JPS62264509A - Attaching of electrode - Google Patents

Attaching of electrode

Info

Publication number
JPS62264509A
JPS62264509A JP61106572A JP10657286A JPS62264509A JP S62264509 A JPS62264509 A JP S62264509A JP 61106572 A JP61106572 A JP 61106572A JP 10657286 A JP10657286 A JP 10657286A JP S62264509 A JPS62264509 A JP S62264509A
Authority
JP
Japan
Prior art keywords
film
electrode
thin film
monomolecular
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61106572A
Other languages
Japanese (ja)
Inventor
酒井 邦裕
謙治 斉藤
俊彦 宮崎
健 江口
河田 春紀
木村 稔章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61106572A priority Critical patent/JPS62264509A/en
Priority to US07/038,722 priority patent/US4835083A/en
Publication of JPS62264509A publication Critical patent/JPS62264509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電極の付設・方法に関し、特に支持体上に設け
られた単分子膜や単分子累積膜等の有機薄膜にエネルギ
ー照射して剥#部分を形成し、該剥#1.部分に電極を
付設する電極の付設方法に関するものである。本発明の
方法は、有機半導体素子等を形成する上に極めて有用な
ものであり、エレクトロニクス分野、中でも分子エレク
トロニクス分野あるいはバイオエレクトロニクス分野の
発展に大きく寄与するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the attachment and method of electrodes, and in particular, the method of attaching and peeling off an organic thin film such as a monomolecular film or a monomolecular cumulative film provided on a support by irradiating it with energy. Form # part and peel #1. The present invention relates to a method for attaching an electrode to a portion. The method of the present invention is extremely useful for forming organic semiconductor devices and the like, and will greatly contribute to the development of the electronics field, especially the molecular electronics field or the bioelectronics field.

〔従来の技術〕[Conventional technology]

従来、半導体技術分野並びに光技術分野における素材利
用は、もっばら比較的取扱いが容易な無機物を対象にし
て進められてきた。これは有機化学分野の技術進展が無
機材料分野のそれに比べて著しく遅れていたことが一因
している。
Conventionally, the use of materials in the semiconductor technology field and the optical technology field has mainly focused on inorganic materials that are relatively easy to handle. One reason for this is that technological progress in the field of organic chemistry has lagged significantly behind that in the field of inorganic materials.

しかしながら、最近の有機化学分野の技術進歩には目を
みはるものがあり、又、無機物対象の素材開発もほぼ限
界に近づいてきたと言われている。そこで、無機物を凌
ぐ新しい機能素材としての機能性有機材料の開発が要望
されている。有機材料の利点は安価かつ製造容易である
こと、機能性に富むこと等である0反面、これまで劣る
とされてきた耐熱性、機械的強度に対しても、最近これ
を克服した有機材料が次々に生まれている。
However, recent technological advances in the field of organic chemistry have been remarkable, and it is said that the development of materials for inorganic substances has almost reached its limit. Therefore, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials. The advantages of organic materials are that they are cheap, easy to manufacture, and highly functional, but on the other hand, organic materials have recently overcome their heat resistance and mechanical strength, which were previously thought to be inferior. are being born one after another.

このような技術的背景のもとで、論理素子、メモリ素子
、光電変換素子等の集積回路デバイスやマイクロレンズ
・アレイ、光導波路等の光学デバイスの機能を荷う部分
(主として薄膜部分)の一部又は全部を従来の無機薄膜
に代えて、有機薄膜で構成しようという提案から、はて
は1個の有機分子に論理素子やメモリ素子等の機能を持
たせた分子デバイスや生体関連物質からなる論理素子(
例えばバイオ・チップス)を作ろうという提案までが成
されるに至っている。
Against this technical background, some of the functional parts (mainly thin film parts) of integrated circuit devices such as logic elements, memory elements, and photoelectric conversion elements, and optical devices such as microlens arrays and optical waveguides have been developed. From the proposal to replace part or all of conventional inorganic thin films with organic thin films, we ended up creating molecular devices and bio-related substances in which a single organic molecule has functions such as a logic element or a memory element. Logic element (
For example, proposals have even been made to create biochips.

このような有機材料を用いて上記の各種デバイスを作成
する際の薄膜の形成方法としては、従来ラングミュア拳
ブロジェット法(以下、LB法と略)(例えば、新実験
化学講座、第18章488頁〜5G?頁、丸善刊などを
参照)と呼ばれる単分子膜累積法が一般に知られている
。このLB法は、例えば第4図に示す如くに分子内に親
水性部位3と疎水部位4とを併有する分子を水相l上に
展開し、浮子2などを用いてその面密度を適宜増してゆ
くと、親水性と疎水性のバランスが適当な場合には、該
分子が水相上で親水性部位を下に向け、疎水部位を上に
向けて単分子膜を形成することを利用して膜形成を行な
うものである。
Conventional methods for forming thin films when creating the various devices described above using such organic materials include the Langmuir-Fist-Blodgett method (hereinafter abbreviated as LB method) (for example, New Experimental Chemistry Course, Chapter 18, 488). A monomolecular film accumulation method called "Page ~ 5G?" (see Maruzen Publishing, etc.) is generally known. In this LB method, for example, as shown in Fig. 4, a molecule having both a hydrophilic site 3 and a hydrophobic site 4 is spread on an aqueous phase l, and its areal density is increased appropriately using a float 2 or the like. As a result, when the balance between hydrophilicity and hydrophobicity is appropriate, it is possible to utilize the fact that the molecule forms a monolayer with the hydrophilic part facing down and the hydrophobic part facing up on the aqueous phase. The film is formed using the following methods.

すなわち、このような分子は二次元粒子系とし、て振舞
い、分子の面密度が低い場合には、一分子当りの面積(
分子占有面積)と表面圧の間には二次元理想気体の状態
方程式が成り立つ「気体膜」となるが1表面圧を上げ分
子の面密度を高くすると、分子間の相互作用が強まり、
二次元固体の「凝1ii膜(または固体膜)」となる、
この凝縮膜は分子の配列、配向がきれいにそろい、高度
な秩序性及び均一性を有している。そして、この凝縮膜
はガラス等の基板に1層づつ移しとることができ、1層
または同一基板に重ねて複数回単分子膜を移し取ること
によって、単分子膜または単分子累積膜を基板上に得る
ことができる。このようにして得られる単分子膜または
単分子累積膜は、高度の秩序性を有した極めて良質の膜
となる。基板への移し取りの方法としては、垂直浸漬法
、水平付着法、回転ドラム法などが知られている。
In other words, such molecules behave as two-dimensional particle systems, and when the surface density of molecules is low, the area per molecule (
A two-dimensional ideal gas equation of state holds true between the molecular occupied area) and the surface pressure, resulting in a "gas film."1Increasing the surface pressure and increasing the areal density of molecules strengthens the interactions between molecules.
It becomes a two-dimensional solid "solid 1II film (or solid film)",
This condensed film has a well-aligned molecular arrangement and orientation, and has a high degree of order and uniformity. This condensed film can be transferred one layer at a time to a substrate such as glass, and by transferring the monomolecular film in one layer or multiple times on the same substrate, a monomolecular film or a monomolecular cumulative film can be formed on the substrate. can be obtained. The monomolecular film or monomolecular cumulative film thus obtained is a highly ordered film of extremely good quality. Known methods for transferring to a substrate include a vertical dipping method, a horizontal adhesion method, and a rotating drum method.

ところで有@ tI n2を構成する有機化合物、中で
も導電性を有する有機化合物としては、例えばテトラシ
アノキジメタン(TCNQ)を電子受容体として親水性
部位に有する有機金属化合物で、ビス一部位として長鎖
アルキル基を持った両親媒性電荷移動錯体等が知られて
いる。この錯体は水相上で単分子膜を形成し、該単分子
膜を一層ずつ累積することにより、単分子累積膜を作成
することができる(日本化学会、第51回秋季年会予行
集、490頁参照)。この単分子累積膜は、その膜面に
平行な方向の伝導度が約0.1 S/cmという大きな
値を示す一方で、膜面に垂直な方向(累積方向)の伝導
度が10”S/cm程度と、その伝導度が膜面方向で大
きな異方性を示し、膜面に平行な方向では導電体として
、一方膜面に垂直な方向では絶縁体としてふるまうこと
も知られている。これは該錯体が単分子累積膜として高
度の秩序性をもって配列、配向するため、1り構造を電
気的に見ると、例えば第5図に示す如くに親水性部位に
起因する導電領域21と疎水性部位に起因する絶縁領域
2oとが累積方向(基板13上の単分子累積膜18の膜
面に垂直な方向)に交互に繰り返されていることによる
By the way, among the organic compounds that make up @tI n2, examples of organic compounds that have electrical conductivity include, for example, organometallic compounds that have tetracyanokidimethane (TCNQ) as an electron acceptor in a hydrophilic site, and have a long chain as a bis site. Amphiphilic charge transfer complexes having an alkyl group are known. This complex forms a monomolecular film on an aqueous phase, and by accumulating the monomolecular film layer by layer, a monomolecular cumulative film can be created (Chemical Society of Japan, 51st Autumn Annual Meeting Proceedings, (See page 490). This monomolecular cumulative film exhibits a high conductivity of approximately 0.1 S/cm in the direction parallel to the film surface, while the conductivity in the direction perpendicular to the film surface (cumulative direction) is 10"S/cm. It is also known that its conductivity exhibits large anisotropy in the direction of the film surface, with a conductivity of about 1.2 cm, and that it behaves as a conductor in the direction parallel to the film surface, while acting as an insulator in the direction perpendicular to the film surface. This is because the complex is arranged and oriented with a high degree of order as a monomolecular cumulative film. When looking at the structure electrically, for example, as shown in FIG. This is because the insulating regions 2o caused by sexual sites are alternately repeated in the cumulative direction (direction perpendicular to the film surface of the monomolecular cumulative film 18 on the substrate 13).

このような有機薄膜の有する上記導電性をはじめとする
大きな異方性は、応用面での有意性がある一方で、電極
の付設を困難なものとしている。
The large anisotropy of such organic thin films, including the above-mentioned conductivity, is significant in terms of application, but makes it difficult to attach electrodes to them.

すなわち、通常のバルクあるいは無機薄膜では、例えば
第6図に示すように、該薄膜23を基板13上に設け、
該8膜23の面上(第6図(1)参照)あるいは下(第
6図(2)参照)に電極(例えばAu、Cu、 Ajな
どの金属層)22を設けることで、オーミックあるいは
ショットキー接合等の電極形成が図られるが、前記の如
き異方性を有する有機薄膜に上記の方法を適用すると、
各導電領域と電極との間に絶縁層が介在するため、オー
ミックあるいはショットキー接合等の電極形成を困難な
ものとしている。
That is, in the case of a normal bulk or inorganic thin film, for example, as shown in FIG. 6, the thin film 23 is provided on the substrate 13,
By providing an electrode (for example, a metal layer such as Au, Cu, Aj, etc.) 22 on the surface (see FIG. 6 (1)) or below (see FIG. 6 (2)) of the eight films 23, ohmic or shot Formation of electrodes such as key junctions is attempted, but when the above method is applied to organic thin films having anisotropy as described above,
Since an insulating layer is interposed between each conductive region and the electrode, it is difficult to form an electrode such as an ohmic or Schottky junction.

そして、このような異方性を有する有機材料への電極の
付設方法は、従来極めて少なく、また電極形状の制御性
等に乏しいものであった。例えば、前述のビスーテトラ
シ7ノキジメタンドコシルピリジウムよりなる単分子累
積膜の膜面内方向の伝導度測定の場合には、第7図に示
す如くにガラス基板19上に累積した単分子累積膜1B
の一部を機械的に破壊もしくは剥離し、その箇所に導体
を充填することで該累積膜に対する外部接続電極24を
付設している。具体的には、導電塗料(例えば銀ペース
ト等)を該単分子累積膜にこすりつけるようにして塗布
したものであり、電極付設後の状態は、第7図のようで
ある。
Conventionally, there are very few methods for attaching electrodes to organic materials having such anisotropy, and the controllability of the electrode shape is poor. For example, in the case of measuring the conductivity in the in-plane direction of a monomolecular cumulative film made of the above-mentioned bis-tetracy7nokidimethandocylpyridium, the monomolecular cumulative film accumulated on the glass substrate 19 as shown in FIG. Membrane 1B
By mechanically breaking or peeling a part of the stacked film and filling that part with a conductor, an external connection electrode 24 is attached to the cumulative film. Specifically, a conductive paint (for example, silver paste, etc.) is applied by rubbing it onto the monomolecular cumulative film, and the state after the electrodes are attached is as shown in FIG. 7.

しかしながら上記のような電極の付設方法では、上記第
7図に示す如くに電極付設部分が凹凸状になったりして
必ずしも整然としたものとならず、例えば電極間距離や
電極面積といった電気的特性を大きく左右するパラメー
タを精度よく制御することが難かしく、勿論再現性にも
乏しい、また、半導体素子等への応用を考えるならば、
微細加工技術が必ず要求されるが、上記方法はこれに全
く適さない、更に、導電塗料塗布の場合のように、有機
溶媒が単分子累積膜に触れる工程を有する場合には、こ
の影響、すなわち塗布部あるいはその近傍の膜溶解やn
り構造変化をきたすことがあり、場合によっては電極付
設時に伝導度の低下などの素子特性劣化を引き起こすこ
とがあった。
However, in the method for attaching the electrodes as described above, the electrode attachment part becomes uneven as shown in FIG. It is difficult to accurately control parameters that have a large influence, and of course the reproducibility is poor, and when considering application to semiconductor devices, etc.
Microfabrication technology is definitely required, but the above method is not suitable at all.Furthermore, when there is a step in which the organic solvent comes into contact with the monomolecular cumulative film, as in the case of applying conductive paint, this effect, i.e. Film dissolution at or near the coating area
This may cause structural changes, and in some cases, when electrodes are attached, this may cause deterioration of device characteristics such as a decrease in conductivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の諸点に鑑み成されたものであって、本発
明の目的とするところは、上記従来例の電極の付設方法
の欠点を解消し、任意形状の電極を容易に形成すること
ができ、且つ再現性が高<、*線加工にも適した新規な
電極の付設方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to eliminate the drawbacks of the above-mentioned conventional method of attaching electrodes, and to easily form electrodes of arbitrary shapes. The object of the present invention is to provide a novel method for attaching electrodes that is suitable for wire processing and has high reproducibility.

本発明の別の目的は、電極を付設するに際し。Another object of the invention is to provide a method for attaching electrodes.

電極付設部分の素子特性に悪影響を及ぼさない新規な電
極の付設方法を提供することにある。
It is an object of the present invention to provide a novel method for attaching electrodes that does not adversely affect the device characteristics of the electrode attachment portion.

本発明の更に別の目的は、有機薄膜への外部接続電極の
付設はもとより、該薄膜内に絶縁層と導電層とが交互に
繰り返し積層されであるような異方性の有機薄膜の居間
内の所望の部位を導通させる内部接続電極の付設をも可
能とする新規な電極の付設方法を提供することにもある
Still another object of the present invention is to attach an external connection electrode to an organic thin film, and also to use an anisotropic organic thin film in which an insulating layer and a conductive layer are alternately and repeatedly laminated within the thin film. Another object of the present invention is to provide a novel method for attaching an electrode, which makes it possible to attach an internally connected electrode that conducts a desired part of the electrode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、以下の本発明によって達成される
The above objects of the present invention are achieved by the present invention as follows.

すなわち本発明は、支持体上に設けた有機薄膜にエネル
ギー照射して剥離部分を形成し、該剥離部分に電極を付
設することを特徴とする電極の付設方法である。
That is, the present invention is an electrode attaching method characterized by forming a peeled portion by irradiating an organic thin film provided on a support with energy, and attaching an electrode to the peeled portion.

〔作用〕[Effect]

本発明の方法は各種の有機半導体素子を形成する上に極
めて有用なものであり、具体的には例えば支持体上の有
機薄膜が導電性を有し、該薄膜を導体として機能させる
べく電極を付設する場合、支持体上の有機薄膜が絶縁性
で、該薄膜下層の支持体を導体として機能させるべく電
極を付設する場合あるいは有機薄膜が前述の単分子累積
膜の如く絶縁層と導電層とが交互に繰り返された積層構
成を有するものであり、該有機薄膜内部の導電層の所望
の部分を接続する内部接続電極を付設する場合等に好適
に適用し得るものである。
The method of the present invention is extremely useful for forming various organic semiconductor devices, and specifically, for example, when an organic thin film on a support has conductivity, an electrode is applied to the thin film to function as a conductor. In this case, the organic thin film on the support is insulating and an electrode is attached so that the support below the thin film functions as a conductor, or the organic thin film has an insulating layer and a conductive layer, such as the monomolecular cumulative film mentioned above. It has a laminated structure in which are alternately repeated, and can be suitably applied when an internal connection electrode is attached to connect a desired portion of a conductive layer inside the organic thin film.

以下、必要に応じて図面を参照しつつ、本発明の詳細な
説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings as necessary.

第1図(1)乃至(3)に本発明の方法のノ、(本釣な
態様を示す、すなわち、本発明の方法においては、通常
、電極の付設に先立って、支持体上の有機薄膜にエネル
ギー照射を行なって剥離部分を形成し、該剥離部分に電
極を付設する。具体的には例えば第1図(1)に示す如
くに支持体(本例では基板19)上に設けた有Ja、薄
膜27にエネルギー照射25を行なって該照射領域の有
機薄膜27を剥離させ、第1図(2)に例示の如き剥離
部分2B−aを形成し、しかる後に該剥離領域2B−a
に第1図(3)に示す如くに電極材料を充填することに
より電極28を付設するのである。
FIGS. 1 (1) to (3) show the main aspects of the method of the present invention. That is, in the method of the present invention, an organic thin film is usually formed on a support before attaching an electrode. Energy is irradiated to form a peeled part, and an electrode is attached to the peeled part.Specifically, for example, as shown in FIG. Ja, energy irradiation 25 is applied to the thin film 27 to peel off the organic thin film 27 in the irradiated area, forming a peeled part 2B-a as illustrated in FIG. 1(2), and then the peeled area 2B-a.
As shown in FIG. 1(3), the electrode 28 is attached by filling the electrode material.

本発明に適用されるエネルギー照射としては、例えばレ
ーザ光、紫外線等の光や熱、また例えば超音波等の音、
更にはイオンビーム、電子線等の粒子束等が好適なもの
として挙げられる。エネルギー照射は所望とする剥a部
分の大きさ等によっても異なるが、スポット照射により
行なうのが加工精度の点からは好ましい。
Energy irradiation applied to the present invention includes, for example, laser light, light such as ultraviolet light, heat, and sound such as ultrasonic waves.
Furthermore, particle fluxes such as ion beams and electron beams are also suitable. The energy irradiation varies depending on the desired size of the peeled portion, etc., but from the viewpoint of processing accuracy, spot irradiation is preferable.

このようなエネルギー照射の行なわれる有[6N膜を支
持する支持体は、「ij述の如き基板が代表的なものと
して挙げられる。ノフ板は導電性のものでも絶縁性のも
のでもよく、無機あるいは有機材料等、その材質も特に
は限定されない、また支持体は、このような基板の他、
例えばその上に絶縁性などの向上を目的とした機能層と
しての有機薄膜が設けられ、該薄11Qを瀾離させて電
極が付設される半導体素子などであってもよい。
A typical support for supporting an organic [6N film that is irradiated with energy in this way is a substrate as described in ij. The nof plate may be conductive or insulating, and may be an inorganic or inorganic substrate. Alternatively, the material is not particularly limited, such as an organic material, and the support may include, in addition to such a substrate,
For example, it may be a semiconductor element on which an organic thin film is provided as a functional layer for the purpose of improving insulation, etc., and an electrode is attached by separating the thin film 11Q.

本発明においてエネルギー照射される有機薄膜は、所望
される素子特性などに応じた任意のものとすることがで
きる0例えば異方性が所望される場合には、分子内に少
なくとも親水性部位と疎水性部位とを併有する前述の如
き有機化合物からなる単分子膜もしくは単分子累積膜で
構成するとよい、もちろん有機薄膜は導電性であっても
、絶縁性であってもよい。このような有機薄膜を支持体
上に形成する方法としては、上記単分子膜もしくは単分
子累積膜を所望する場合には、前述したLB法が好適に
採用される。その他、蒸着、スパッタリング、化学気相
反応法(CVD法)等の膜形成方法によってもよい。
The organic thin film to which energy is irradiated in the present invention can be of any type depending on the desired device characteristics. For example, if anisotropy is desired, at least a hydrophilic site and a hydrophobic site within the molecule. The organic thin film may be composed of a monomolecular film or a monomolecular cumulative film made of the above-mentioned organic compound having a sexual site.Of course, the organic thin film may be conductive or insulating. As a method for forming such an organic thin film on a support, when the above-mentioned monomolecular film or monomolecular cumulative film is desired, the above-mentioned LB method is suitably employed. Other film forming methods such as vapor deposition, sputtering, and chemical vapor phase reaction (CVD) may also be used.

本発明において形成した剥離部分に電極を付設する方法
としては、例えば蒸着、スパッタリング、 CVD法等
の膜形成方法を利用しての該剥離部分への電極材料の充
填、あるいは低融点金属やグラファイトなどの塗布によ
る方法等が具体的なものとして挙げられる。しかしなが
ら、有機薄膜の機械的あるいは化学的な破損の防止を考
慮すると、上記蒸着、スパッタリング、CVD法等の膜
形成方法が好ましく用いられる。電極材質としては各種
の金属が好適であるが、導電性を有するものであれば有
機質のものでも無機質のものでもよい。
As a method for attaching an electrode to the peeled portion formed in the present invention, for example, the peeled portion may be filled with an electrode material using a film forming method such as vapor deposition, sputtering, or CVD, or a low melting point metal, graphite, etc. Specific examples include methods such as coating. However, in consideration of preventing mechanical or chemical damage to the organic thin film, the above film forming methods such as vapor deposition, sputtering, and CVD are preferably used. Various metals are suitable as the electrode material, but organic or inorganic materials may be used as long as they have conductivity.

尚、上記においては特に説明しなかったが、本発明にお
いては、エネルギー照射による有機薄膜の剥離と剥離部
分への電極材料の充填を同時行なうことも可能である。
Although not specifically explained above, in the present invention, it is also possible to simultaneously peel off the organic thin film by energy irradiation and fill the peeled portion with electrode material.

このような場合には、例えばディーΦエル・エリツクC
D、L、Ehrlich )等によって提唱されたCV
D法の1種で、レーザ励起反応を用いた方法[(ジャー
ナル・オブ拳エレクトロケミカル・ソサエティ、128
巻、1381年、2033頁)  (J、EIectr
ochem、Soc、、 128.(1981)、20
39)]等を適用して、有機薄膜の剥離と同時にあるい
は引き続いてCrやタングステンなどの金属材料の充填
を行なうとよい。
In such a case, for example,
CV proposed by D., L., Ehrlich) et al.
A type of D method that uses a laser-excited reaction [(Journal of Fist Electrochemical Society, 128
Vol. 1381, p. 2033) (J, EIectr
ochem, Soc,, 128. (1981), 20
39)], etc., and filling with a metal material such as Cr or tungsten may be carried out simultaneously with or subsequently to the peeling off of the organic thin film.

本発明ではエネルギー照射による有機薄膜の剥離によっ
て電極の付設を行なうため、例えば電極間距離や電極面
積といった電気的特性を大きく左右するパラメータを精
度よく、しかも再現性よく制御することが可能である。
In the present invention, since the electrodes are attached by peeling off the organic thin film by energy irradiation, it is possible to precisely and reproducibly control parameters that greatly affect electrical characteristics, such as the distance between the electrodes and the area of the electrodes.

すなわち、従来の如き機械的な剥離とは異なって、剥離
部分が例えば前述の第1図に示した如くに整然としたも
のとなり、更にはスポット照射による微細加工も可能で
あり、また導電塗料塗布におけるような有機溶媒なども
特には必要としないので、化学的あるいは機械的な膜の
破損を起こすことなく電極の付設が可能であり、伝導度
の低下などの素子特性劣化を生じることがない。
In other words, unlike conventional mechanical peeling, the peeled area becomes orderly, as shown in Figure 1 above, and microfabrication by spot irradiation is also possible. Since such organic solvents are not particularly required, electrodes can be attached without causing chemical or mechanical damage to the film, and there is no deterioration of device characteristics such as a decrease in conductivity.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

実施例1 トニトリルとベンゼンの1:1混合溶媒に1mg/−の
濃度で溶かした後、K)1003でpH6,8に調整さ
れたCdCl211a度4 X 10″Ia+ol/J
Lの水相(水温17℃)上に展開した。
Example 1 CdCl211a degree 4 X 10'' Ia+ol/J adjusted to pH 6,8 with K) 1003 after dissolving in a 1:1 mixed solvent of tonitrile and benzene at a concentration of 1 mg/-
The mixture was developed on the aqueous phase of L (water temperature: 17°C).

次いで、溶媒のアセトニトリルとベンゼンを蒸発除去し
た後、表面圧を20db 子膜を形成した。表面圧を一定に保ちながら、表面を疎
水処理(LB法によりアラキシン酸カドミウムを3層累
積したもの)した清浄なガラス基板(30X lo■)
を支持体とし、該基板を水面を横切る方向に速度15■
/分で静かに20mm程度浸漬した後、続いて速度10
+sm/分で静かに引き上げ、上記ビスーテトラシアノ
キノジメタンドコシルピリジニウムからなる2層の単分
子膜を基板上に累積した。この操作を10回繰り返し、
第2図に示す如くに計20層のビスーテトラシアノキノ
ジメタンドコシルピリジニウムからなる単分子累積膜2
7を基板19上に形成した。
Next, the solvents acetonitrile and benzene were removed by evaporation, and then the surface pressure was set to 20 db to form a child film. A clean glass substrate (30X lo■) whose surface has been subjected to hydrophobic treatment (three layers of cadmium araxinate were accumulated using the LB method) while keeping the surface pressure constant.
is used as a support, and the substrate is moved at a speed of 15 cm in the direction across the water surface.
After gently dipping for about 20 mm at a speed of 10 mm,
The substrate was gently pulled up at +sm/min to accumulate a two-layer monomolecular film made of the above-mentioned bis-tetracyanoquinodimethandocylpyridinium on the substrate. Repeat this operation 10 times,
As shown in FIG. 2, a monomolecular cumulative film 2 consisting of a total of 20 layers of bis-tetracyanoquinodimethandocylpyridinium
7 was formed on the substrate 19.

次に、該単分子累積膜27の膜面上方よりArレーザ照
射(出力20mW、ビーム径1鱗)を行ない、該膜27
上に2本の溝を形成した。尚、Arレーザ照射は走査速
度0.5 massで行ない、溝間隔は4■とした。
Next, Ar laser irradiation (output 20 mW, beam diameter 1 scale) is performed from above the film surface of the monomolecular cumulative film 27, and the film 27 is
Two grooves were formed on the top. Incidentally, the Ar laser irradiation was performed at a scanning speed of 0.5 mass, and the groove interval was set to 4.

次いで、この溝の上に、第2図に示すように電極材料と
してのAgを抵抗加熱法により真空蒸着(蒸着速度1.
5 nm/S、パックグラウンドプレッシャー 2 X
 10゛6Torr、膜厚200 nm) L、  1
対の対向電極22を形成した。
Next, as shown in FIG. 2, Ag as an electrode material is vacuum-deposited onto this groove by a resistance heating method (deposition rate: 1.
5 nm/S, pack ground pressure 2X
10゛6 Torr, film thickness 200 nm) L, 1
A pair of opposing electrodes 22 was formed.

上記と全く同様の方法で、上記Ag電極22を有する素
子を計lθ個作成した。
A total of lθ elements having the Ag electrode 22 were fabricated in exactly the same manner as described above.

以上のようにして作成した計lθ個の素子に対して、そ
れぞれの電流電圧特性を測定し、膜面内方向の伝導率の
平均値σをを求めたところ0.159/cmであった。
The current-voltage characteristics of a total of lθ elements produced as described above were measured, and the average conductivity σ in the in-plane direction of the film was found to be 0.159/cm.

尚、電極間距離の異なる(それぞれ8IIII1.15
Il111)素子を上記同様にそれぞれ計lθ個作成し
、上記同様の測定を行なってその1り面内方向の伝導率
の平均値σを求めたところ、いずれも0 、12〜0 
、15S/c+wの範囲にあり、オーミック接合の電極
が形成されていることが確認された。
In addition, the distance between the electrodes is different (8III1.15 respectively)
Il111) A total of lθ elements were prepared in the same manner as above, and the average value σ of the conductivity in one in-plane direction was determined by performing the same measurements as above.
, 15S/c+w, and it was confirmed that an ohmic contact electrode was formed.

比較例 従来法の例として、電極付設部分の有機薄膜の剥離をエ
ネルギー照射によるのではなく、機械的な!A敲によっ
て行なう以外は実施例1と同様にして、2木の溝を有す
るビスーテトラシアノキノジメタンドコシルピリジニウ
ムからなる単分子累積膜を基板上に得た。この溝に銀ペ
ーストを塗布して電極を形成(但し、電極間隔15mm
) した。
Comparative Example As an example of the conventional method, the organic thin film on the electrode attachment area is not peeled off by energy irradiation, but mechanically! A monomolecular cumulative film of bis-tetracyanoquinodimethandocylpyridinium having two grooves was obtained on a substrate in the same manner as in Example 1, except that it was carried out using A-shape. Apply silver paste to this groove to form electrodes (however, the electrode spacing is 15 mm)
) did.

上記同様の方法で計10個の素子を作成し、該素子に実
施例1と同様の測定を行なって膜面内方向の伝導率の平
均値σを求めたところ、Q、Q3S/c諺と一桁近くも
小さい値を示した。これは機械的な剥離による電極付設
部分の膜の凹凸に基づく電極と膜とのコンタクト(接触
)不良や、銀ペースト塗布時の有機溶媒による電極近傍
の膜特性の劣化等によるものと推定される。
A total of 10 devices were prepared in the same manner as above, and the devices were subjected to the same measurements as in Example 1 to determine the average value σ of the conductivity in the film in-plane direction. The value was nearly an order of magnitude smaller. This is thought to be due to poor contact between the electrode and the film due to unevenness of the film at the electrode attachment part due to mechanical peeling, and deterioration of film properties near the electrode due to organic solvent during silver paste application. .

実施例2 電極材料をAuとする以外は実施例1と同様にして同形
状の素子をlθ個作成した。但し、電極間隔は0.5 
mmとし、Au電極は実施例1と同様の抵抗加熱法によ
り真空蒸着した(蒸着速度1.5 nta/s、膜厚2
00n■)。
Example 2 lθ elements of the same shape were produced in the same manner as in Example 1 except that the electrode material was Au. However, the electrode spacing is 0.5
mm, and the Au electrode was vacuum deposited by the same resistance heating method as in Example 1 (deposition rate 1.5 nta/s, film thickness 2
00n■).

以上のようにして作成した10個の素子のσを実施例1
と同様にして求めたところ、O,193/cmと従来例
のものに比して良好な値を示した。
Example 1
When obtained in the same manner as above, it was found to be O, 193/cm, which is a better value than that of the conventional example.

実施例3 実施例1と同様の方法でガラス基板18−ヒにビス−テ
トラシアノキノジメタンの単分子累積膜27を20層累
積した。
Example 3 In the same manner as in Example 1, 20 monomolecular films 27 of bis-tetracyanoquinodimethane were deposited on a glass substrate 18-A.

次に、第3図(1)に示すようにその幅および間隔が1
mmの数本のスリット(窓)30を有するニッケルパー
マロイ製のマスク23を該単分子累積膜27と密着させ
た。
Next, as shown in Figure 3 (1), the width and interval are 1
A mask 23 made of nickel permalloy having several mm-sized slits (windows) 30 was brought into close contact with the monomolecular cumulative film 27 .

次に、該マスク28を密着させた基板18を、ガス導入
口と電子ビーム蒸発源を併せ持つ高周波励起イオンブレ
ーティング装置の真空容器中に設置した後、カス導入口
よりArガス(ガス圧5X10’Torr)を導入する
とともに高周波電力(周波数13MHz 、出力12W
 )を印加してArイオンを生成させた。このArイオ
ンを100 eVで加速し、マスク29を通して単分子
累積膜II!J27に10分間のAtイオン照射31を
行なうことによって、該膜27に第3図(2)に示す如
き2本の溝を形成した。尚、基板温度は室温とした。
Next, the substrate 18 with the mask 28 in close contact with it is placed in a vacuum chamber of a high-frequency excited ion brating device that has both a gas inlet and an electron beam evaporation source, and then Ar gas (gas pressure 5 x 10' Torr) and high frequency power (frequency 13MHz, output 12W)
) was applied to generate Ar ions. These Ar ions are accelerated at 100 eV and passed through a mask 29 into a monomolecular cumulative film II! By subjecting J27 to At ion irradiation 31 for 10 minutes, two grooves as shown in FIG. 3(2) were formed in the film 27. Note that the substrate temperature was room temperature.

次に、マスク28を密着させた状態で基板18を真空容
器中から取り出さずに、該容器を再度真空(約2 X 
10°’ Tarr)に引き、今度は電子ビーム蒸着源
を用いてエミッション電流800 mA、加速電圧10
kVの条件で第3図(2)に示す如くにM蒸着(II!
2厚200 nm) 32を行ない、第3図(3)に示
す如き1対の対向電極28を形成した。
Next, without taking out the substrate 18 from the vacuum container with the mask 28 in close contact with it, the container is vacuumed again (approximately 2
This time, using an electron beam evaporation source, the emission current was 800 mA and the acceleration voltage was 10°.
M evaporation (II!) was performed under kV conditions as shown in Figure 3 (2).
2 (thickness: 200 nm) 32 was carried out to form a pair of opposing electrodes 28 as shown in FIG. 3(3).

上記同様の方法で作成した計lθ個の素子に対して電流
電圧特性を測定したところ、少なくとも0〜1■の領域
においては直線性が観測され、オーミック接合の電極が
形成されていることが確認された。尚、この素子の膜面
内方向の伝導率の平均値は0.14S/c層であった。
When the current-voltage characteristics were measured for a total of lθ elements created using the same method as above, linearity was observed at least in the region of 0 to 1■, confirming that an ohmic contact electrode was formed. It was done. The average value of the conductivity in the in-plane direction of this device was 0.14 S/c layer.

尚、木実流側では′A敲部分への電極材料の充填を電子
ビーム黒石で行なう場合が示されているが、この時、高
周波を印加し、さらに生成するイオンを加速することで
イオンブレーティングによる充填も可能である。
In addition, on the Kinotsu flow side, it is shown that the electrode material is filled into the 'A part with an electron beam black stone, but at this time, the ion beam is Filling by rating is also possible.

実施例4 実施例1と同様の方法でガラス基板上にビス−テトラシ
ア/キノジメタンの単分子累積膜を20層累積した。
Example 4 In the same manner as in Example 1, 20 monomolecular films of bis-tetrasia/quinodimethane were deposited on a glass substrate.

次に、該単分子累積膜を形成した基板を、先導入用の窓
を有する真空容器中に数mgのタングステン錯体(’1
1(GO)6 )とともに封入した。容器内のW(Co
)bのガス圧が飽和蒸気圧になるのを待ち、次に該容器
の窓を通して膜面上方よりスポット径3μ、中心波長2
57 n+s、強度500M/cm″のc’m (連続
)レーザ光を照射することによって、単分子累積膜の剥
離およびレーザ励起反応法によるタングステンの基板へ
の堆積を同時に行なった。この時、該レーザ光を走査(
走査速度IJLII/秒)することで、基板上に2木の
線状のタングステン電極(電極間隔1 mm)を得た。
Next, several mg of tungsten complex ('1
1(GO)6). W(Co) in the container
) Wait for the gas pressure in b to reach the saturated vapor pressure, and then apply a spot diameter of 3μ and a center wavelength of 2 from above the film surface through the window of the container.
By irradiating a c'm (continuous) laser beam with an intensity of 57 n+s and an intensity of 500 M/cm'', the monomolecular cumulative film was peeled off and tungsten was deposited on the substrate by a laser excitation reaction method at the same time. Scanning the laser beam (
By scanning at a scanning speed of IJLII/sec), two linear tungsten electrodes (electrode spacing of 1 mm) were obtained on the substrate.

以上のようにして得た素子のタングステン電極間の電流
電圧特性を測定したところ、少なくともθ〜±1■の範
囲で直線性を観察され、オーミック接合の電極が形成さ
れていることが確認された。
When the current-voltage characteristics between the tungsten electrodes of the device obtained as described above were measured, linearity was observed at least in the range of θ to ±1■, confirming that an ohmic contact electrode was formed. .

尚、本実施例では電極形成用の原料としてW(GO)6
を用いたが、この他にも例えばFe(GO)s 、 0
r(GO)r、などを用いることによりFe電極やCr
電極等を容易に形成し得るものである。
In this example, W(GO)6 was used as the raw material for forming the electrode.
was used, but in addition, for example, Fe(GO)s, 0
By using r(GO)r, etc., Fe electrodes and Cr
Electrodes and the like can be easily formed.

本発明の方法は、上記実施例に示したような導電性を有
する単分子累積膜への電極の付設に限定されるものでは
なく、例えば半導体素子あるいは導体上に形成された絶
縁性有機薄膜にエネルギー照射により剥gI部分を形成
し、その下の半導体素子あるいは導体上に外部接続電極
を付設する場合にも勿論適用し得るものである。また、
このような外部接続電極の他、例えば上記実施例に例示
の如き膜形成およびエネルギー照射による剥離部分の形
成並びに電極材料の充填とを繰り返し実施することによ
り、有機薄膜内の導電層の所望の部分を接続する内部接
続電極の付設をも行ない得るものである。
The method of the present invention is not limited to attaching an electrode to a monomolecular cumulative film having conductivity as shown in the above embodiments, but, for example, to attaching an electrode to an insulating organic thin film formed on a semiconductor element or a conductor. Of course, the present invention can also be applied to the case where a stripped gI portion is formed by energy irradiation and an external connection electrode is provided on a semiconductor element or conductor therebelow. Also,
In addition to such an external connection electrode, a desired portion of the conductive layer within the organic thin film can be formed by repeatedly forming a film, forming a peeled portion by energy irradiation, and filling the electrode material as exemplified in the above embodiment. It is also possible to attach internal connection electrodes to connect the two.

〔発明の効果〕〔Effect of the invention〕

以上に説明した本発明によってもたらされる効果として
は、下記のようなものが挙げられる。
The effects brought about by the present invention described above include the following.

■電極が精度よく形成され、再現性も向上したこと、 ■電極材料およびその形成方法の選択の自由度が高く、
素子性能の向上、工程の簡略化が図れたこと、 (■微細加工が可能となったこと、 等である。
■ Electrodes can be formed with high precision and reproducibility has improved. ■ High degree of freedom in selecting electrode materials and their formation methods.
The device performance has been improved, the process has been simplified, (■ Microfabrication has become possible, etc.)

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)乃至(3)は、それぞれ本発明の方法の基
本的な態様を説明する図、第2図は本発明の方法の別の
態様を説明する図、第3図(1)乃至(3)はそれぞれ
本発明の方法の更に別の態様を説明する図、第4図はL
B法の概略を説明するためのIΔ、第5図はLB法によ
って形成した単分子累積IIQの性状を説明するための
図、第6図(1)乃至(2)および第7図はそれぞれ従
来例の電極の付設方法を説明するための図である。 19・・・基板 22.24.28・・・電極
Figures 1 (1) to (3) are diagrams each explaining a basic aspect of the method of the present invention, Figure 2 is a diagram explaining another aspect of the method of the present invention, and Figure 3 (1). thru (3) are diagrams each illustrating still another aspect of the method of the present invention, and FIG. 4 is L.
IΔ for explaining the outline of the B method, FIG. 5 is a diagram for explaining the properties of single molecule cumulative IIQ formed by the LB method, and FIGS. 6 (1) to (2) and FIG. 7 are for conventional It is a figure for explaining the attachment method of the example electrode. 19... Substrate 22.24.28... Electrode

Claims (2)

【特許請求の範囲】[Claims] (1)支持体上に設けた有機薄膜にエネルギー照射して
剥離部分を形成し、該剥離部分に電極を付設することを
特徴とする電極の付設方法。
(1) A method for attaching an electrode, which comprises irradiating an organic thin film provided on a support with energy to form a peeled portion, and attaching an electrode to the peeled portion.
(2)前記有機薄膜が、少なくとも親水性部位と疎水性
部位とを併有する有機化合物の単分子膜または単分子累
積膜よりなることを特徴とする特許請求の範囲第1項に
記載の電極の付設方法。
(2) The electrode according to claim 1, wherein the organic thin film is composed of a monomolecular film or a monomolecular cumulative film of an organic compound having at least a hydrophilic site and a hydrophobic site. Attachment method.
JP61106572A 1986-04-16 1986-05-12 Attaching of electrode Pending JPS62264509A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61106572A JPS62264509A (en) 1986-05-12 1986-05-12 Attaching of electrode
US07/038,722 US4835083A (en) 1986-04-16 1987-04-15 Method for patterning electroconductive film and patterned electroconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106572A JPS62264509A (en) 1986-05-12 1986-05-12 Attaching of electrode

Publications (1)

Publication Number Publication Date
JPS62264509A true JPS62264509A (en) 1987-11-17

Family

ID=14436958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106572A Pending JPS62264509A (en) 1986-04-16 1986-05-12 Attaching of electrode

Country Status (1)

Country Link
JP (1) JPS62264509A (en)

Similar Documents

Publication Publication Date Title
US7918982B2 (en) Production device and production method for conductive nano-wire
US6737668B2 (en) Method of manufacturing structure with pores and structure with pores
US7691433B2 (en) Method for structured application of molecules to a strip conductor and molecular memory matrix
US4338164A (en) Method for producing planar surfaces having very fine peaks in the micron range
Luo et al. Massively Parallel Arrays of Size‐Controlled Metallic Nanogaps with Gap‐Widths Down to the Sub‐3‐nm Level
JP5049549B2 (en) Substrate for mass spectrometry, method for producing the same, and mass spectrometer
US4929524A (en) Organic photo conductive medium
US4835083A (en) Method for patterning electroconductive film and patterned electroconductive film
US20050176336A1 (en) Method of manufacturing field emitter
EP1712298A1 (en) Organic thin film insulator
JPS62264509A (en) Attaching of electrode
KR100449142B1 (en) Micro supercapacitor adopting carbon nanotubes and manufacturing method thereof
JPH0570509B2 (en)
CN114899275A (en) Photoelectric detector with noble metal nanowire and two-dimensional molybdenum disulfide composite structure and preparation method thereof
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JP3502134B2 (en) Cold cathode
JPH0512990A (en) Manufacture of mim type electron emitting element
Dobson et al. Microelectrode array device: Photolithographic fabrication and electrochemical characterisation
JPH08297361A (en) Transfer mask
JP3774463B2 (en) Horizontal field emission cold cathode device
JP2005005615A (en) Method for manufacturing diamond electronic element
JPH03122938A (en) Electron emitting element
JPH02244673A (en) Electronic element using organic semiconductor and manufacture thereof
JPH02257542A (en) Electron emitting element and method for forming the element
JPH04106834A (en) Manufacture of electric field emission device