a rotating body surrounding the optical fibers; The rotor shaft, the optical fiber, and the shaft cover are integrated into a rotating body and rotatably supported in the device main body case.

前記ローター軸の他端と対向して設けた光源ランプと、
該光源ランプと前記ローター軸の他端との間に設【プた
集光レンズと、前記ローター軸の鍔の先端に対向して検
出器本体内に設けた受光素子と、処理回路と記録回路と
操作電源とを有する装置本体と、前記受光素子と該処理
回路を信号伝達手段にて接続し、前記光源ランプと操作
電源を導通手段にて接続してなる装置を備えたものであ
る。
a light source lamp provided opposite the other end of the rotor shaft;
a condenser lens provided between the light source lamp and the other end of the rotor shaft; a light receiving element provided within the detector body facing the tip of the flange of the rotor shaft; a processing circuit; and a recording circuit. The light receiving element and the processing circuit are connected to each other by a signal transmission means, and the light source lamp and the operation power source are connected to each other by a conductive means.

[実施例] 以下本発明を添付図に基づき詳細に説明する。[Example] The present invention will be explained in detail below based on the accompanying drawings.

第1図および第2図は本発明の一実施例を示すものであ
る。第1図は本発明の構成を示す説明図、第2図は第1
図におけるA−A断面図を示す。また、第3図A、第3
図B、第3図Cおよび第3図りは本装置の作動原理の説
明図を示す。
1 and 2 show one embodiment of the present invention. FIG. 1 is an explanatory diagram showing the configuration of the present invention, and FIG.
A sectional view taken along line A-A in the figure is shown. Also, Figure 3A,
Figure B, Figure 3C and Figure 3 show explanatory diagrams of the operating principle of this device.

第1図において、鍔を有するローター軸2の一端には摩
擦係数の大ぎい材料1例えば硬質ゴム等で作られた接触
子1が該ローター軸2と同軸上に取付けられている。該
ローター軸2の他端と該ローター軸2の鍔の先端との間
の該ローター軸2の表面には、光ファイバーが通る溝が
形成されている。光ファイバー3は第2図に示すように
該ローター軸2の鍔の先端で、角度θ毎に任意の数、0
本が等間隔に埋め込まれている。光ファイバー3の先端
は該ローター軸2の鍔の先端外周方向を向き、該ロータ
ー軸2の他端は光ファイバー3の先端が該ローター軸2
の軸方向に向いて配設されている。前記光フフイバー3
を等間隔に埋め込んだ前記ローター軸2に、該光ファイ
バー3と該ローター軸2とが一体となって回転運動する
際の固定おにび保護のために軸カバー4と該光ファイバ
ー3の外側に囲繞し、ざらに、前記ローター軸2の他端
に集光レンズ19で固定されて1回転体状の一体となっ
ている。該ローター軸2を中心に回転体状に一体化した
ローター構成体は前記接触子1側および前記軸カバー4
側で、それぞれ軸受7゜8にて回転可能に支承され、前
記本体ケース5および前記前部カバー6に軸支され該前
部カバー6と前記本体ケース5はネジ部20で固定され
ている。また、前記本体ケース5と前記前部カバー6と
は前記集光レンズ19にて固定されている。以上のよう
に構成されるため前記ローター軸2.前記光ファイバー
3.および前記軸カバー4は一体となって前記本体ケー
ス5の前記ローター軸2の鍔の先端の該光ファイバー3
の先端と対抗する位置に受光素子9が取付けられ、また
、前記本体ケース5のローター軸2の中心線上に設けた
前記集光レンズ19と対抗する位置に光源ランプ10が
設けられている。さらに、前記本体ケース5の後部は後
部カバー11がとりつけビスにて固定されている。前記
本体ケース5内に設けられた該受光素子9はパルス検出
ケーブル13により装置本体18の処理回路16に接続
され、該光源ランプ10は電源ケーブル14により該装
置本体18の操作電源15に接続されている。該処理回
路16はさらに記録回路17に接続されており、これら
該処理回路16.該記録回路17.該操作電源15は前
記装置本体18として一体に構成されている。以上のよ
うに構成された捩り振動計測装置は、前記接触子1が被
計測軸の軸端に押しつけられ回転すると、前記ローター
軸2も被a1測軸と同じ回転運動をする。この時前記光
源ランプ10を投入し1発晃させると、光は前記集光レ
ンズ19を通り前記光ファイバー3の前記ローター軸2
の鍔の先端に達する。一方前記ローター軸2が回転し、
前記ローター軸2の先端で角度O毎に任意の数、n本が
等間隔に埋め込まれているので、軸が1回転すると、n
個のパルス信号を発生する。第3図Aでは被計測軸に捩
り振動が起こらず1等速回転している状態で、前記光フ
ァイバー3が等間隔でn本取付けであるため、軸1回転
の時間をT秒とすれば、t□=T/n、すなわち、光生
ずるパルス間隔はt。
In FIG. 1, a contactor 1 made of a material having a high coefficient of friction, such as hard rubber, is attached coaxially to one end of a rotor shaft 2 having a flange. A groove through which an optical fiber passes is formed on the surface of the rotor shaft 2 between the other end of the rotor shaft 2 and the tip of the flange of the rotor shaft 2. As shown in FIG. 2, the optical fiber 3 is connected to the tip of the flange of the rotor shaft 2 by an arbitrary number of fibers at each angle θ.
Books are embedded at equal intervals. The tip of the optical fiber 3 faces toward the outer circumferential direction of the tip of the flange of the rotor shaft 2, and the other end of the rotor shaft 2
It is arranged facing in the axial direction. Said optical fiber 3
are embedded in the rotor shaft 2 at equal intervals, and a shaft cover 4 and a shaft cover 4 surrounding the outside of the optical fiber 3 are used to protect the optical fiber 3 and the rotor shaft 2 from rotating together. Roughly speaking, it is fixed to the other end of the rotor shaft 2 by a condensing lens 19, forming an integral body of revolution. The rotor structure, which is integrated into a rotating body around the rotor shaft 2, is connected to the contactor 1 side and the shaft cover 4.
The main body case 5 and the front cover 6 are rotatably supported on the sides by bearings 7.degree. Further, the main body case 5 and the front cover 6 are fixed by the condenser lens 19. Because of the above configuration, the rotor shaft 2. Said optical fiber3. and the shaft cover 4 is integrated with the optical fiber 3 at the tip of the flange of the rotor shaft 2 of the main body case 5.
A light receiving element 9 is mounted at a position opposite to the tip of the main body case 5, and a light source lamp 10 is provided at a position opposite to the condenser lens 19 provided on the center line of the rotor shaft 2 of the main body case 5. Furthermore, a rear cover 11 is fixed to the rear part of the main body case 5 with mounting screws. The light receiving element 9 provided in the main body case 5 is connected to the processing circuit 16 of the apparatus main body 18 via a pulse detection cable 13, and the light source lamp 10 is connected to the operating power source 15 of the apparatus main body 18 via a power cable 14. ing. The processing circuit 16 is further connected to a recording circuit 17, and these processing circuits 16. The recording circuit 17. The operating power source 15 is integrally constructed as the device main body 18. In the torsional vibration measuring device configured as described above, when the contact 1 is pressed against the shaft end of the shaft to be measured and rotates, the rotor shaft 2 also makes the same rotational movement as the shaft to be measured a1. At this time, when the light source lamp 10 is turned on and lit once, the light passes through the condenser lens 19 and hits the rotor shaft 2 of the optical fiber 3.
reaches the tip of the tsuba. Meanwhile, the rotor shaft 2 rotates,
An arbitrary number of n pieces are embedded at equal intervals at each angle O at the tip of the rotor shaft 2, so when the shaft rotates once, n pieces are embedded at equal intervals.
generates pulse signals. In FIG. 3A, the shaft to be measured is rotating at a constant speed without torsional vibration, and since n optical fibers 3 are installed at equal intervals, if the time for one rotation of the shaft is T seconds, then t□=T/n, that is, the interval between pulses of light generation is t.

秒であり一定である。ところが第3図Bのにうに被hl
ill軸に捩り振動が発生し、不等速の回転をすると発
生パルスの間隔が乱れる。
Seconds and constant. However, the sea urchin covered in Figure 3B
Torsional vibration occurs in the ill shaft, and when it rotates at an inconstant speed, the intervals of the generated pulses become disordered.

これらのパルス間隔をt−、t−2,・・・・・・・・
・・・・1−、として8°l測し。
These pulse intervals are t-, t-2,...
...1-, 8°l was measured.

さらに各パルス間隔の合計 T−。Furthermore, the sum of each pulse interval T-.

すなわら t−1+t −2+”・・”t−n−Σt−o=T−と
なる。
That is, t-1+t-2+"..."t-n-Σt-o=T-.

捩り(辰動の場合、T′+=王となるので基QCパルス
間隔し0と、h゛1測されたパルス間隔1−。
In the case of torsion (T'+=King), the base QC pulse interval is 0 and the measured pulse interval is 1-.

との差を△とする。Let the difference between the two be △.

ずなわら △ t  1  =t  o  −t−i   、  
 Δ 12  =10 −1 − 2  。
Zunawara △ t 1 = t o −t−i,
Δ 12 =10 −1 − 2 .

°°°°°°°°°△tn=to−t−nである。°°°°°°°°°Δtn=to-tn.

これらの時間差Δt、は捩り振動発生のためで、軸が等
速回転するならΔt、=Oである。
The time difference Δt between these is due to the occurrence of torsional vibration, and if the shaft rotates at a constant speed, Δt=O.

すなわら時間差Δtnは捩り振動の現象波形を表わず。In other words, the time difference Δtn does not represent the phenomenon waveform of torsional vibration.

第3図Cは、これを模式化し表わしたものである。この
現象波形を時間差Δtnと捩り振動パルス(角速度ω)
とで調和解析すると、第3図りの調和解析結果が得られ
る。
FIG. 3C schematically represents this. This phenomenon waveform is expressed as the time difference Δtn and the torsional vibration pulse (angular velocity ω).
When performing harmonic analysis with , the harmonic analysis result of the third diagram is obtained.

以上の演算を前記処理回路16にて実行し。The above calculations are executed by the processing circuit 16.

結果を前記記録回路17にて記録または記憶させること
により、捩り振動計測結果を得ることができる。 なお
、前記軸受7,8はベアリング軸受、ローラー軸受等前
記ローター軸2を中心に回転体状に一体化したローター
構成体の荷mを支え1円滑な回転が得られる軸受構造で
あればよく、また、前記操作電源15は系統電源や蓄電
池等より電源の供給を受けてもにり、ざらに兼用のもの
でもよい。
By recording or storing the results in the recording circuit 17, torsional vibration measurement results can be obtained. Note that the bearings 7 and 8 may be of any bearing structure, such as a bearing bearing or a roller bearing, which can support the load m of the rotor component integrated into a rotating body around the rotor shaft 2 and obtain smooth rotation. Further, the operating power source 15 may be supplied with power from a system power source, a storage battery, or the like, or may be used for multiple purposes.

[発明の効果] 以上述べた如く1本発明の捩り]騒動計測装置によれば
、下記のごとき種々の浸れた効果を発揮する。
[Effects of the Invention] As described above, the torsion commotion measuring device of the present invention exhibits various effects as described below.

(1)、光ファイバーと受光素子を用いて検出器をコン
パクトにし1機器装置(処理部)を分離し1作業性が良
くなる。
(1) The detector is made compact using an optical fiber and a light-receiving element, and one device (processing section) is separated, which improves work efficiency.

(2)、検出器先端を被計測軸の軸端に押しつけるだけ
で計測ができ、計測装置を固定する固定台が不要となり
、計測費用の低減ができる。
(2) Measurement can be performed simply by pressing the tip of the detector against the shaft end of the shaft to be measured, eliminating the need for a fixing stand for fixing the measuring device, and reducing measurement costs.

(3)、光ファイバーと受光素子でパルスを発生させる
ので2回転部の慣性モーメントが小さく。
(3) Pulses are generated using the optical fiber and light receiving element, so the moment of inertia of the two rotating parts is small.

回転変動への追従性がよく、精度の向上が得られる。Good ability to follow rotational fluctuations and improved accuracy.

(4)1回転角変動の計測は非接触でおり2機械的な経
年変化おにび外気温度の変化を受けず。
(4) 1. Measurement of rotation angle fluctuations is non-contact, and 2. Mechanical aging and changes in outside temperature are not affected.

連続的な計測と、精度の維持が容易である。Easy to measure continuously and maintain accuracy.

(5)、パルス信号をデジタル処理するため、現象波形
の記録のみならず、調和解析ができ、同時に記録ができ
る。
(5) Since the pulse signal is digitally processed, it is possible to not only record the phenomenon waveform, but also perform harmonic analysis and record it at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構造図、第2図は第1図の
A−A断面図、第3図A、第3図B。 第3図Cおよび第3図りは本発明の作動原理の説明図、
第4図は従来の捩り(騒動計測説明図。 第5図は従来の作動原理説明図を示す。 図中、1・・・接触子、2・・・ローター軸、3・・・
光ファイバー、4・・・軸カバー、5・・・本体ケース
、6・・・全部カバー、7,8・・・軸受、9・・・受
光素子。 10・・・光源ランプ、11・・・後部カバー、]2・
・・取(=Jビス、13・・・パルス検出ケーブル、1
4・・・電源ケーブル、15・・・操作電源、16・・
・処理回路、17・・・記録回路、18・・・装置本体
、19・・・集光レンズ、20・・・ネジ部
FIG. 1 is a structural diagram of an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3A, and FIG. 3B. FIG. 3C and the third diagram are explanatory diagrams of the operating principle of the present invention,
Fig. 4 is an explanatory diagram of conventional torsion (commotion measurement). Fig. 5 is an explanatory diagram of the conventional operating principle. In the figure, 1...contactor, 2...rotor shaft, 3...
Optical fiber, 4... Shaft cover, 5... Main body case, 6... All cover, 7, 8... Bearing, 9... Light receiving element. 10...Light source lamp, 11...Rear cover, ]2.
...Take (=J screw, 13...Pulse detection cable, 1
4...Power cable, 15...Operating power supply, 16...
・Processing circuit, 17... Recording circuit, 18... Device main body, 19... Condensing lens, 20... Screw part

Claims (1)

【特許請求の範囲】[Claims] 検出器本体ケースと、鍔を有する回転体状のローター軸
と、該ローター軸の一端に同軸上に設けた接触子と、該
ローター軸の他端と該ローター軸の鍔の先端との間に等
間隔に周設した複数の光ファイバーと、該光ファイバー
を囲繞した回転体状の軸カバーと、前記検出器本体ケー
ス内に前記ローター軸と前記光ファイバーと前記軸カバ
ーを回転体状に一体化し回転可能に支承し、前記ロータ
ー軸の他端と対向して設けた光源ランプと、該光源ラン
プと前記ローター軸の他端との間に設けた集光レンズと
、前記ローター軸の鍔の先端に対向して検出器本体内に
設けた受光素子と、処理回路と記録回路と操作電源とを
有する装置本体と、前記受光素子と該処理回路を信号伝
達手段にて接続し、前記光源ランプと操作電源を導通手
段にて接続してなることを特徴とする捩り振動計測装置
Between the detector main body case, a rotating body-shaped rotor shaft having a flange, a contact provided coaxially on one end of the rotor shaft, and the other end of the rotor shaft and the tip of the flange of the rotor shaft. A plurality of optical fibers circumferentially arranged at equal intervals, a shaft cover in the shape of a rotating body surrounding the optical fibers, and the rotor shaft, the optical fibers, and the shaft cover are integrated in the shape of a rotating body in the detector main body case, and are rotatable. a light source lamp supported by the rotor shaft and provided opposite to the other end of the rotor shaft; a condenser lens provided between the light source lamp and the other end of the rotor shaft; and a condenser lens provided opposite to the tip of the flange of the rotor shaft. A device main body has a light receiving element provided in the detector main body, a processing circuit, a recording circuit, and an operating power source, and the light receiving element and the processing circuit are connected by a signal transmission means, and the light source lamp and the operating power source are connected to each other by a signal transmission means. A torsional vibration measuring device characterized by being connected by a conductive means.
JP10766286A 1986-05-13 1986-05-13 Torsional oscillation measuring instrument Pending JPS62265532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10766286A JPS62265532A (en) 1986-05-13 1986-05-13 Torsional oscillation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10766286A JPS62265532A (en) 1986-05-13 1986-05-13 Torsional oscillation measuring instrument

Publications (1)

Publication Number Publication Date
JPS62265532A true JPS62265532A (en) 1987-11-18

Family

ID=14464834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10766286A Pending JPS62265532A (en) 1986-05-13 1986-05-13 Torsional oscillation measuring instrument

Country Status (1)

Country Link
JP (1) JPS62265532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203814A (en) * 2018-05-24 2019-11-28 三菱日立パワーシステムズ株式会社 Revolving shaft system torsional vibration measuring device and torsional vibration measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203814A (en) * 2018-05-24 2019-11-28 三菱日立パワーシステムズ株式会社 Revolving shaft system torsional vibration measuring device and torsional vibration measuring method

Similar Documents

Publication Publication Date Title
CN102607751B (en) Output torque measurement device of turboshaft engine
JP5802794B2 (en) Bearing friction measurement method
JP2000509502A (en) Rotational viscometer
US4995257A (en) Monitor for shaft vibration in an operating turbine
JPS62265532A (en) Torsional oscillation measuring instrument
FR2404223A1 (en) TWO AXIS ANGULAR SPEED SENSOR
US4235092A (en) Low friction bearing running torque measuring apparatus
US2579349A (en) Speed indicating device
ATE42827T1 (en) ANGLE MEASUREMENT DEVICE.
US6563109B1 (en) Apparatus for optoelectronically determining power using a light source being of annular design
US4240296A (en) Measurement of torsional acceleration of a rotating body
GB2151783A (en) A gyroscope
JPS6123490B2 (en)
JP2820697B2 (en) Non-repetitive rotation accuracy measurement method for bearings
KR100203178B1 (en) Torsional vibration measuring device of crank shaft
RU206481U1 (en) A device for measuring vibration accelerations and vibration displacements of moving elements of machines and mechanisms
SU1439440A1 (en) Method of checking variation in stiffness of ball bearings
SU720335A1 (en) Apparatus for measuring vibrations of rolling-contact bearings
JPS62110129A (en) Method for measuring unbalance of high speed rotary body
SU1448231A1 (en) Method of inspecting ball-bearings in electric motor
SU645084A1 (en) Shaft rotational speed measuring device
JPH042467A (en) Rotation number detecting device of work in grinder and grinder
JPH08152312A (en) Attack angle and lateral slip angle meter
SU783646A1 (en) Machine for friction and wear testing of polymeric materials
JPH0321860B2 (en)