JPS62264678A - Arrayed photodiode - Google Patents

Arrayed photodiode

Info

Publication number
JPS62264678A
JPS62264678A JP61108361A JP10836186A JPS62264678A JP S62264678 A JPS62264678 A JP S62264678A JP 61108361 A JP61108361 A JP 61108361A JP 10836186 A JP10836186 A JP 10836186A JP S62264678 A JPS62264678 A JP S62264678A
Authority
JP
Japan
Prior art keywords
light
type
array
semiconductor substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108361A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sakurada
桜田 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61108361A priority Critical patent/JPS62264678A/en
Publication of JPS62264678A publication Critical patent/JPS62264678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Transform (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To detect a position of incident light with high precision, by arranging rectangular light-receiving faces of a P-type semiconductor so as to form an array on an N-type high- resistance semiconductor substrate, attaching electrodes in contact with the ends of the longitudinal sides of the light-receiving faces and providing a common electrode on the bottom face of the substrate. CONSTITUTION:An l-type layer 42 and a P-type layer 44 are formed on an N-type high- resistance semiconductor substrate 40. Electrodes 46A and 46B are provided at the ends of the structure and an N+type common electrode layer 48 is provided on the bottom face of the substrate. In this manner, K element arrays are produced. The positive pole of a DC power source 50 is connected to the common electrode 48 while the negative pole is connected to the electrodes 46A and 46B via load resistances 52A and 52B. When light is applied to the P-type layer 44, photocurrents I11-I1k and I21-I2k flow through the load resistances 52A and 52B, respectively. An arithmatic logic unit 54 substracts the I2n from the I1n by means of a differential amplifier 56 and sums them by means of a summing amplifier 58, while a comparator 60 compares the summed value with a prdetermined value and outputs only the values larger than the predetermined value as gate output. They are divided by a dividing amplifier 64 and a value of (I1n-I2n)/(I1n+I2n) is outputted. When the output Hn of the comparator 60 is 'H', light is detected by the (n)th element and the position Yn at that moment can be obtained by calculation.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、アレイ型ホトダイオードに係り、特に、点状
又は帯状入射光の位置検出を行う際に用いるのに好適な
、アレイ型ホトダイオードに関する。
The present invention relates to an array type photodiode, and particularly to an array type photodiode suitable for use in detecting the position of point-like or band-like incident light.

【従来の技術】[Conventional technology]

従来、物体の位置を光学的に検出するgi置には、該物
体からの反射光の位置を検出する光学素子として、例え
ば特開昭57−24814で開示された如きホトダイオ
ードがあり、このようなホトダイオード(Positi
on 3ensitive  [)evice 、以下
、PSDという)には、例えば第5図に模式的に示され
るような構造を有するものがある。なお、このPSDは
、N型半導体で形成される高抵抗半導体基板(以下、N
層という)10と、該N層10上に設けられる、通常一
層の薄い半導体絶縁層12と、更にその上に設けられる
P型半導体で形成される半導体表面層(以下、P層とい
う)14と、前記N層10の下面に形成されるN層層に
取付けられる電極16と、前記P層14の長手方向両端
に設けられる電極18A、18Bと、各電極16.18
A、18Bにバイアス電圧を印加するための直流電源2
0と、このPSDに光が入射しオンとなった際の電流が
流れる負荷抵抗22A、22Bと、を備える。 今、図に示すPSDの9層14の表面である受光面14
Aの一点に入射光りが当ると、空乏層である絶縁層12
中に正負の電子正孔対が発生し、この電子正孔対の内、
極性が負の電子は前記N層10へ流入し、極性が正の正
孔はPJ114へ流入する。N1110へ流入した電子
はそのまま電極16を介して電源20中へ流れていく。 一方、9層14へ流入した正孔が各電極18A118B
へ達するためには、該P層14の長手方向に沿って流れ
なければならない。しかしながら、この9層14には電
気抵抗があるため、各電極18A、18Bを介して抵抗
22A、22B中を流れる電流!+、Izは、前記入射
光りの位置に応じて異なり同じ値とならない。 前記PSDはこの各電流11、I2の値を用いて前記入
射光しが当った位置を測定するものであり、その測定は
以下のようにして行う。 即ち、例えば前記入射光りの光ビームが当った位置が、
前記P層14の長手方向中心位置(図中符号Mで示す)
より、受光面14Aの長手方向にyだけ変位した位置で
あるとすると、前記負荷抵抗22A、22Bを流れる電
流(以下、光電流という)I+、I2から、変位yは次
式(1)によって算出できる。 1/−A・(1112) / (11+12 )・・・
・・・(1) ただし、Aは比例定数である。 ところで、第5図に示すような従来のPSDは、主とし
て物体の位置検出装置の一部品として供されることが多
い。例えば、スポット状のレーザー光等を被測定物に照
射し、該被測定物から反射する光ビームを図に促したよ
うなの受光面14Aに入射して、この変位yを前出(1
)式で算出して測定すれば、前記被測定物までの距離を
正確に検出することができる。 ここで、前記PSDを用いて被測定物までの距離を検出
する測定装置の1例を第6図に示す。図はこの装置の概
略構成を示すもので、レーザー等の光源24で発生した
光が照射レンズ26で収束され、照射光28Aとなって
被測定物30に当る。 該被測定物30からは前記照射光28Aの反射光28B
が生じ、該反射光28Bは集光レンズ32で収束されて
位置検出器34に取込まれる。この位置検出器34内に
は第5図に示したような位置検出用のホトダイオード即
ちPSD36が備えられ、該PSD36で光の変位を検
出し、検出された変位は光電流11、I2どなって演算
機38に流入し、該演算機38はその光電流11、I2
により前記変位を(1)式により算出する。 以上のような構成のこの測定装置は、被測定物30が図
中矢印のA、B方向に移動した時の移動位置を反射光2
8Bによって測定するもので、被測定物3oのX軸方向
の変位によりPSD36の受光面に入射する反射光が移
動して、受光面14Aの長手方向(Y軸方向)の変位y
となる。従って、演算機38でこのY軸方向の変位を示
す2つの光電流11、I2を演算すれば、被測定物3゜
までの距離を三角測旦の原理を用いて測定することがで
きる。
Conventionally, in a GI device for optically detecting the position of an object, there has been a photodiode as an optical element for detecting the position of reflected light from the object, such as the one disclosed in Japanese Patent Laid-Open No. 57-24814. Photodiode (Positi
Some types of on 3intensive [)evice (hereinafter referred to as PSD) have a structure as schematically shown in FIG. 5, for example. Note that this PSD is a high-resistance semiconductor substrate (hereinafter referred to as N-type semiconductor) formed of an N-type semiconductor.
layer) 10, a normally thin semiconductor insulating layer 12 provided on the N layer 10, and a semiconductor surface layer (hereinafter referred to as P layer) 14 formed of a P-type semiconductor further provided thereon. , an electrode 16 attached to the N layer formed on the lower surface of the N layer 10, electrodes 18A and 18B provided at both longitudinal ends of the P layer 14, and each electrode 16.18.
DC power supply 2 for applying bias voltage to A and 18B
0, and load resistors 22A and 22B through which current flows when light is incident on the PSD and the PSD is turned on. Now, the light receiving surface 14 is the surface of the nine layers 14 of the PSD shown in the figure.
When incident light hits one point A, the insulating layer 12, which is a depletion layer,
Positive and negative electron-hole pairs are generated, and among these electron-hole pairs,
Electrons with negative polarity flow into the N layer 10, and holes with positive polarity flow into the PJ 114. The electrons flowing into the N1110 directly flow into the power source 20 via the electrode 16. On the other hand, the holes flowing into the 9th layer 14 are
In order to reach the P layer 14, it must flow along the length of the P layer 14. However, since this nine layer 14 has electrical resistance, current flows through the resistors 22A and 22B via each electrode 18A and 18B! + and Iz differ depending on the position of the incident light and do not have the same value. The PSD uses the values of the currents 11 and I2 to measure the position hit by the incident light, and the measurement is performed as follows. That is, for example, the position where the light beam of the incident light hits is
The longitudinal center position of the P layer 14 (indicated by the symbol M in the figure)
Therefore, assuming that the position is displaced by y in the longitudinal direction of the light-receiving surface 14A, the displacement y is calculated from the following equation (1) from the currents (hereinafter referred to as photocurrents) I+ and I2 flowing through the load resistors 22A and 22B. can. 1/-A・(1112) / (11+12)...
...(1) However, A is a proportionality constant. By the way, a conventional PSD as shown in FIG. 5 is often provided mainly as a component of an object position detection device. For example, a spot-shaped laser beam or the like is irradiated onto the object to be measured, and the light beam reflected from the object is incident on the light-receiving surface 14A as shown in the figure, and this displacement y is calculated as described above (1).
), the distance to the object to be measured can be accurately detected. FIG. 6 shows an example of a measuring device that detects the distance to an object using the PSD. The figure shows a schematic configuration of this device, in which light generated by a light source 24 such as a laser is converged by an irradiation lens 26, and becomes irradiation light 28A and impinges on an object to be measured 30. The reflected light 28B of the irradiation light 28A is reflected from the object to be measured 30.
The reflected light 28B is converged by the condenser lens 32 and taken into the position detector 34. This position detector 34 is equipped with a photodiode for position detection, that is, a PSD 36 as shown in FIG. flows into the computing unit 38, and the computing unit 38 receives the photocurrents 11 and I2.
The displacement is calculated using equation (1). This measuring device configured as described above uses reflected light 2 to determine the moving position when the object to be measured 30 moves in the directions of arrows A and B in the figure.
8B, the reflected light incident on the light-receiving surface of the PSD 36 moves due to the displacement of the object to be measured 3o in the X-axis direction, and the displacement y in the longitudinal direction (Y-axis direction) of the light-receiving surface 14A.
becomes. Therefore, by calculating the two photocurrents 11 and I2 indicating the displacement in the Y-axis direction using the calculator 38, the distance to the object to be measured at 3 degrees can be measured using the principle of triangulation.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、前記従来のPSDにおいては、被測定物
との距離を測定するに際し、レーザー光が当っている被
測定物上の一点を代表点として、その代表点と測定物装
置間の距離を測定することとしているため、該被測定物
の代表点以外の点と測定装置間の距離を同時に測定する
ことができないという問題点を有していた。 又、もし被測定物表面の複数の点と測定装置間の距離を
同時に測定できるとすれば、前記被測定物の形状を測定
することも可能となるが、前記従来のPSDにおいては
このような測定は不可能であった。
However, in the conventional PSD, when measuring the distance to the object to be measured, one point on the object to be measured that is illuminated by the laser beam is used as a representative point, and the distance between the representative point and the object to be measured is measured. Therefore, there was a problem in that it was not possible to simultaneously measure the distance between a point other than the representative point of the object to be measured and the measuring device. Furthermore, if the distance between multiple points on the surface of the object to be measured and the measuring device can be measured simultaneously, it would also be possible to measure the shape of the object to be measured, but this is not possible with the conventional PSD. Measurement was not possible.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点に鑑みてなされたものであ
って、一体の構造で、受光される入射光の入射位置を精
度良く検出できるアレイ型ホトダイオードを提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an array type photodiode that has an integrated structure and can accurately detect the incident position of received incident light.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、P型半導体で形成された長方形の受光面を有
する受光部が、N型高抵抗半導体基板上に複数個アレイ
状に形成されていて、各P型半導体受光面の長手方向の
両端部に接して電極が設けられると共に、前記N型高抵
抗半導体基板上に前記受光部が形成された面に対する裏
面に接して、前記電極に対する共通電極が設けられたこ
とにより、前記目的を達成したものである。 又、本発明は、P型半導体で形成された長方形の受光面
を有する受光部が、N型高抵抗半導体基板上に複数個ア
レイ状に形成されていて、各P型半導体受光面の長手方
向の両端部に接して電極が設けられると共に、前記N型
高抵抗半導体基板上に前記受光部が形成された面に対す
る裏面に接して、前記電極に対する共通電極が設けられ
たアレイ型ホトダイオードであって、前記各受光面の両
端部に接する各電極を流れる各電流の和が所定値より小
さいか否かを判定する手段と、判定結果から光の当って
いる受光部と光の当っていない受光部とを弁別する手段
とを備えたことにより、同じく、前記目的を達成したも
のである。
In the present invention, a plurality of light-receiving sections each having a rectangular light-receiving surface made of a P-type semiconductor are formed in an array on an N-type high-resistance semiconductor substrate, and both ends of each P-type semiconductor light-receiving surface in the longitudinal direction are provided. The above object is achieved by providing an electrode in contact with the N-type high-resistance semiconductor substrate, and a common electrode with respect to the electrode in contact with the back surface of the N-type high-resistance semiconductor substrate with respect to the surface on which the light-receiving portion is formed. It is something. Further, in the present invention, a plurality of light receiving sections each having a rectangular light receiving surface made of a P-type semiconductor are formed in an array on an N-type high resistance semiconductor substrate, and each P-type semiconductor light receiving surface has a longitudinal direction. An array type photodiode, wherein electrodes are provided in contact with both ends of the substrate, and a common electrode for the electrodes is provided in contact with a back surface of the N-type high-resistance semiconductor substrate relative to the surface on which the light receiving section is formed. , means for determining whether the sum of the currents flowing through the electrodes in contact with both ends of each of the light-receiving surfaces is smaller than a predetermined value, and a light-receiving portion that is illuminated and a light-receiving portion that is not illuminated based on the determination result. By providing a means for discriminating between the two, the above object is also achieved.

【作用】[Effect]

以下、本発明の作用について説明する。 本発明に係るアレイ型ホトダイオードの構成の1例を第
1図に示す。このアレイ型ホトダイオードは、N型半導
体で構成される高抵抗半導体の同一基板40上に、あた
かも前出第5図に示した従来のPSDに係るホトダイオ
ードを図中矢印Z方向にに個アレイ状に並べて形成した
ような構造とされる。なお、図において、42は薄い半
導体絶縁jl(通常1層とされる)、44はP型半導体
表面層(8層)、46A146Bは該8層の表面各画端
に設けられる電極、48は前記N1140下面のN十で
形成された層に取付けられる共通電極である。この場合
、半導体絶縁層42と、PI44、電極46A、46B
等の素子で構成される集合素子(以下、アレイという)
の数をに個とすると、当然それらアレイ毎の構成素子は
それぞれに個あることになる。このKの値はこのアレイ
型ホトダイオードの使用目的に応じて決めることができ
る。 以上のような構成のアレイ型ホトダイオードに、第1図
に示すように直流電源50の正極を共通電極48に接続
し、該直流電源50の負極を各負荷抵抗52A、52B
を介して前記電極46A、46Bに接続して、位置検出
用のアレイ型ホトダイオード(以下、アレイ型PSDと
いう)を構成することができる。 このように構成されたアレイ型PSDで被測定物の位置
を検出する際には、その基本はPIN構造を有するホト
ダイオードと同一であって、まず、K個備えられるP層
44の全数あるいはその一部に光が入射すると、光の当
ったP層44に接続されている負荷抵抗52A、52B
に光電流I u〜1+に11z+〜[zhが流れる。従
って、この光電流1 u〜11i+及び121〜12に
の電流値を測定して各アレイ毎について次式(2)のよ
うに測定物までの距My口(n番目のアレイで検出され
る距離)を求めれば、各々の2層44表面における入射
光の位置ynが測定できる。 yn−A・(11n−1zn) /(1+n+Izn)  ””−(2>ただし、光の当
っていない部分(d番目のアレイとする)については、
光電流11ds Izdの値が極小値となり、(2)式
が発散することもあるため、(2)式の演算処理を行う
前に次式(3)の判断処理を、例えばコンパレータ回路
とゲート回路の組合せ回路を通して行い、演算処理を行
うべき光電流1+n、Iznを知る必要がある。なお、
この場合、(3)式が成立すれば(2)式が発散するた
め、(3)式の成立しない光電流■1n%I2nについ
て演算処理を行うことができる。 (11n+Izn)<ε  ・・・・・・(3)ただし
、εは定数である。 又、このように処理することにより、(3)式が成立す
れば入射光が最小であると判断できるため、光の当って
いないPJi44と光の当っている2層44を精度良く
弁別することができる。そして、このように弁別すれば
(2)式の演算を光の当っていないアレイについて行う
必要がなくなるため、演算装置全体として演算回数が減
少し、演算時間を短縮することもできる。 ここで、(3)式の演算処理を行うための演算処理装置
の回路例を第2図に示す。図に示す演算処理袋@54は
第1図に示したアレイ型PSDのn番目のアレイに接続
される処理装置である。従って、このアレイ型PSDに
接続される演算処理装置54はに個必要となる。 該演算処理装置54には差動アンプ56が備えられ、こ
机により光電流1+nから光電流I2nを減算する。又
同じ光電流!tn、Iznは加算アンプ58で加算され
る。この加算アンプ58で加算された加t!?41(1
+ n+Izn)の値はコンパレータ(比較W>60に
入力される。該コンパレータ60は、(3)式に基づき
その加算電流の値が設定値εよりも大きい時高レベルの
電圧信号を出力し、加算電流の値がεよりも小さい時低
レベルの電圧信号を出力する。このようにして出力され
た電圧信号はゲート回路62に入力され、コンパレータ
60の出力電位が高レベルの場合のみ、前記加算アンプ
58の出力値がそのままこのゲート回路62の出力電位
となって除算アンプ64に入力される。そして、出力電
位が入力された除算アンプ64の除算出力値は(11n
−Izn)/ (I + n + I 2 n )とな
る。 従って、この演算処理装置54においては、コンパレー
タ60の出力電位を8口とすると、Hnが高レベルの時
にn番目の7レイが照射光を検知しており、その時にそ
のアレイ上の照射光の位置y口を(2)式に基づき算出
できる。 なお、以上述べたアレイ型PSDにおいては、あたかも
PIN構造のホトダイオードを複数、アレイ状に集合さ
せた如きアレイ型PSDについて説明したが、集合され
るホトダイオードはPIN構造のダイオードに限定され
るものではなく、例えばP N )3合型あるいはショ
ットキー接合型等の構造のホトダイオードで形成するこ
とも可能である。
Hereinafter, the effects of the present invention will be explained. An example of the configuration of an array type photodiode according to the present invention is shown in FIG. This array-type photodiode has photodiodes related to the conventional PSD shown in FIG. It is said to have a structure that looks like it was formed side by side. In the figure, 42 is a thin semiconductor insulator (usually one layer), 44 is a P-type semiconductor surface layer (8 layers), 46A146B is an electrode provided at each edge of the surface of the 8 layers, and 48 is the above-mentioned This is a common electrode attached to the layer formed of N0 on the bottom surface of N1140. In this case, the semiconductor insulating layer 42, PI 44, electrodes 46A, 46B
A collective element (hereinafter referred to as an array) consisting of elements such as
If the number of elements is , then each array naturally has its own constituent elements. The value of K can be determined depending on the purpose of use of this array type photodiode. In the array type photodiode configured as above, the positive electrode of the DC power source 50 is connected to the common electrode 48 as shown in FIG. 1, and the negative electrode of the DC power source 50 is connected to each load resistor 52A, 52B.
By connecting to the electrodes 46A and 46B via the electrodes 46A and 46B, an array type photodiode for position detection (hereinafter referred to as an array type PSD) can be configured. When detecting the position of an object to be measured using an array-type PSD configured in this way, the basics are the same as those of a photodiode having a PIN structure, and first, all or one of the K P layers 44 is detected. When light is incident on the P layer 44, the load resistors 52A and 52B connected to the P layer 44 hit by the light
A photocurrent 11z+~[zh flows in Iu~1+. Therefore, the current values of the photocurrents 1u to 11i+ and 121 to 12 are measured and the distance My to the object to be measured (distance detected by the nth array) is calculated for each array as shown in the following equation (2). ), the position yn of the incident light on the surface of each of the two layers 44 can be measured. yn-A・(11n-1zn) /(1+n+Izn) ""-(2> However, for the part that is not illuminated by light (assumed to be the d-th array),
The value of the photocurrent 11ds Izd may become a minimum value and the equation (2) may diverge, so before performing the calculation processing of the equation (2), the judgment processing of the following equation (3) is performed using, for example, a comparator circuit and a gate circuit. It is necessary to know the photocurrents 1+n and Izn to be processed through the combinational circuit. In addition,
In this case, if equation (3) holds true, equation (2) diverges, so calculation processing can be performed for the photocurrent ■1n%I2n for which equation (3) does not hold. (11n+Izn)<ε (3) However, ε is a constant. In addition, by processing in this way, it can be determined that the incident light is the minimum if formula (3) holds, so it is possible to accurately discriminate between the PJi 44 that is not illuminated and the two layers 44 that are illuminated. Can be done. If the discrimination is made in this way, it is not necessary to perform the calculation of equation (2) on the array that is not illuminated by light, so the number of calculations is reduced for the calculation device as a whole, and the calculation time can also be shortened. Here, an example of a circuit of an arithmetic processing device for performing the arithmetic processing of equation (3) is shown in FIG. The arithmetic processing bag @54 shown in the figure is a processing device connected to the nth array of the array type PSD shown in FIG. Therefore, the number of arithmetic processing units 54 connected to this array type PSD is required. The arithmetic processing unit 54 is equipped with a differential amplifier 56, which subtracts the photocurrent I2n from the photocurrent 1+n. Same photocurrent again! tn and Izn are added by an adding amplifier 58. The addition t! added by this addition amplifier 58! ? 41 (1
+n+Izn) is input to a comparator (comparison W>60. Based on equation (3), the comparator 60 outputs a high-level voltage signal when the value of the added current is larger than the set value ε, When the value of the addition current is smaller than ε, a low level voltage signal is output.The voltage signal thus output is input to the gate circuit 62, and only when the output potential of the comparator 60 is at a high level, the addition is performed. The output value of the amplifier 58 directly becomes the output potential of this gate circuit 62 and is inputted to the division amplifier 64.Then, the division output value of the division amplifier 64 to which the output potential is input is (11n
−Izn)/(I + n + I 2 n ). Therefore, in this arithmetic processing unit 54, if the output potential of the comparator 60 is 8, the nth 7 rays detect the irradiation light when Hn is at a high level, and at that time, the irradiation light on that array is detected. The position y-mouth can be calculated based on equation (2). The array type PSD described above is as if a plurality of PIN-structured photodiodes were assembled in an array, but the assembled photodiodes are not limited to PIN-structured diodes. , for example, a photodiode having a structure such as a P N )3 junction type or a Schottky junction type.

【実施例】【Example】

以下、本発明に係るアレイ型ホトダイオードの実施例に
ついて詳細に説明する。 この実施例は、前出第1図に示したアレイ型PSDを、
第3図に示すような、被測定対象物66の外表面プロフ
ァイルを非接触で測定する装置に適用したものである。 この測定装置には、第3図に示されるように被測定物6
6に帯状照射光68Aを照射する例えばレーザー発信装
置からなる光照rJJ装置7oと、前記被測定対象物6
6から反射される帯状反射光68Bを集光するための集
光レンズ72と、集光された帯状反射光が入射する前出
第1図に示したようなアレイ型PSD74と、該アレイ
型PSD74の出力信号によりアレイ型PSDの各アレ
イ上の光の位81を求めるため、前出第2図に示した演
算処理袋@54をアレイの数に個と等しい数だけ有する
演算処理装置76と、該演算処理装置76の出力信号に
より前記被測定対象物66の外表面プロファイルを算出
する演算装置78とが備えられる。 以下、実施例の作用を説明する。 第3図に示すように、被測定対象物66の外表面プロフ
ァイルを測定する際には、まず、光照射装置70から帯
状照射光68Aを前記被測定対象物66の表面に向かっ
て照射する。照射された帯状照射光68Aは前記被測定
対象vlJ66表面で反射され帯状反射光68Bとなり
集光レンズ72に入射する。該集光レンズ72で集光さ
れた帯状反射光68Bはアレイ型PSD74の表面に集
光される。該アレイ型PSD74に集光された帯状レー
ザーの反射光は第4図に示されるような、前記被測定対
象物66の該表面プロファイルに応じた集光パターン(
符号Aで示す)を形成する。このようにして形成された
集光パターンAは、アレイ型PSD74上の各アレイ毎
の素子からの光電流11n、I20を測定して前出(2
)式によって入射光の位置■nを算出すれば、求めるこ
とが可能である。 従って、演算処理装置76は、アレイ型PSD74の出
力信号に基づき、前出(2)式に基づいて各アレイ型P
SD74上の素子の光の位gE/nを算出し、集光パタ
ーンAを求める。なお、その際、前出(3)式で光電流
Itn、I2nが演算すべき値か否かを弁別する。 求められた集光パターンAは外表面プロファイルの演算
装置78に入力され、該演算装置78は入力集光パター
ンAを用い、光照射装置70とアレイ型PSD74との
相互の位置関係に基づき、三角測量の原理により前記被
測定対象物66の外表面プロファイルを求める。その際
、光の当っているアレイと当っていないアレイが弁別さ
れ、その光の当っているアレイの位置から、第1図2方
向の入射位置を検出でき、より正確に前記外表面プロフ
ァイルを知ることができる。 以上のように、この実施例に係るアレイ型PSDにおい
ては、第4図に示される集光パターンAを第1図に示さ
れるアレイ型PSoで検出できるため、第5図に示され
るような従来のホトダイオードを用いて同様の集光パタ
ーンAを検出しようとした際に問題となる各ダイオード
間の絶縁やそれによる構成の大型化等を解消し、更に一
体に形成されているため小型化できると共に人聞生産に
よる低価格化を図ることができる。 又、従来のホトダイオードにおいては、第5図に示され
るように各PSD毎にN型高抵抗半導体の層を形成しな
ければならないため、第4図に示されるような集光パタ
ーンAを検出する際には、並列に並べて多数使用しなけ
ればならず、その製造費用の点で問題とされるが、本実
施例においては第1図に示されるようにN型の高抵抗半
導体の同一基板40上に同様の機能を有するPH10と
半導体絶縁層42からなるアレイを設けて形成している
ため、N型半導体層を各アレイ毎に形成する必要がなく
、全体としての製造費を減少させて更に費用削減を図る
ことができる。 なお、前記実施例においては、第1図に示されるような
各アレイの長手方向を並列とするような構成とされたア
レイ型ホトダイオードについて例示したが、本発明が適
用されるアレイ型ホトダイオードはこのような構成のも
のに限定されるものではなく、N型高抵抗半導体基板上
に長方形の受光面を有する受光部が複数個アレイ状に形
成されているものであれば、本発明に、よるアレイ型ホ
トダイオードを構成できる。 又、前記実施例においては、PINJ7M造のホトダイ
オードを複数、P型高抵抗半導体基盤上に形成した如き
アレイ型ホトダイオードについて例示したが、受光部の
構造はPIN構造のホトダイオードに限定されず、他の
例えばPN接合型あるいはショットキー接合型等の構造
を有するホトダイオードで形成することが可能である。 又、前記実施例においては、第3図に示されるような被
測定対象物の外表面プロファイル測定装置について本発
明に係るアレイ型ホトダイオードを適用した場合につい
て例示したが、本発明に係るアレイ型ホトダイオードが
適用される装置はこのような外表面プロファイル測定装
置に限定されるものではなく、他の装置に適用できるこ
とは明らかであり、他の光学的位置検出手段として多く
の適用が考えられる。
Embodiments of the array type photodiode according to the present invention will be described in detail below. In this embodiment, the array type PSD shown in FIG.
The present invention is applied to a device that measures the outer surface profile of an object to be measured 66 in a non-contact manner, as shown in FIG. This measuring device includes an object to be measured 6 as shown in FIG.
a light illumination rJJ device 7o consisting of, for example, a laser transmitter, which irradiates a belt-shaped irradiation light 68A to the object to be measured 6;
a condensing lens 72 for condensing the band-shaped reflected light 68B reflected from 6; an array-type PSD 74 as shown in FIG. In order to obtain the position 81 of light on each array of the array type PSD from the output signal of , an arithmetic processing unit 76 having the arithmetic processing bags @54 shown in FIG. 2 in a number equal to the number of arrays; A calculation device 78 is provided that calculates the outer surface profile of the object to be measured 66 based on the output signal of the calculation processing device 76. The effects of the embodiment will be explained below. As shown in FIG. 3, when measuring the outer surface profile of the object to be measured 66, first, a band-shaped irradiation light 68A is emitted from the light irradiation device 70 toward the surface of the object to be measured 66. The emitted band-shaped irradiation light 68A is reflected on the surface of the object to be measured vlJ66 and becomes a band-shaped reflected light 68B, which is incident on the condenser lens 72. The band-shaped reflected light 68B focused by the condenser lens 72 is focused on the surface of the array type PSD 74. The reflected light of the band-shaped laser focused on the array type PSD 74 has a focusing pattern (as shown in FIG. 4) according to the surface profile of the object to be measured 66.
) is formed. The light condensing pattern A thus formed is obtained by measuring the photocurrents 11n and I20 from the elements of each array on the array type PSD 74 as described above (2).
) can be obtained by calculating the position n of the incident light using the equation. Therefore, based on the output signal of the array type PSD 74, the arithmetic processing unit 76 calculates each array type PSD based on the above equation (2).
The light intensity gE/n of the element on the SD 74 is calculated, and the condensing pattern A is determined. At this time, it is determined whether the photocurrents Itn and I2n are values to be calculated using the above-mentioned equation (3). The obtained condensing pattern A is input to an outer surface profile calculation device 78, and the calculation device 78 uses the input condensing pattern A to form a triangular shape based on the mutual positional relationship between the light irradiation device 70 and the array type PSD 74. The outer surface profile of the object to be measured 66 is determined based on the principle of surveying. At this time, the arrays that are illuminated by the light and the arrays that are not illuminated are discriminated, and from the position of the array that is illuminated by the light, the incident position in the direction shown in Fig. 1 and 2 can be detected, and the outer surface profile can be determined more accurately. be able to. As described above, in the array type PSD according to this embodiment, the condensing pattern A shown in FIG. 4 can be detected by the array type PSo shown in FIG. This eliminates the problem of insulation between each diode and the resulting increase in the size of the structure, which would be a problem when trying to detect a similar focused pattern A using photodiodes of It is possible to lower prices by employing human labor. Furthermore, in conventional photodiodes, a layer of N-type high-resistance semiconductor must be formed for each PSD as shown in FIG. In some cases, a large number of N-type high-resistance semiconductor substrates 40 must be used in parallel, which poses a problem in terms of manufacturing costs, but in this embodiment, as shown in FIG. Since it is formed by providing an array consisting of the PH 10 and the semiconductor insulating layer 42 having the same function on top, there is no need to form an N-type semiconductor layer for each array, which reduces the overall manufacturing cost and further increases the cost. Cost reduction can be achieved. In the above embodiment, an array-type photodiode was exemplified in which each array was arranged in parallel in the longitudinal direction as shown in FIG. 1, but the array-type photodiode to which the present invention is applied is The array according to the present invention is not limited to such a structure, but any structure in which a plurality of light receiving parts each having a rectangular light receiving surface is formed in an array on an N-type high-resistance semiconductor substrate can be used. type photodiode can be constructed. Furthermore, in the above embodiment, an array type photodiode in which a plurality of PINJ7M photodiodes are formed on a P-type high resistance semiconductor substrate is exemplified, but the structure of the light receiving section is not limited to the PIN structure photodiode, and other photodiodes may be used. For example, it can be formed using a photodiode having a structure such as a PN junction type or a Schottky junction type. Further, in the above embodiment, the case where the array type photodiode according to the present invention is applied to the outer surface profile measuring device of the object to be measured as shown in FIG. 3 was illustrated, but the array type photodiode according to the present invention It is clear that the device to which the method is applied is not limited to such an external surface profile measuring device, but can be applied to other devices, and many other applications are conceivable as other optical position detection means.

【発明の効果】【Effect of the invention】

以上説明した通り本発明によれば、一体の構造で、受光
される入射光の各部分の入射位置を精度良く検出できる
。従って、被測定物上の複数の点に帯状光を照射し、該
被測定物の複数の点から反射する光ビームを受光して同
時にそれら複数の点からの光ビームを検出することがで
きるため、前記被測定物上の複数の点の位置を同時に精
度良く検出することができる等の優れた効果を有する。
As described above, according to the present invention, the incident position of each portion of the received incident light can be detected with high precision using an integrated structure. Therefore, it is possible to irradiate a plurality of points on the object to be measured with band-shaped light, receive the light beams reflected from the plurality of points on the object to be measured, and simultaneously detect the light beams from the plurality of points. , it has excellent effects such as being able to simultaneously detect the positions of a plurality of points on the object to be measured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るアレイ型ホトダイオードの構成の
一例を示す斜視図、第2図は前記アレイ型ホトダイオー
ドの出力信号から受光位置を検出するための演算処理装
置の例を示すブロック線図、第3図は、本発明に係るア
レイ型ホトダイオードを使用した実施例の全体構成を示
す一部ブロック線図を含む斜視図、第4図は前記実施例
に用いられるアレイ型ホトダイオードの構成の例を示す
平面図、第5図は従来のホトダイオードの構成を示す斜
視図、第6図は前記従来のホトダイオードを用いた物体
の位圃検出装置の例を示す一部断面図を含むブロック線
図である。 40・・・N型高抵抗半導体基板(N層)、42・・・
半導体絶縁層、 44・・・P型半導体表面層(9層)、46A、46B
・・・電極、 48・・・共通電極、 50・・・直流電源、 52A、52B・・・負荷抵抗、 54.76・・・演算処理装置、 56・・・差動アンプ、 58・・・加算アンプ、 60・・・コンパレータ1 62・・・ゲート回路、 64・・・除算アンプ、 66・・・被測定対象物、 68A、68B・・・帯状照射光、 70・・・光照射装置、 74・・・アレイ型PSD。 78・・・演算装置。
FIG. 1 is a perspective view showing an example of the configuration of an array type photodiode according to the present invention, and FIG. 2 is a block diagram showing an example of an arithmetic processing device for detecting a light receiving position from an output signal of the array type photodiode. FIG. 3 is a perspective view including a partial block diagram showing the overall configuration of an embodiment using an array type photodiode according to the present invention, and FIG. 4 shows an example of the configuration of the array type photodiode used in the embodiment. 5 is a perspective view showing the configuration of a conventional photodiode, and FIG. 6 is a block diagram including a partial cross-sectional view showing an example of an object position detection device using the conventional photodiode. . 40... N-type high resistance semiconductor substrate (N layer), 42...
Semiconductor insulating layer, 44... P-type semiconductor surface layer (9 layers), 46A, 46B
...Electrode, 48...Common electrode, 50...DC power supply, 52A, 52B...Load resistance, 54.76... Arithmetic processing unit, 56... Differential amplifier, 58... Adding amplifier, 60... Comparator 1 62... Gate circuit, 64... Dividing amplifier, 66... Measured object, 68A, 68B... Band-shaped irradiation light, 70... Light irradiation device, 74...Array type PSD. 78... Arithmetic device.

Claims (2)

【特許請求の範囲】[Claims] (1)P型半導体で形成された長方形の受光面を有する
受光部が、N型高抵抗半導体基板上に複数個アレイ状に
形成されていて、各P型半導体受光面の長手方向の両端
部に接して電極が設けられると共に、前記N型高抵抗半
導体基板上に前記受光部が形成された面に対する裏面に
接して、前記共通電極に対する電極が設けられたことを
特徴とするアレイ型ホトダイオード。
(1) A plurality of light receiving sections each having a rectangular light receiving surface made of a P-type semiconductor are formed in an array on an N-type high-resistance semiconductor substrate, and both ends of each P-type semiconductor light receiving surface in the longitudinal direction An array type photodiode characterized in that an electrode is provided in contact with the common electrode, and an electrode is provided in contact with the common electrode on a back surface of the N-type high-resistance semiconductor substrate with respect to the surface on which the light receiving section is formed.
(2)P型半導体で形成された長方形の受光面を有する
受光部が、N型高抵抗半導体基板上に複数個アレイ状に
形成されていて、各P型半導体受光面の長手方向の両端
部に接して電極が設けられると共に、前記N型高抵抗半
導体基板上に前記受光部が形成された面に対する裏面に
接して、前記電極に対する共通電極が設けられたアレイ
型ホトダイオードであつて、各受光面の両端部に接する
各電極を流れる各電流の和が所定値より小さいか否かを
判定する手段と、判定結果から光の当つている受光部と
光の当つていない受光部とを弁別する手段と、を備えた
ことを特徴とするアレイ型ホトダイオード。
(2) A plurality of light receiving sections each having a rectangular light receiving surface made of a P-type semiconductor are formed in an array on an N-type high-resistance semiconductor substrate, and both ends of each P-type semiconductor light receiving surface in the longitudinal direction are formed on the N-type high resistance semiconductor substrate. An array type photodiode is provided with an electrode in contact with the N-type high-resistance semiconductor substrate, and a common electrode with respect to the electrode is provided in contact with a back surface of the N-type high-resistance semiconductor substrate with respect to the surface on which the light-receiving section is formed, the array-type photodiode comprising: Means for determining whether the sum of each current flowing through each electrode in contact with both ends of the surface is smaller than a predetermined value, and based on the determination result, distinguishing between a light-receiving area that is illuminated by light and a light-receiving area that is not illuminated by light. An array type photodiode characterized by comprising: a means for doing so.
JP61108361A 1986-05-12 1986-05-12 Arrayed photodiode Pending JPS62264678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108361A JPS62264678A (en) 1986-05-12 1986-05-12 Arrayed photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108361A JPS62264678A (en) 1986-05-12 1986-05-12 Arrayed photodiode

Publications (1)

Publication Number Publication Date
JPS62264678A true JPS62264678A (en) 1987-11-17

Family

ID=14482788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108361A Pending JPS62264678A (en) 1986-05-12 1986-05-12 Arrayed photodiode

Country Status (1)

Country Link
JP (1) JPS62264678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461967A (en) * 1987-09-02 1989-03-08 Fuji Electric Co Ltd Light position detecting element
EP0997952A2 (en) * 1998-10-30 2000-05-03 Riken Semiconductor image position sensitive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461967A (en) * 1987-09-02 1989-03-08 Fuji Electric Co Ltd Light position detecting element
EP0997952A2 (en) * 1998-10-30 2000-05-03 Riken Semiconductor image position sensitive device
EP0997952A3 (en) * 1998-10-30 2003-11-19 Riken Semiconductor image position sensitive device
US6847025B1 (en) 1998-10-30 2005-01-25 Riken Semiconductor image position sensitive device

Similar Documents

Publication Publication Date Title
US9702690B2 (en) Lens-less optical position measuring sensor
US9182217B2 (en) Method for measuring displacement of large-range moving platform
KR20120109470A (en) Range sensor and range image sensor
US4804848A (en) Ionizing radiation detector for detecting the direction and intensity of the radiation
US9274202B2 (en) Optical time-of-flight system
US9103914B2 (en) Optical angle of arrival sensors and methods for determining an angle of arrival of incident light
KR100491226B1 (en) Semiconductor position detector and range finder using the same
JPS62264678A (en) Arrayed photodiode
RU2526218C1 (en) Glazkov apparatus for determining angular position of light source and glazkov method for operation thereof
KR20070108666A (en) System for tracking the sun
Cui et al. The effect of spot size on linearity improvement of tetra-lateral position sensitive detector
JP2013047658A (en) Light detecting device
JPH0371041B2 (en)
JPS629841B2 (en)
JP3165255B2 (en) Distance sensor
US8803059B2 (en) Sensor for determination of the incidence angle of radiation and method for measurement the incidence angle using such a sensor
Podlaskin et al. The multiscan position-sensitive photodetector
JP2814909B2 (en) Position detection device
JP3315938B2 (en) Semiconductor dark image position detector
Xing et al. A new angular-position detector utilizing the lateral photoeffect in Si
Shi et al. A Design of Signal Processing Circuit Based on the Duo-Lateral PSD
TWI394943B (en) A double spot detection unit, and a detection device and a method using the same
JPS63169509A (en) Inclination measuring instrument
JPS61170605A (en) Detector for inclination of semiconductor wafer
JPS63153407A (en) Semiconductor position detector