JPS62265078A - Hydraulic controller for power steering - Google Patents

Hydraulic controller for power steering

Info

Publication number
JPS62265078A
JPS62265078A JP10929386A JP10929386A JPS62265078A JP S62265078 A JPS62265078 A JP S62265078A JP 10929386 A JP10929386 A JP 10929386A JP 10929386 A JP10929386 A JP 10929386A JP S62265078 A JPS62265078 A JP S62265078A
Authority
JP
Japan
Prior art keywords
hydraulic
throttle
throttle valve
steering
throttle valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10929386A
Other languages
Japanese (ja)
Other versions
JPH0764263B2 (en
Inventor
Ko Uchida
内田 耕
Takashi Kurihara
隆 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10929386A priority Critical patent/JPH0764263B2/en
Priority to US07/044,065 priority patent/US4860635A/en
Priority to EP19870106703 priority patent/EP0245794B1/en
Priority to DE8787106703T priority patent/DE3777684D1/en
Publication of JPS62265078A publication Critical patent/JPS62265078A/en
Publication of JPH0764263B2 publication Critical patent/JPH0764263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a controller from enlarging in size as well as to aim at reduction in the cost of production, by adding each pair of throttle valves of each of third and fourth systems varying to steering torque and car speed, to a hydraulic circuit where four throttle valves of both first and second systems varying to the steering torque are installed for each two. CONSTITUTION:This controller is constituted of additionally adding throttle valves 3R and 3L of a third system and throttle valves 4R and 4L of a fourth system varying to steering torque and car speed each, to a hydraulic circuit where throttle valves 1R and 1L of a first system and throttle valves 2R and 2L varying to the steering torque. Therefore, if the minimum oil quantity required at the time of rest swing is secured, only an area of each throttle valve is controlled according to the car speed during travel so that a shortage of oil quantity at the time of sudden steering at high speed is in no case entailed. Accordingly, a hydraulic pump 10 can be held down to the irreducible minimum quantity of capacity, whereby a thermal countermeasure for the whole controller with the capacity increase is reduced, preventing it from enlarging in size, thus low-unit cost of production is well promotable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パワーステアリングの油圧制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydraulic control device for power steering.

(従来の技術) 従来、自動車等車両のパワーステアリングの油圧制御装
置としては、例えば社団法人自動車技術全編[最近のシ
ャシ技術と車両運動性能に関するシンポジウム」 (昭
和59年6月29日)において、「パワーステアリング
のエレクトロニクス制御」として発表された流量制御方
式(いすず自動車装ピアソツァに採用)および油圧反力
制御方式三菱自動車製ギヤランに採用)によるものが知
られている。前記両方式ともに、据切り時の操舵力は軽
く、高速走行時は適度な操舵反力を持たせて安定した走
行を可能にし、一義的な絞り特性しか得られない一般型
式のパワーステアリングの油圧制御装置より優れた操舵
特性が得られる。
(Prior Art) Conventionally, as a hydraulic control device for power steering of vehicles such as automobiles, for example, in the Society of Automotive Technology [Symposium on Recent Chassis Technology and Vehicle Dynamic Performance] (June 29, 1980), The flow rate control method announced as "electronic control of power steering" (used in Isuzu Automobile's Piasozza) and the hydraulic reaction force control method (used in Mitsubishi Motors' gear run) are known. Both of the above-mentioned types have a light steering force when stationary, a moderate steering reaction force when running at high speeds, and enable stable running, and the hydraulic pressure of the general type power steering that provides only unique throttle characteristics. Better steering characteristics than the control device can be obtained.

(発明が解決しようとする問題点) しかしながら、上記流量制御方式のように、車速に対応
した所定の比率で作動油流量の増減を制御するものにお
いては、高速走行中の急転舵時に必要な油量が確保でき
るよう設定すると、これに伴って据切り時の油量も必要
以上に過分に供給されることになり、油圧ポンプの吐出
容量を必要以上に大きくせざるを得ない。すなわち、油
圧制御バルブに導入される作動油量の多少で操舵力を軽
くしたりあるいは重くするに際し、例えば高速走行中の
操舵力が余り軽過ぎないように適度な重さとするために
油量を少なくすると、急転舵時に油圧制御バルブに供給
される油量の絶対量が不足し、ステアリングホイール転
舵時の操舵力が非常に重くなって安全走行性の面で好ま
しくない。この不具合を解消するために、急転舵時に必
要とする油量を確保すると、比例制御であるために据切
り時の油量も不本意に過分に増大してしまう。その結果
上記したように油圧ポンプの吐出容量が大きくなって、
油圧制御装置全体の発熱量増加に伴う過分な熱対策の必
要性が生じて、製造コスト等の高騰を招来するという問
題点があった。
(Problem to be Solved by the Invention) However, in a system that controls the increase/decrease of the hydraulic oil flow rate at a predetermined ratio corresponding to the vehicle speed, such as the flow rate control method described above, If the setting is made so that a sufficient amount of oil can be secured, an excessive amount of oil will be supplied at the time of stationary shutdown, and the discharge capacity of the hydraulic pump will have to be made larger than necessary. In other words, when reducing or increasing the steering force by changing the amount of hydraulic oil introduced into the hydraulic control valve, for example, the amount of oil is adjusted to make the steering force at an appropriate level so that the steering force during high-speed driving is not too light. If the amount is decreased, the absolute amount of oil supplied to the hydraulic control valve at the time of sudden steering becomes insufficient, and the steering force at the time of turning the steering wheel becomes very heavy, which is not preferable in terms of safe driving. In order to solve this problem, if the amount of oil required at the time of sudden steering is ensured, the amount of oil at the time of stationary steering will also increase undesirably and excessively due to proportional control. As a result, as mentioned above, the discharge capacity of the hydraulic pump increases,
There is a problem in that an excessive heat countermeasure is required due to an increase in the amount of heat generated by the entire hydraulic control device, leading to a rise in manufacturing costs and the like.

また、上記油圧反力制御方式によるパワーステアリング
の油圧制御装置においては、油圧反力を発生させるため
に、反力室および反力ビストンに相当する部品、さらに
油圧の切換えのために作動油を還流させる油圧切換バル
ブなどを油圧制御バルブの他に必要とする。その結果、
構造全体や配管系が大きくかつ複雑化することから、大
きな組付スペースを必要としかつ油圧制御装置全体の高
騰を招来するという問題点があった。
In addition, in the power steering hydraulic control device using the above-mentioned hydraulic reaction force control method, in order to generate hydraulic reaction force, parts corresponding to the reaction force chamber and reaction force piston, and hydraulic oil are recirculated for switching the hydraulic pressure. In addition to the hydraulic control valve, a hydraulic switching valve and the like are required. the result,
Since the entire structure and piping system are large and complicated, there are problems in that a large assembly space is required and the price of the entire hydraulic control device increases.

本発明は、このような従来のパワーステアリングの油圧
制御装置の問題点を解決すべくなされたものであり、据
切り時の操舵力は軽く、走行中は低中速度から高速度領
域までの車速に対応して好適な操舵力が得られ、しかも
従来の流量制御方式のように油圧ポンプの吐出容量を必
要以上に大きくすることのない、またそれに伴う過分な
熱対策の必要もない、加えて油圧反力制御方式のように
複雑な構造を必要としない、簡素がっ廉価なパワーステ
アリングの油圧制御装置の提供を目的としている。
The present invention was made in order to solve the problems of the conventional power steering hydraulic control device, and the steering force is light when stationary, and the vehicle speed is controlled from low to medium speeds to high speeds while driving. It is possible to obtain a suitable steering force corresponding to the current flow rate, and unlike conventional flow rate control systems, the discharge capacity of the hydraulic pump is not increased more than necessary, and there is no need for excessive heat countermeasures. The purpose of this invention is to provide a simple and inexpensive power steering hydraulic control device that does not require a complicated structure unlike hydraulic reaction force control systems.

(問題点を解決するだめの手段) 上記問題点を解決して目的を達成するために、本発明に
よるパワーステアリングの油圧制御装置は、油圧源とリ
ザーバタンクとに連通ずる第1および第2の油路が、パ
ワーシリンダ内の左右の油圧室にそれぞれ連通し、前記
油圧源からの油圧がステアリングホイールの転舵操作に
対応して前記パワーシリンダ内の左右の油圧室に圧力差
をもって作用するパワーステアリングの油圧制御装置で
あって、前記油圧室の上流側の前記第1および第2油路
に設けられかつ操舵トルクに対応して絞り面積が変化す
る一対の第1系の絞り弁と、前記油圧室の下流側の前記
第1および第2油路に設けられかつ前記操舵トルクに対
応して前記第1系の絞り弁に連動して絞り断面積が変化
する一対の第2系の絞り弁とを設けるとともに、前記操
舵トルクに対応して前記第1系および第2系の絞り弁に
連動して絞り面積が変化する第3系の絞り弁と、前記第
3系の絞り弁に並列に設けられがっ車速度に対応して絞
り面積が変化する第4系の絞り弁とが、前記第1および
第2油路の前記油圧室に対する上流側または下流側の少
なくとも一方側に一対に設けられることを備えた構成と
なっている。
(Means for Solving the Problems) In order to solve the above problems and achieve the purpose, a power steering hydraulic control device according to the present invention provides first and second hydraulic control devices communicating with a hydraulic power source and a reservoir tank. An oil passage communicates with left and right hydraulic chambers in the power cylinder, respectively, and hydraulic pressure from the hydraulic source acts on the left and right hydraulic chambers in the power cylinder with a pressure difference in response to a steering operation of a steering wheel. The steering hydraulic control device includes: a pair of first system throttle valves that are provided in the first and second oil passages on the upstream side of the hydraulic chamber and whose throttle areas change in response to steering torque; a pair of second-system throttle valves that are provided in the first and second oil passages on the downstream side of the hydraulic chamber and whose throttle cross-sectional area changes in conjunction with the first-system throttle valve in response to the steering torque; and a third system throttle valve whose throttle area changes in conjunction with the first system and second system throttle valves in response to the steering torque, and a third system throttle valve in parallel with the third system throttle valve. A fourth system of throttle valves whose throttle area changes in accordance with the speed of the drag wheel are provided in a pair on at least one side of the first and second oil passages on the upstream side or the downstream side with respect to the hydraulic chamber. The configuration is such that it can be used.

(実施例) 以下、本発明によるパワーステアリングの油圧制御装置
の一実施例について図面を参照しつつ説明する。
(Embodiment) Hereinafter, an embodiment of a power steering hydraulic control device according to the present invention will be described with reference to the drawings.

第1図において、10は油圧源の油圧ポンプ、11はリ
ザーバタンクである。油圧ポンプ10とリザーバタンク
11の間の油路Cはその途中で第1の油路(1)および
第2の油路(II)に分岐しテ、ヒストン13で隔成さ
れたパワーシリンダ12内の左右の油圧室り、Hに連通
している。ステアリングホイール14の右転舵または左
転舵操作に対応して、油圧ポンプ10からの油圧が第1
および第2油路(I)、(n)を介して左右の油圧室R
,Lに圧力差をもって作用するようになっている。第1
および第2油路(I)、(II)においては、左右の油
圧室り、Rのそれぞれ上流側に可変オリフィスよりなる
第1系の絞り弁1R1ILが、下流側に同じく可変オリ
フィスよりなる第2系の絞り弁2R,2Lが設けられて
いる。また、第2系の絞り弁2R12Lのそれぞれ下流
側においては、可変オリフィスよりなる第3系の絞り弁
3R13Lと第4系の絞り弁4R14Lがそれぞれ並列
一対に設けられている。
In FIG. 1, 10 is a hydraulic pump as a hydraulic source, and 11 is a reservoir tank. The oil passage C between the hydraulic pump 10 and the reservoir tank 11 branches into a first oil passage (1) and a second oil passage (II) on the way, and the oil passage C branches into a first oil passage (1) and a second oil passage (II). The left and right hydraulic chambers are connected to H. In response to steering operation of the steering wheel 14 to the right or left, the hydraulic pressure from the hydraulic pump 10 is
and the left and right hydraulic chambers R via the second oil passages (I) and (n).
, L with a pressure difference. 1st
In the second oil passages (I) and (II), there is a first system throttle valve 1R1IL having a variable orifice on the upstream side of the left and right hydraulic chambers R, and a second throttle valve 1R1IL having a variable orifice on the downstream side. System throttle valves 2R and 2L are provided. Furthermore, on the downstream side of each of the second system throttle valves 2R12L, a third system throttle valve 3R13L and a fourth system throttle valve 4R14L each having a variable orifice are provided as a pair in parallel.

また、上記第1系〜第3系の各絞り弁においては、例え
ば一方向の操舵によって第1系の絞り弁IRと第2系の
絞り弁2Lと第3系の絞り弁3Lの3つが連動して後述
する操舵トルクTに対応してその絞り面積が縮小方向に
変化するようになっている。すなわち、ステアリングホ
イール14の転舵操作によって発注する図外のトーショ
ンバー等の捩り弾性力による操舵トルクTに基づいて、
上記の各絞り弁lR12L、3Lの絞り面積A■〜A■
が変化するようになっている。これに対して、車速Vに
基づく制御ユニットUからの作動信号Ovが第4系の絞
り弁4Lに入力されるようになっている。すなわら、車
速センサ16によって検出された車速Vの検出信号1v
が制御ユニットUに入力され、この検出信号1■に基づ
いて制御ユニットUで制御された作動信号Ovが第4系
の絞り弁4Lに入力されると、絞り面積A■が上記3つ
の第1系〜第3糸の各絞り弁とは関連せずに単独で閉じ
切る方向に縮小変化するようになっている。なお逆方向
への転舵によっては、第1系の絞り弁ILと第2系の絞
り弁2Rと第3系の絞り弁3Rと第4系の絞り弁4Rが
、上記と同様に作動する。第2図ta)〜(clは第1
糸〜第3系の各絞り弁の絞り面積A■〜A■と操舵トル
クTとの相関を示す特性線図、第2図+diは第4系の
絞り弁4R14Lの絞り面積A■と操舵トルクTとの相
関を示す特性線図である。第2図(a)〜(C)に示す
ように、第1系の絞り弁IR,LLおよび第3系の絞り
弁3R13Lはそれぞれ第2系の絞り弁2R,2Lより
も小さな値の操舵トルクTによって閉じ切られる特性を
有している。
In addition, in each of the above-mentioned first to third system throttle valves, the first system throttle valve IR, the second system throttle valve 2L, and the third system throttle valve 3L are interlocked by, for example, one-way steering. The aperture area changes in the direction of reduction in response to a steering torque T, which will be described later. That is, based on the steering torque T caused by the torsional elastic force of a torsion bar (not shown), etc., which is ordered by the steering operation of the steering wheel 14,
Throttle area A■ to A■ of each of the above throttle valves lR12L and 3L
is starting to change. On the other hand, an actuation signal Ov from the control unit U based on the vehicle speed V is input to the fourth system throttle valve 4L. That is, the detection signal 1v of the vehicle speed V detected by the vehicle speed sensor 16
is input to the control unit U, and when the operating signal Ov controlled by the control unit U based on this detection signal 1■ is input to the fourth system throttle valve 4L, the orifice area A■ becomes the first of the three It is designed to reduce in the direction of closing independently without being associated with each throttle valve of the system to the third thread. Note that depending on the steering in the opposite direction, the first system throttle valve IL, the second system throttle valve 2R, the third system throttle valve 3R, and the fourth system throttle valve 4R operate in the same manner as described above. Figure 2 ta) to (cl is the first
A characteristic diagram showing the correlation between the throttle area A■ to A■ of each throttle valve of the thread ~ third system and the steering torque T, Figure 2 +di shows the throttle area A■ of the throttle valve 4R14L of the fourth system and the steering torque It is a characteristic diagram showing the correlation with T. As shown in FIGS. 2(a) to (C), the throttle valves IR and LL of the first system and the throttle valves 3R13L of the third system have steering torques smaller than those of the throttle valves 2R and 2L of the second system, respectively. It has the characteristic of being closed by T.

なお、第3系の絞り弁3Lと第4系の絞り弁4Lは第1
系の絞り弁IRの上流側(符号a位置)、または第1系
の絞り弁IRとパワーシリンダーの油圧室Rとの間(符
号す位置)、もしくは第2絞り弁2Rと油圧室Rとの間
(符号C位置)に設置してもよい。同じく、第3系の絞
り弁3Rと第4系の絞り弁4Rも図中d、e、fの何れ
の位置に設置してもよい。但し、aまたはb (dまた
はe)の各位置に設置する場合は、第1系の絞り弁IR
(LL)と第2系の絞り弁2L(2R)の油圧特性は交
互に入れ換えたものとなる。
Note that the third system throttle valve 3L and the fourth system throttle valve 4L are
Upstream of the throttle valve IR in the system (position a), or between the first system throttle valve IR and the hydraulic chamber R of the power cylinder (position position), or between the second throttle valve 2R and the hydraulic chamber R. It may be installed in between (position C). Similarly, the third system throttle valve 3R and the fourth system throttle valve 4R may be installed at any position d, e, or f in the figure. However, when installing at each position a or b (d or e), the first system throttle valve IR
(LL) and the hydraulic characteristics of the second system throttle valve 2L (2R) are alternately exchanged.

また、第3図は油圧制御バルブとして、ロータリーバル
ブ20を採用した場合の実施例であり、図中の絞り弁I
R,IL、2R,2L、3R,3L、4R,4Lは、第
1図におけるこれらと同符号の絞り弁にそれぞれ対応し
ている。なお、絞り弁4R14Lは、以下に説明する第
4図に示す第2スプールバルブ31および電磁ソレノイ
ド32と同様のバルブ構造を用いて絞り弁開度を変化さ
せている。。
Further, FIG. 3 shows an embodiment in which a rotary valve 20 is adopted as the hydraulic control valve, and the throttle valve I in the figure
R, IL, 2R, 2L, 3R, 3L, 4R, and 4L correspond to the throttle valves having the same symbols as these in FIG. 1, respectively. Note that the throttle valve 4R14L changes the opening degree of the throttle valve using the same valve structure as the second spool valve 31 and the electromagnetic solenoid 32 shown in FIG. 4, which will be described below. .

第4図は、上記ロータリーバルブ20に替えて、第1お
よび第2スプールバルブ30.31を採用した場合の実
施例である。第1および第2スプールパルプ30.31
における各絞り弁は、第3図のロータリーバルブ20の
場合に対応させて同様な符号を付して示しである。すな
わち、ステアリングホイール14の転舵操作に連動する
第1スプールバルブ30の移動によって、第1糸〜第3
糸の各絞り弁の開度が変化するようになっている。
FIG. 4 shows an embodiment in which first and second spool valves 30, 31 are used in place of the rotary valve 20. First and second spool pulp 30.31
Each throttle valve in is shown with the same reference numerals corresponding to the rotary valve 20 in FIG. That is, by moving the first spool valve 30 in conjunction with the steering operation of the steering wheel 14, the first to third threads are
The opening degree of each throttle valve of the thread is changed.

また、車速■に基づいた制御ユニットUからの作動信号
Ovの入力によって電磁ソレノイド32が作動すると、
上記第2スプールバルブ31が移動して第4系の絞り弁
4R14Lの開度が変化するようになっている。なお、
第2スプールバルブ31を移動させるアクチュエータと
して、実施例のような電磁ソレノイド32に替えてステ
ンピングモータを使用してもよい。
Further, when the electromagnetic solenoid 32 is activated by inputting the activation signal Ov from the control unit U based on the vehicle speed ■,
The second spool valve 31 moves to change the opening degree of the fourth system throttle valve 4R14L. In addition,
As an actuator for moving the second spool valve 31, a stamping motor may be used instead of the electromagnetic solenoid 32 as in the embodiment.

つぎに、作用を説明する。Next, the action will be explained.

車速Vが零もしくはこれに近い据切り時においては、ス
テアリングホイール14の一方向の転舵操作によって発
生する操舵トルクTに対応して、例えば第1系の絞り弁
IRと、第2系の絞り弁2Lと、第3系の絞り弁3Lと
が連動して絞り面積A■、A■、A■を縮小する方向に
作動する。このとき、車速センサ16によって検出され
た零もしくはこれに近い車速Vの検出信号1vが制御ユ
ニットUに送られて制御され、この制御ユニットUから
の作動信号Ovが第4系の絞り弁4Lに第4図の電磁ソ
レノイド32等を介して入力されると、これら第4系の
絞り弁4Lが縮小する方向に作動して、第2図(dlに
示すように絞り面積A■=Oの閉状態となる。一方、第
1系の絞り弁ILと、第2系の絞り弁2Rと、第3系の
絞り弁3Rのそれぞれは開状態となっている。したがっ
て、この場合、第3系の絞り弁3Lの絞り面積A■のみ
を制御の対象とすればよく、第2系から第1系へと絞り
面積を順次合算して等価のものに置き換えると、油圧回
路全体の油圧特性は第3系の絞り弁3Lと第1系の絞り
弁IRとの閉じ切り状態における操舵トルクTに支配さ
れたものとなる。すなわち、第2系の絞り弁2Lと第3
系の絞り弁3Lは、第4系の絞り弁4Lの絞り面積がA
■−0であるがために、直列に配列されて圧力損失が同
等な単一の絞り弁とみなすことができる。この場合の第
2系および第3系の各絞り弁の絞り面積A■、A■は、
第2系における圧力降下をP @ Kg/ cd、第3
系における圧力降下をP■Kg/−とすると、P■−に
−Q”/A’■ 、 P■−に−Q1/r■ 、 による関係式から求められる。但し、Kは272g(ρ
:油比重、g:Mカ加速度)で求められ、Qは通過油量
を表している。
When the vehicle speed V is zero or close to zero, the throttle valve IR of the first system and the throttle valve IR of the second system are adjusted in response to the steering torque T generated by turning the steering wheel 14 in one direction. The valve 2L and the third system throttle valve 3L operate in conjunction to reduce the throttle areas A■, A■, and A■. At this time, a detection signal 1v of a vehicle speed V of zero or close to zero detected by the vehicle speed sensor 16 is sent to the control unit U for control, and an operation signal Ov from the control unit U is sent to the fourth system throttle valve 4L. When inputted via the electromagnetic solenoid 32 etc. in Fig. 4, the throttle valves 4L of the fourth system operate in the direction of reduction, and as shown in Fig. 2 (dl), the throttle area A = O is closed. On the other hand, the throttle valve IL of the first system, the throttle valve 2R of the second system, and the throttle valve 3R of the third system are each in the open state. Therefore, in this case, the throttle valve IL of the third system It is only necessary to control the throttle area A■ of the throttle valve 3L, and if the throttle areas are sequentially added up from the second system to the first system and replaced with equivalent ones, the hydraulic characteristics of the entire hydraulic circuit become the third It is dominated by the steering torque T when the throttle valve 3L of the system and the throttle valve IR of the first system are in the fully closed state.In other words, the throttle valve 2L of the second system and the
The throttle valve 3L of the system has a throttle area of A of the fourth system throttle valve 4L.
(2) Since it is -0, it can be considered as a single throttle valve that is arranged in series and has the same pressure loss. In this case, the throttle areas A■ and A■ of each throttle valve of the second system and third system are as follows:
The pressure drop in the second system is P @ Kg/cd, the third
If the pressure drop in the system is P■Kg/-, it can be obtained from the relational expressions: -Q"/A'■ for P■-, -Q1/r■ for P■-. However, K is 272g (ρ
: Oil specific gravity, g: M (acceleration), and Q represents the amount of oil passing through.

これより、全体の圧力降下PKg、/Jは、P=P■+
P■ =に−Q   □ であり、単一の絞り弁と見なした場合の等価絞り面積A
Oは、 となって、第2図(b)、(c)を合わせた第5図のよ
うな絞り面積特性が得られる。また、上記等価絞り面積
Aoと第1系絞り弁IRの絞り面積A■との合算による
油圧回路全体から見た絞り面積特性及び油圧特性は A=AO+A■ の関係から、第6図(al、(blのようになる。すな
わち、これより明らかなように、据切り時のように車速
Vが零もしくはこれに近いときは、比較的小さな操舵ト
ルクTcで高い油圧Poが得られ、ステアリングホイー
ル14の転舵操作を軽く行うことができる。
From this, the total pressure drop PKg, /J is P=P■+
P■ = -Q □, and the equivalent throttle area A when considered as a single throttle valve
O becomes as follows, and the aperture area characteristics as shown in FIG. 5, which is a combination of FIGS. 2(b) and 2(c), are obtained. Furthermore, the aperture area characteristics and hydraulic characteristics seen from the entire hydraulic circuit, which are the sum of the above-mentioned equivalent orifice area Ao and the orifice area A of the first system throttle valve IR, are shown in Figure 6 (al, (bl).In other words, as is clear from this, when the vehicle speed V is zero or close to zero, such as when stationary, a high oil pressure Po is obtained with a relatively small steering torque Tc, and the steering wheel 14 The steering operation can be performed easily.

また、高速走行時においては、操舵トルクTに対応して
例えば第1系の絞り弁IRと、第2系の絞り弁2Lと、
第3系の絞り弁3Lとが絞り面積A■、A■、A■を縮
小する方向に作動する。また、車速センサ16で検出さ
れた車速Vが制御ユニットUで制御され、制御ユニット
Uからの作動信号Ovが第4系の絞り弁4Lに第4図の
電磁ソレノイド32等を介して入力されると、この第4
系の絞り弁4Lがこれらの絞り面積A■を拡大する方向
に作動させ、開状態で第7図のように一定値の絞り面積
A■で直線状となるように維持させている。この場合、
第2図(C)に示される第3系の絞り弁3Lの絞り面積
A■と第4系の一方の絞り弁4Lの絞り面積A■とは並
行配列であるがゆえに、これら両絞り面積A■、A■と
を合算したものを等価絞り面積Aoとすることができる
In addition, when traveling at high speed, in response to the steering torque T, for example, the first system throttle valve IR and the second system throttle valve 2L,
The third system throttle valve 3L operates in a direction to reduce the throttle areas A■, A■, and A■. Further, the vehicle speed V detected by the vehicle speed sensor 16 is controlled by the control unit U, and the actuation signal Ov from the control unit U is inputted to the fourth system throttle valve 4L via the electromagnetic solenoid 32 etc. shown in FIG. And this fourth
The throttle valve 4L of the system operates in the direction of enlarging the throttle area A2, and maintains the throttle area A2 at a constant value in a straight line in the open state as shown in FIG. in this case,
Since the throttle area A■ of the third system throttle valve 3L and the throttle area A■ of one throttle valve 4L of the fourth system shown in FIG. 2(C) are arranged in parallel, both throttle areas A The sum of (2) and (A) can be taken as the equivalent aperture area Ao.

すなわち、 Ao=A■+A■ であり、第8図のようになる。さらに、上記等価絞り面
積Aoと第2図(b)の第2系絞り弁2Lの絞り面積A
■との合算による等価絞り面積Abは第9図のようにな
り、次式で求められる。
That is, Ao=A■+A■, as shown in FIG. Furthermore, the above equivalent throttle area Ao and the throttle area A of the second system throttle valve 2L in FIG. 2(b)
The equivalent aperture area Ab obtained by adding up (2) is as shown in FIG. 9, and is determined by the following formula.

また、上記等価絞り面積Abと第1系の絞り弁IRの絞
り面積A■との合算による油圧回路全体から見た等価絞
り面積Aは、 A−Ab+A■ となり、第10図(a)、(b)に示されるように、油
圧回路全体の特性が第2系の絞り弁2Lに近似したもの
が得られ、高速走行時にはステアリングホイール14の
転舵操作が適度の反力を持って行われるようになってい
る。
In addition, the equivalent throttle area A seen from the entire hydraulic circuit, which is the sum of the above equivalent throttle area Ab and the throttle area A■ of the first system throttle valve IR, is A-Ab+A■, and as shown in Fig. 10(a), ( As shown in b), the characteristics of the entire hydraulic circuit are similar to those of the second system throttle valve 2L, and the steering operation of the steering wheel 14 is performed with an appropriate reaction force during high-speed driving. It has become.

なお、低中速度時においては、第10図(b)の車速度
が零と高速時の間の領域に対応した油圧特性が得られる
。また逆方向への転舵操作に対しては、第1系の絞り弁
IL、第2系の絞り弁2R1第3系の絞り弁3R及び第
4系の絞り弁4Rによって上記と同様の特性を得ること
ができる。
Note that at low and medium speeds, hydraulic characteristics corresponding to the region between zero and high vehicle speeds shown in FIG. 10(b) are obtained. In addition, for steering operation in the opposite direction, the same characteristics as above are achieved by the throttle valve IL of the first system, the throttle valve 2R of the second system, the throttle valve 3R of the third system, and the throttle valve 4R of the fourth system. Obtainable.

(発明の効果) 上記したことから理解されるように、本発明によるパワ
ーステアリングの油圧制御装置は、ステアリングホイー
ルの転舵操作によって油圧の圧力差が生じるパワーシリ
ンダの左右油圧室のそれぞれに連通ずる第1および第2
油路において、従来の装置のように操舵トルクに対応し
て変化する第1系〜第2系の4つの絞り弁が設けられた
油圧回路に、さらに操舵トルクに対応して変化する第3
系の2つの絞り弁と、車速に対応して変化する第4系の
2つの絞り弁を加えた構成となされているので、従来の
車速に対応して所定の比率で油流量を制御する流量制御
方式のように、高速走行中の急転舵操作を軽い操舵力で
行うべく必要な油量を確保しようと設定すると、これに
追従して据切り時の油量も過分に供給されることから、
油圧ポンプの吐出容量の増大に伴う過分な熱対策の必要
性を生じる、といった問題点を解消することができる。
(Effects of the Invention) As understood from the above, the power steering hydraulic control device according to the present invention communicates with the left and right hydraulic chambers of the power cylinder, where a difference in hydraulic pressure occurs due to steering operation of the steering wheel. 1st and 2nd
In the oil passage, a hydraulic circuit is provided with four throttle valves of the first to second systems that change in response to the steering torque, as in conventional devices, and a third throttle valve that changes in response to the steering torque.
The system is configured by adding two throttle valves in the system and two throttle valves in the fourth system that changes according to the vehicle speed, so the oil flow rate is controlled at a predetermined ratio according to the vehicle speed. If the control system is set to ensure the necessary amount of oil to perform sudden steering operations with light steering force while driving at high speeds, an excessive amount of oil will be supplied when the vehicle is stationary. ,
It is possible to solve the problem that excessive heat countermeasures are required due to an increase in the discharge capacity of a hydraulic pump.

すなわち、本発明においては、据切り時に必要な最小限
の油量を確保しておけば、走行中は車速に応じて絞り弁
の面積のみを制御するため、高速急転舵時に油量不足を
生じることがなく、従来の流量制御方式のものに比較し
て、油圧ポンプを必要最小限の吐出容量のものに抑える
ことができるから、油圧ポンプの吐出容量増大に伴う油
圧制御装置全体の熱対策を軽減し、かつ大型化を防止し
てコスト低減を図ることができる。また、従来の油圧反
力制御方式に比較しても、油圧制御バルブの他に油圧切
換バルブを必要としないから、この油圧切換バルブに付
帯する部材などの削減に伴い油圧制御装置全体のコンパ
クト化が可能となる。
In other words, in the present invention, if the minimum amount of oil required when the vehicle is stationary is secured, only the area of the throttle valve is controlled according to the vehicle speed while the vehicle is running, resulting in a shortage of oil during high-speed sudden turns. Compared to conventional flow rate control systems, the hydraulic pump can be kept to the minimum necessary discharge capacity, making it possible to reduce the heat of the entire hydraulic control system due to an increase in the discharge capacity of the hydraulic pump. It is possible to reduce costs by reducing the size and preventing increase in size. In addition, compared to conventional hydraulic reaction force control systems, since a hydraulic switching valve is not required in addition to the hydraulic control valve, the overall hydraulic control system can be made more compact by reducing the number of parts attached to the hydraulic switching valve. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるパワーステアリングの油圧制御装
置の油圧回路図、第2図(a)〜(b)は実施例による
第1系〜第4系の可変オリフィスによる絞り弁の面積特
性線図、第3図は油圧制御バルブとしてロータリバルブ
を採用したときの実施例の油圧回路図、第4図は油圧制
御バルブとしてスプールバルブを採用したときの実施例
の油圧回路図、第5図は車速か零のときの第4系絞り弁
と第3系絞り弁および第2系絞り弁とを順次合算した等
価絞り面積特性線図、第6図(a)、(b)は上記第5
図の等価絞り面積と第1系絞り弁の絞り面積との等価絞
り面積、油圧のそれぞれと操舵トルクとの相関を示す特
性線図、第7図は高速時の第4系絞り弁の面積特性線図
、第8図は高速時の第4系絞り弁と第3系絞り弁との等
価絞り面積特性線図、第9図は上記第8図の等価絞り面
積と第2系絞り弁の絞り面積との等価面積特性線図、第
1θ図(a)、(b)は上記第9図の等価絞り面積と第
1系絞り弁の絞り面積との等価絞り面積及び油圧と操舵
トルクとの相関を示す特性線図である□。 IR,IL・・・第1系の絞り弁、 2R,2L・・・第2系の絞り弁、 3R,3L・・・第3系の絞り弁、 4R,4L・・・第4系の絞り弁、 10・・・油圧源の油圧ポンプ、 11 ・・・リザーバタンク、 12・・・パワーシリンダ、 R,L・・・左右の油圧室、 14・・・ステアリングホイール、 15・・・トーションバー、 16・・・車速センサ、 20・・・ロータリバルブ、 30.31・・・第1および第2スプールバルブ32・
・・電磁ソレノイド、 U・・・制御ユニット、 A■〜A■・・・絞り面積、 T・ ・ ・操舵トルク。
FIG. 1 is a hydraulic circuit diagram of a power steering hydraulic control device according to the present invention, and FIGS. 2(a) to 2(b) are area characteristic diagrams of throttle valves with variable orifices of the first to fourth systems according to the embodiment. , Fig. 3 is a hydraulic circuit diagram of an embodiment in which a rotary valve is adopted as the hydraulic control valve, Fig. 4 is a hydraulic circuit diagram of an embodiment in which a spool valve is adopted as the hydraulic control valve, and Fig. 5 is a hydraulic circuit diagram of an embodiment in which a rotary valve is adopted as the hydraulic control valve. 6(a) and 6(b) are the equivalent throttle area characteristic diagrams, which are the sum of the 4th system throttle valve, 3rd system throttle valve, and 2nd system throttle valve in sequence when the throttle valve is zero.
Figure 7 is a characteristic diagram showing the correlation between the equivalent throttle area and the throttle area of the first system throttle valve, the oil pressure, and the steering torque. Figure 7 shows the area characteristics of the fourth system throttle valve at high speed. Figure 8 is the equivalent throttle area characteristic diagram of the 4th system throttle valve and 3rd system throttle valve at high speed, Figure 9 is the equivalent throttle area of Figure 8 above and the throttle of the 2nd system throttle valve. The equivalent area characteristic diagram with area, Figures 1θ (a) and (b) show the correlation between the equivalent throttle area in Figure 9 and the throttle area of the first system throttle valve, oil pressure, and steering torque. It is a characteristic diagram showing □. IR, IL... Throttle valve of the first system, 2R, 2L... Throttle valve of the second system, 3R, 3L... Throttle valve of the third system, 4R, 4L... Throttle valve of the fourth system. Valve, 10... Hydraulic pump of hydraulic power source, 11... Reservoir tank, 12... Power cylinder, R, L... Left and right hydraulic chambers, 14... Steering wheel, 15... Torsion bar , 16... Vehicle speed sensor, 20... Rotary valve, 30.31... First and second spool valve 32.
...Electromagnetic solenoid, U...Control unit, A■~A■...Aperture area, T...Steering torque.

Claims (1)

【特許請求の範囲】[Claims] 油圧源とリザーバタンクとに連通する第1および第2の
油路が、パワーシリンダ内の左右の油圧室にそれぞれ連
通し、前記油圧源からの油圧がステアリングホィールの
転舵操作に対応して前記パワーシリンダ内の左右の油圧
室に圧力差をもって作用するパワーステアリングの油圧
制御装置であって、前記油圧室の上流側の前記第1およ
び第2油路に設けられかつ操舵トルクに対応して絞り面
積が変化する一対の第1系の絞り弁と、前記油圧室の下
流側の前記第1および第2油路に設けられかつ前記操舵
トルクに対応して前記第1系の絞り弁に連動して絞り断
面積が変化する一対の第2系の絞り弁とを設けるととも
に、前記操舵トルクに対応して前記第1系および第2系
の絞り弁に連動して絞り面積が変化する第3系の絞り弁
と、前記第3系の絞り弁に並列に設けられかつ車速度に
対応して絞り面積が変化する第4系の絞り弁とが、前記
第1および第2油路の前記油圧室に対する上流側または
下流側の少なくとも一方側に一対に設けられ、かつ前記
第1系および第2系の絞り弁とは直列に設けられること
を特徴とするパワーステアリングの油圧制御装置。
First and second oil passages that communicate with a hydraulic power source and a reservoir tank communicate with left and right hydraulic chambers within the power cylinder, respectively, and hydraulic pressure from the hydraulic power source is applied to the hydraulic pressure chambers in response to steering operations of the steering wheel. A power steering hydraulic control device that acts with a pressure difference between left and right hydraulic chambers in a power cylinder, and is provided in the first and second oil passages on the upstream side of the hydraulic chamber and throttles in response to steering torque. a pair of first system throttle valves whose area changes; and a pair of first system throttle valves provided in the first and second oil passages downstream of the hydraulic chamber and interlocked with the first system throttle valves in response to the steering torque. and a pair of second system throttle valves whose throttle cross-sectional area changes in response to the steering torque, and a third system whose throttle area changes in conjunction with the first and second system throttle valves in response to the steering torque. and a fourth system throttle valve, which is provided in parallel with the third system throttle valve and whose throttle area changes in accordance with vehicle speed, are connected to the hydraulic chambers of the first and second oil passages. A power steering hydraulic control device, characterized in that the power steering hydraulic control device is provided in a pair on at least one side of the upstream side or the downstream side of the throttle valve, and is provided in series with the throttle valves of the first system and the second system.
JP10929386A 1986-05-12 1986-05-12 Power steering hydraulic control device Expired - Lifetime JPH0764263B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10929386A JPH0764263B2 (en) 1986-05-12 1986-05-12 Power steering hydraulic control device
US07/044,065 US4860635A (en) 1986-05-12 1987-04-29 Steering control valve for variable power assist steering system
EP19870106703 EP0245794B1 (en) 1986-05-12 1987-05-08 Steering control valve for variable power assist steering system
DE8787106703T DE3777684D1 (en) 1986-05-12 1987-05-08 CONTROL VALVE FOR A STEERING WITH VARIABLE AUXILIARY POWER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10929386A JPH0764263B2 (en) 1986-05-12 1986-05-12 Power steering hydraulic control device

Publications (2)

Publication Number Publication Date
JPS62265078A true JPS62265078A (en) 1987-11-17
JPH0764263B2 JPH0764263B2 (en) 1995-07-12

Family

ID=14506502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10929386A Expired - Lifetime JPH0764263B2 (en) 1986-05-12 1986-05-12 Power steering hydraulic control device

Country Status (1)

Country Link
JP (1) JPH0764263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038976U (en) * 1989-04-27 1991-01-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038976U (en) * 1989-04-27 1991-01-28

Also Published As

Publication number Publication date
JPH0764263B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
JPS6387370A (en) Hydraulic control device for power steering
JPS63166661A (en) Hydraulic controller for power steering
JPS63166659A (en) Hydraulic controller for power steering
JPH06502824A (en) Suspension systems used in vehicles
JPH07322684A (en) Power steering device of servo-controlling device,especiallyof car
JPH0262430B2 (en)
JPS63188574A (en) Hydraulic control device for power steering
JPS63166660A (en) Hydraulic controller for power steering
JPS62265078A (en) Hydraulic controller for power steering
JPH042576A (en) Steering force control system for power steering
JPH0463767A (en) Hydraulic valve device for power steering gear
JPH049259Y2 (en)
US5332055A (en) Power steering apparatus having hydraulic reaction mechanism
US4545203A (en) Hydrostatic drive units
KR960012223B1 (en) Pressure regulation valve of power steering system
JP2559724B2 (en) Power steering hydraulic control device
JP3277779B2 (en) Steering gear
JP2852997B2 (en) Hydraulic power steering device
JPH05201347A (en) Steering force control device for power steering device
Maeda P r Ps
JP2531795Y2 (en) Power steering device
JPS6382877A (en) Control valve for power steering device
JPS6127771A (en) Rear-wheel steering gear
JPH0717287A (en) Torque distributer for vehicle
JPS58141964A (en) Power steering unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term