JPS62263322A - Production of titanium boride fiber or titanium oxide fiber coated with titanium boride - Google Patents

Production of titanium boride fiber or titanium oxide fiber coated with titanium boride

Info

Publication number
JPS62263322A
JPS62263322A JP10804986A JP10804986A JPS62263322A JP S62263322 A JPS62263322 A JP S62263322A JP 10804986 A JP10804986 A JP 10804986A JP 10804986 A JP10804986 A JP 10804986A JP S62263322 A JPS62263322 A JP S62263322A
Authority
JP
Japan
Prior art keywords
fibers
titanium
fiber
gas
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10804986A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogino
荻納 淑
Kanichi Kamiya
寛一 神谷
Toshinobu Yokoo
俊信 横尾
Kensuke Makita
牧田 研介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP10804986A priority Critical patent/JPS62263322A/en
Publication of JPS62263322A publication Critical patent/JPS62263322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fibers, having high heat resistance, strength, elasticity and electric conductivity and useful as reinforcing materials for composite materials, etc., by hydrolyzing a Ti alkoxide, polycondensing the resultant hydrolyzate, directly spinning the polycondensation product and firing the formed Ti compound gel fibers at a high temperature under specific condition while feeding NH3 gas. CONSTITUTION:A titanium alkoxide, e.g. titanium tetraisopropoxide, etc., is blended with distilled water, ethanol and hydrochloric acid and the resultant blend is heated, hydrolyzed and polycondensed through dehydration to give a sol solution having spinnability, which is directly spun to afford a titanium compound gel fibers. The resultant fibers are then fired at >=800 deg.C temperature while feeding NH3 gas at a value of 1/S expressed by the formula reactor volume [l]/reaction gas volume flow rate [l/sec] = 1/space velocity S [sec] within the range of 460-8,000sec to provide the aimed fibers.

Description

【発明の詳細な説明】 〔産業上のfll用分野〕 本発明は、チタニウムアルコキシドを加水分解、(宿徂
合反応ごt!−直接紡糸しfニチタン化合物ケル繊維を
紡糸し、熱処理するに際し、比較的低温にて所定量の\
H、ガスを流しつつ行うことによって向って窒化された
窒化チタンで)σわれた酸化チ々ン繊維を製造する製造
法に関する。
[Detailed Description of the Invention] [Industrial field] The present invention is directed to hydrolysis of titanium alkoxide, (accommodation reaction), direct spinning of titanium compound fibers, and heat treatment. A predetermined amount at a relatively low temperature\
H. This invention relates to a manufacturing method for manufacturing titanium oxide fibers which have been nitrided (with titanium nitride) by conducting the process while flowing a gas.

本発明によって得られる窒化チタン繊維もしくは表面か
ら窒化チタン化された窒化チタン被覆酸化チタン繊維は
、結晶化繊維てしあり、各種(材料中でらより耐熱性、
ダイヤモンドと比肩する高強度(モース硬度でIO程度
)、より高弾性、より耐蝕性、さらに高導電性を示す繊
9イUであるとともに、細く長い繊維であるので、窒化
チタン繊維としてまたは複合体用強化材料として、Rj
C,空宇宙分野、電気電子分野、高エネルギー分野めろ
いは耐蝕分野等に広く利用され得ろらのである。
The titanium nitride fibers or the titanium nitride-coated titanium oxide fibers whose surfaces are titanized with titanium nitride obtained by the present invention include crystallized fibers, various kinds of materials (higher heat resistance,
It is a 9-U fiber that has high strength comparable to diamond (about IO on the Mohs hardness scale), higher elasticity, higher corrosion resistance, and higher electrical conductivity.It is also a thin and long fiber, so it can be used as a titanium nitride fiber or as a composite. As a reinforcing material for Rj
C. Aerospace field, electrical and electronic field, high energy field Miro is widely used in the corrosion resistant field, etc.

〔従来の技術〕[Conventional technology]

従来窒化チタン材料としては括仮−ヒへのコーチインク
膜やバルク状の乙のが一役に知られている。
Conventional titanium nitride materials have been known to play a role as coach ink films on brackets and bulk materials.

面者のコーチインク膜はCV I)だへ反応性スパッタ
リンク法あるいはイオノブレ」−テインク法ことの方法
によって得られ、例え:よCV D法ては反応容器中て
四塩化チタン(’I” Ic e *)のガスと窒素(
N2)とを、水素(f−f2)をキャリアガスとして流
しつつ高温の還元雰囲気にして気柑反応さH−基板上に
被膜を得る方、去(例えば、J、Mat、SCi、)2
1.395(1986)がとられており、また反応性ス
パッタリング法では反応容器中を一担真空にして系内の
空気を除去した後、窒素(N、)ガスを入れ低窒素雰囲
気として金属チタン(Ti)のターゲットに電圧を印加
して対向する基板上に窒化チタン(TiN)を析出する
という方法(例えば、Th1n 5olid Film
s。
The same coach ink films are obtained by the reactive sputter link method or the ionochrome method; e *) gas and nitrogen (
N2) is reacted in a high temperature reducing atmosphere while flowing hydrogen (f-f2) as a carrier gas to obtain a film on the H-substrate (for example, J, Mat, SCi,)2
1.395 (1986), and in the reactive sputtering method, the reaction vessel is first evacuated to remove air from the system, and then nitrogen (N) gas is introduced to create a low-nitrogen atmosphere. A method in which titanium nitride (TiN) is deposited on the opposing substrate by applying a voltage to a (Ti) target (for example, Th1n 5olid Film
s.

72、535(1980))がとられている。一方後者
のバルク状のものは金属チタンを還元雰囲気中で窒素を
流しつつ焼成して窒化チタン(TiN)粉末を得、これ
をさらに高温加圧成型して目的の形状の窒化チタン(T
iN)品とするという方法がとられている。これらはい
ずれら高性能な装置、真空等の復堆な系あるいは高温高
圧などが必要であるという方法である。
72, 535 (1980)). On the other hand, for the latter bulk type, titanium nitride (TiN) powder is obtained by firing metal titanium in a reducing atmosphere while flowing nitrogen, which is then further pressure-molded at a high temperature to obtain the desired shape.
iN) products. All of these methods require high-performance equipment, a decomposition system such as a vacuum, or high temperature and high pressure.

またさらに繊維状の窒化物についても種々の報告はされ
ているが、そのほとんどがホイスカーのようなひげ状の
結晶短va、椎かもしくは綿状の短繊維集合体であり、
これまで結晶質の長繊維は得られていない。散歩ない窒
素を含(丁した長繊維としては、例えば本発明者らかす
でに、昭和59年第25回ガラス討論会にて発表してい
るように、シリコン化合物ケル繊イCをアンモニアを含
む還元雰囲気中で焼成し、シリコンオキシナイトライド
繊維を得たことを報告しているが、ここで得られる繊維
はアモルファスであり、より利用性の高い窒化物結晶長
城に(ff、特にチタン化合物ケル繊維を窒化すること
による窒化チタン繊維らしくは窒化チタン被覆酸化チタ
ン繊維を得るまでには到底及ばないものである。
Furthermore, various reports have been made regarding fibrous nitrides, but most of them are whisker-like crystalline short va, vertebrae, or cotton-like short fiber aggregates.
Until now, crystalline long fibers have not been obtained. For example, as long fibers containing nitrogen, as the present inventors have already announced at the 25th Glass Symposium in 1981, silicon compound Kel fiber C containing ammonia can be reduced. reported that silicon oxynitride fibers were obtained by firing in an atmosphere, but the fibers obtained here are amorphous, and are more useful than nitride crystal walls (ff, especially titanium compound Kel fibers). It is far from possible to obtain titanium nitride-coated titanium oxide fibers by nitriding titanium nitride fibers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したように、窒化物として得られる材料は、これま
では、コーテイング膜、バルク、粉末、短繊維集合体な
どに限られており、いまだその種々の特徴からより工業
上有益に利用され得ろところの表面らしくはその全体が
、窒化物であるような細い結晶性の良識R4fiが望ま
れているととらに、前述の種々の方法および形態の窒化
物は、製造時に真空容器を用いたり、高温・高圧を用い
たり、あるいは特殊な装置が必要であるなど、必ずしも
工業的に生産性の高いものとは言い難いものである。
As mentioned above, materials obtained as nitrides have so far been limited to coating films, bulk materials, powders, short fiber aggregates, etc., and their various characteristics still make it difficult to utilize them industrially. Although it is desirable to have a thin crystalline R4fi whose entire surface is made of nitride, the various methods and forms of nitride described above cannot be produced using a vacuum container or at high temperatures.・It is difficult to say that it is necessarily highly productive industrially, as it requires high pressure or special equipment.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、従来のかかる欠点に鑑みてなしたものであり
、デクニウムアルコキシドを加水分解・脱水縮重合反応
させ直接紡糸することによって得た、チタン含有ゲル繊
維を460〜80005ec−’の空間速度でS+−+
t(アンモニア)ガスを供給しつつ800℃以上の温度
域で焼成することにより、極めて簡便に結晶質の窒化チ
タン長m惟若しくは表面が窒化チタンて被覆された酸化
チタン(ルチル)繊維を製造する方法を!J1:供する
ものである。
The present invention has been made in view of the above-mentioned drawbacks of the conventional technology. So S+-+
By firing at a temperature range of 800°C or higher while supplying ammonia gas, crystalline titanium nitride fibers or titanium oxide (rutile) fibers whose surfaces are coated with titanium nitride are produced very easily. method! J1: Provided.

すなわち、本発明は、デクニウムアルコキシドを加水分
解・縮重合反応させ、直接紡糸したチタン化合物ゲル繊
維を、反応容器容積〔l〕/反応ガス体積’t!−量C
I /5ec)−空間速度3[5ec−’ )で表わさ
れろSの位か・160〜80(105ec−’の範囲に
あるNH3ガスを供給しつつ、800℃以上の温度で焼
成することを特徴とする窒化チタン繊維もしくはクリ 
lし ヱ h −1−−ラ士 yn ↓ 44  ン−
1色 Iし ヱ h ・) tル シIト ハ ルl 
 Hzh  ’、4−を提供するものである。ここで、
焼成時に空間速度460〜80005ec−’ ′7:
:供給されるN Hyガスは、簡略には 2 N H3→ N2 1 3H2 で示される様に分解され、還元雰囲気と反応性に富んだ
発生期の窒素雰囲気を支えろため、上記ゲル繊維と結び
ついているアルキル基、水酸基が熱分解するに際し、こ
の窒素と置き換り、800°C以上特に800〜110
0℃程度の温度域て極めて簡庚に窒化チタン繊椎質若し
くは窒化物で被覆された酸化チタンV&推の長fAfi
惟を得ろ乙のである。
That is, in the present invention, a titanium compound gel fiber that is directly spun by subjecting decnium alkoxide to a hydrolysis/condensation reaction is prepared using a reaction vessel volume [l]/reaction gas volume 't! -Amount C
It is characterized by firing at a temperature of 800°C or higher while supplying NH3 gas in the range of 160 to 80 (105 ec-'), expressed as a space velocity of 3 [5 ec-'). titanium nitride fiber or chestnut
lshi ヱ h -1--rashi yn ↓ 44 n-
1 color
Hzh', 4-. here,
Space velocity during firing 460~80005ec-''7:
: The supplied N Hy gas is decomposed as shown briefly as 2 N H3 → N2 1 3 H2, and in order to support the nascent nitrogen atmosphere which is rich in reducing atmosphere and reactivity, it binds to the gel fibers. When the alkyl group and hydroxyl group decompose thermally, they replace this nitrogen,
Titanium oxide coated with titanium nitride fibrous material or nitride can be produced very easily in the temperature range of about 0℃
It's your turn to have mercy.

出発原料となるチタン化合物ケル繊維を作製するに際し
ては本発明者らが既に特願昭61−62099にて提案
しているように、チタンアルコキンド望ましくはチタン
テトライソプロー1:キシド Imolに対し水の量が
05乃至・1.0モル、エタノールおよび/ま1こはイ
ソプロパツールの量か05乃至5モル解逅剤として用い
る塩酸の量が0.1乃至0.3モルT)範囲で溶液を、
凋合し、これを加、−j(分′qヱ・脱水縮合ツ応さu
′l二ものから直接紡糸し、・二繊]イrを用いること
が望ましく、この方法によれば直径か数μmから数10
μmの細長いモノフィラメントを得ることがてき、これ
を前述の方法により窒化することにより、これ迄得られ
なかった繊維径の細長い窒化チタン良識維若しくは表面
層から窒化チタン化したようなルチル結晶(T’10a
)長繊維を得ることが可能となるものである。反応ガス
であるN I−t 、ガスの体積流量、反応器2;容積
、窒化時の温度、加熱時間、ゲル繊維の径等によって、
繊維全体が窒化チタンであるか、表面層が窒化チタンで
被覆されノニルデル結晶繊維であるか、選択的にコント
ロールが可能であるものである。
When producing the titanium compound Kel fiber as a starting material, as already proposed by the present inventors in Japanese Patent Application No. 61-62099, titanium alcoquine, preferably titanium tetraisopropyl 1:oxide, is added to Imol of water. The amount of ethanol and/or isopropanol is 0.5 to 5 mol.The amount of hydrochloric acid used as a peptizer is 0.1 to 0.3 mol. of,
Combine, add this, -j
It is preferable to directly spin the fibers from two fibers, and use two fibers. According to this method, the diameter is from several μm to several tens of micrometers.
By nitriding this monofilament using the method described above, it is possible to obtain elongated titanium nitride fibers with a fiber diameter that could not be obtained until now, or rutile crystals (T' 10a
) It is possible to obtain long fibers. Depending on the reaction gas N I-t, the volumetric flow rate of the gas, the volume of the reactor 2, the temperature during nitriding, the heating time, the diameter of the gel fiber, etc.
It is possible to selectively control whether the entire fiber is made of titanium nitride or the surface layer is coated with titanium nitride and is a nonyldel crystal fiber.

171者;まそれ自体か高強度・高弾性であり、後者に
おいては表層が窒化される際、イつずかの収縮を伴うた
め表層にコンプレッションがかかり、このfこめ繊維か
強化されフレキノヒリティーに富んだ高強度・高弾性材
料を与えろ。
171; Well, it itself has high strength and high elasticity, and in the latter case, when the surface layer is nitrided, compression is applied to the surface layer due to some shrinkage, and this fiber is strengthened and has flexiability. Provide a high-strength, high-elasticity material rich in

窒化に際して用いるNH3ガスの虫は、反応器の容積で
種々変化するが、(反応容器容積C/)/(反応ガス体
積流量C/ /5ec))−Sで表わされる空間速度か
SC5ec−’ )か460以上8000以下であるこ
とが望ましい。これは1例として管内径70mmφ、管
長1mの反応容イ);(石英カラス)では約29me/
min (空IL’l速度 8000sec ’ ) 
〜約500m1 、/+nin  (空間速度460s
ec−’ )の供給量となる。供給するN H3ガスの
空間速度が460sec ’平均の場合に(i(ガス供
給がふえる)、N I−13ガスの分解反応か充分に起
らず排出されてしまい、充分な窒化反応が極めて遅くな
り効率か悪い、これに対し空間速度が8000sec−
’を超えろ場合には(ガス供給量が減る)、窒化に用い
られるに必要十分なN I−13ガスが供給されず、前
者と同様充分な窒化反応が起らない。
The NH3 gas used during nitriding varies depending on the volume of the reactor, but the space velocity expressed as (reaction vessel volume C/)/(reaction gas volumetric flow rate C/ /5ec))-S or SC5ec-') It is desirable that the number is 460 or more and 8000 or less. As an example, the reaction capacity of a tube with an inner diameter of 70 mmφ and a tube length of 1 m is approximately 29 me/2) (quartz glass).
min (Empty IL'l speed 8000sec')
~about 500m1, /+nin (space velocity 460s
ec-'). When the average space velocity of the supplied N H3 gas is 460 seconds (i (gas supply increases)), the decomposition reaction of the N I-13 gas does not occur sufficiently and is discharged, resulting in a sufficient nitriding reaction being extremely slow. The efficiency is poor, whereas the space velocity is 8000 sec-
If the amount exceeds ' (gas supply amount decreases), sufficient NI-13 gas is not supplied for nitriding, and as in the former case, sufficient nitriding reaction does not occur.

一方加熱温度は、繊イtの全体あるいは表面層のみを窒
化するいずれ′F)場りであ−てtJ800’c以上で
あることが望ましL”v 8o(1°C未1゛14の温
度域では窒化反応が起り難く、目的物が得ろ机ない。
On the other hand, the heating temperature is desirably 800'C or higher when nitriding the entire fiber or only the surface layer of the fiber. In this temperature range, the nitriding reaction is difficult to occur, making it impossible to obtain the desired product.

加熱温度の上限は特に制限はないが、1100°Cの温
度で1時間以内の加熱を行うだけで、繊維全体の窒化が
極めて容易に進行する!コめ、前述後者の表面層のみが
窒化2、れた酸化チタン結晶繊維を得ようとする場合に
は、むしろこの温度以上に加熱しすぎないようにずろこ
とが望ましい。
Although there is no particular upper limit to the heating temperature, nitriding of the entire fiber can proceed extremely easily by heating at a temperature of 1100°C for less than 1 hour! When attempting to obtain a titanium oxide crystal fiber in which only the surface layer of the latter is nitrided, it is preferable to adjust the temperature so as not to heat it too much above this temperature.

いずれの場合にせよ、工業的応用においては熱処理温度
かあまり高くないことが望ましく、通常のカラス溶融、
セラミックス製造時における温度と較へ低温である12
00〜1300℃以下の温度域で熱処理を行なえば充分
である。
In any case, in industrial applications, it is desirable that the heat treatment temperature is not too high;
The temperature is lower than that during ceramic manufacturing12
It is sufficient to perform the heat treatment in a temperature range of 00 to 1300°C or less.

以上の操作を経て得られる窒化チタンは、極めて光沢の
ある黄金色を呈し、また金属電導性で優れf二良導体材
料となる。
The titanium nitride obtained through the above operations exhibits an extremely shiny golden color and has excellent metal conductivity, making it a good conductor material.

このように高強度等機鍼的特性、導電性等の電気的特性
、耐蝕性等の化学的特性、黄金色という装飾性なと、非
常に多くの段れた特徴をらっfコ材粗Iである。
In this way, the raw material has many outstanding characteristics such as mechanical properties such as high strength, electrical properties such as conductivity, chemical properties such as corrosion resistance, and decorative properties such as golden color. It is I.

〔作用〕[Effect]

前述したとおり、窒化チタンのみならず窒化物の長繊維
は、これ迄得ろことができなかっf二が、チタニウムア
ルコキッドを出発原料として加水分解・脱水縮重合反応
後、直接紡糸して(4た、チタン化合物ゲル繊K(Eを
用い、これを焼成する際に所定量のアンモニアガスを流
しつつ、所定の温度域で加熱処理を行なうことにより、
従来にはない、長繊維で繊維径か数μm−数1011m
と階めで細い窒化チタンモノフィラメントもしくは表面
層のみを窒化チタンとした酸化チタン結晶(ルチル)の
モノフィラメントを得ろことか可能とr♂った。
As mentioned above, long fibers of nitrides as well as titanium nitride could not be obtained until now, but titanium alkoxide was used as a starting material after hydrolysis and dehydration condensation reaction, followed by direct spinning (4). , by using titanium compound gel fiber K (E) and heating it in a predetermined temperature range while flowing a predetermined amount of ammonia gas when firing it,
Unprecedented in the past, long fibers with a fiber diameter of several μm to several 1011 m
I thought it would be possible to obtain a thinner titanium nitride monofilament or a titanium oxide crystal (rutile) monofilament with only the surface layer made of titanium nitride.

これにより、題めて簡弔な工作て、極めて’Jl 、I
tた特性を持つ材料てあろ窒化チタン繊維らしくは表面
が窒化チタンて被覆され1こ酸化チタン′f&惟を得、
航空宇宙分野、電気電子分野、高温耐熱分野2耐蝕分野
、装飾分子rに広く採用し得ろものとほろらのである。
As a result, a very simple and easy-to-understand process is possible.
The surface of the material is coated with titanium nitride, giving it the properties of titanium nitride.
It can be widely used in the aerospace field, electrical and electronic fields, high temperature heat resistance field, corrosion resistance field, and decorative molecules.

〔実施例〕〔Example〕

以下に本発明の実イ悔例をいくつか具体的に説明すると
と乙に、本発明の池の実施例および比・咬例を併せ表1
にf911示する。
Below, some examples of actual regrets of the present invention will be explained in detail.
f911 is shown.

なお、下記実施例番号:よ、表1の実施例および比較例
の番号に対応才ろ乙のてδうろ。
In addition, the following Example numbers correspond to the numbers of Examples and Comparative Examples in Table 1.

実施例1 チタンテトライソプロポふノド、蒸留水、995%エタ
ノールおよび35%塩酸を原料とし、Ti(OC3H,
)、:I−1to :C21−f 、、o H:HC/
のモル比がl:32・0.53となるようアルコキシド
溶液を調製した。
Example 1 Ti(OC3H,
), :I-1to :C21-f ,,o H:HC/
An alkoxide solution was prepared so that the molar ratio of 1:32.0.53.

この溶液を40℃に保持し、スターラーで撹拌しながら
ほぼ24時間加水分解・脱水縮重合反応させたところ曳
糸性の存るゾル溶液となった。
This solution was maintained at 40° C. and subjected to hydrolysis/dehydration condensation reaction for approximately 24 hours while stirring with a stirrer, resulting in a sol solution with stringiness.

この溶液の温度を20℃迄下げた後、ガラス棒を液中に
浸し、真上に引き上げる方法で紡糸操作を行ない、平均
繊維径が35μmの長いゲル繊維を得た。この繊維を室
温で2日間乾燥させた後、管内径70 m m N管長
1000mmの円筒状石英ガラス管の雰囲気炉に入れ、
この管内を一担N2ガスで置換し、その後管内に40m
e /1in(空間速度5770sec−’ )でN 
H3ガスを供給しつつ、5℃/minの昇温速度で11
00°C迄昇温し約1時間保持し窒化させた、その後管
内へのN I−1、ガスの供給をやめ、代りにN2ガス
を流しながら室温迄冷却したところ、黄金色の平均繊維
径約30μmの長繊維が得られた。この繊維をX線回折
で同定したところTiNのピークのみが認められ、 窒
化チタンの長繊維であることがわかった。またこの繊維
は導電性があり比抵抗が約10Ω・cmであっfこ。
After lowering the temperature of this solution to 20° C., a spinning operation was performed by dipping a glass rod into the solution and pulling it upward to obtain long gel fibers with an average fiber diameter of 35 μm. After drying this fiber at room temperature for 2 days, it was placed in an atmosphere furnace of a cylindrical quartz glass tube with a tube inner diameter of 70 mm and a tube length of 1000 mm.
The inside of this pipe was replaced with N2 gas, and then 40m of
N at e/1in (space velocity 5770sec-')
11 at a heating rate of 5°C/min while supplying H3 gas.
The temperature was raised to 00°C and held for about 1 hour for nitriding. After that, the supply of N I-1 gas into the tube was stopped, and when N2 gas was flowed instead, the fiber was cooled to room temperature. Long fibers of about 30 μm were obtained. When this fiber was identified by X-ray diffraction, only a TiN peak was observed, indicating that it was a long fiber of titanium nitride. In addition, this fiber is conductive and has a specific resistance of approximately 10Ω・cm.

実施例6 実施例Iで得たゲル繊維を、同実施例と同じ操作で10
00℃迄界温し約5時間保持し窒化さU゛た。
Example 6 The gel fiber obtained in Example I was subjected to the same procedure as in Example I to obtain 10
The temperature was raised to 00°C and held for about 5 hours to form a nitrided material.

冷却ら同実施例と同様に行ない黄金色の長繊維を得た。Cooling was carried out in the same manner as in the same example to obtain golden yellow long fibers.

この繊維をX線回折で同定したところTiNのピークの
みを持つ窒化チタンの長繊維であることかイつかった。
When this fiber was identified by X-ray diffraction, it was found that it was a long fiber of titanium nitride with only a TiN peak.

実施例16 実施例Iで得たゲル繊維を、同実施例と同じ操作で12
50℃迄昇温し0,5時間保持した。ただしこの際のN
 H3ガス供給mを30me/min (空間速度77
00sec= )とした。冷却ら同様な操作で行ない黄
金色の長繊維を得た。この繊維をX線回折で同定したと
ころTiNのピークのみを持つ窒化チタン長繊維である
ことがわかった。
Example 16 The gel fiber obtained in Example I was treated with 12
The temperature was raised to 50°C and held for 0.5 hours. However, in this case N
H3 gas supply m is 30 me/min (space velocity 77
00sec= ). After cooling, the same procedure was performed to obtain golden long fibers. When this fiber was identified by X-ray diffraction, it was found to be a titanium nitride long fiber having only a TiN peak.

実施例22 実施例1と同様の原料を用いT i(OCsH?)4:
H,O:C2H501−1:HC/がモル比でI :2
 :0.5:0.4となるようにアルコキシド溶液を調
製した。
Example 22 Using the same raw materials as in Example 1, Ti(OCsH?)4:
H,O:C2H501-1:HC/ in molar ratio I:2
:0.5:0.4, an alkoxide solution was prepared.

この溶液を60℃に保ちスターラーで約1.7時間撹拌
したところ約10ボイズの粘稠なアルコキシド加水分解
溶液を得た。この溶液を用い、実施ρj!と同様に紡糸
操作を行なったところ平均繊維径が約20μmの長繊維
ゲルを得た。このゲル繊維を、実施例1と同じ石英ガラ
ス管の雰囲気炉に入れ約24時間保持し乾燥させ、その
後管内の空気をN、ガスで置換し、その後管内に120
m/ /sec (空間速度1920sec−’ )で
N H3ガスを供給しつつ4°(: /minの昇温速
度で950°C迄昇温し約3時間窒化を行なった。その
後:ま実施例11と同様の操作で冷却を行ない、平均繊
維径17μmの黄金色の長繊維を得た。
This solution was kept at 60° C. and stirred with a stirrer for about 1.7 hours to obtain a viscous alkoxide hydrolysis solution with about 10 voids. Using this solution, conduct ρj! A spinning operation was carried out in the same manner as above to obtain a long fiber gel having an average fiber diameter of about 20 μm. This gel fiber was placed in the same atmosphere furnace of the quartz glass tube as in Example 1 and kept for about 24 hours to dry.Then, the air in the tube was replaced with N and gas, and then the gel fiber was placed in the tube for 120 hours.
The temperature was raised to 950°C at a heating rate of 4° (:/min) while supplying NH3 gas at a space velocity of 1920 sec-' (space velocity: 1920 sec-'), and nitriding was performed for about 3 hours. Cooling was performed in the same manner as in step 11 to obtain golden long fibers with an average fiber diameter of 17 μm.

この゛繊維をオージェ電子分光器で同定したところTi
とNのピークのみが認められ窒化チタンの長繊維である
ことがわかった。
This fiber was identified using an Auger electron spectrometer and found that it was Ti.
Only the peaks of and N were observed, indicating that it was a long fiber of titanium nitride.

実施例27 実施例22で得たゲル繊¥イtを、N )t 3ガスの
供VA N 木lRI’1m /  /min  (7
!1″闇j’Jz Iff IAAnqpc−”+  
 11 、照J度を5℃#+inとして、900℃迄界
温し、約5時間窒化を行なったところ平均繊維径17μ
mの黄金色の長繊維を得た。この繊維をX線回折で同定
したところ酸化チタン結晶(ルチル)のピークか認めら
れた。次にこの繊維の直径方向切断面をオージェ電子分
光器で同定したところT1とNのピークが認められ表面
層のみが窒化し、中心部は酸化チタン結晶(ルチル)の
m t(tであることがわかった。
Example 27 The gel fibers obtained in Example 22 were supplied with N)t3 gas at a rate of 1m//min (7
! 1"Darkness j'Jz If IAAnqpc-"+
11. When the illuminance was set to 5°C #+in, the temperature was raised to 900°C, and nitriding was performed for about 5 hours, the average fiber diameter was 17μ.
A golden yellow long fiber of m was obtained. When this fiber was identified by X-ray diffraction, a peak of titanium oxide crystal (rutile) was observed. Next, when the diametrical cross section of this fiber was identified using an Auger electron spectrometer, T1 and N peaks were observed, indicating that only the surface layer was nitrided, and the center was m t (t) of titanium oxide crystals (rutile). I understand.

実施例34 実施例1で得たゲル繊維を、N H3ガス供給量を50
0m f’ /5ee(空間速度460sec−’ )
とし、加熱温度800℃で1時間保持した後冷却して、
黄金色の長繊維を得た。この繊維をX線回折およびオー
ジェ電子分光器で同定したところ、繊維の表面のみが窒
化した酸化チタン結晶(ルチル)繊維であることがわか
った。
Example 34 The gel fiber obtained in Example 1 was treated with an N H3 gas supply amount of 50
0m f'/5ee (space velocity 460sec-')
After holding at a heating temperature of 800°C for 1 hour, cooling it,
Golden long fibers were obtained. When this fiber was identified by X-ray diffraction and Auger electron spectroscopy, it was found that it was a titanium oxide crystal (rutile) fiber in which only the surface of the fiber was nitrided.

比較例! 前記実施例1におけるゲル繊維の熱処理を300℃で5
時間行ない、N H3ガスの共給舟を160m1/mi
n  (空間速度1440sec−’ )とし1こ場合
は、繊維が白濁した。この繊維をX線回折で同定したと
ころ、ピークは認められず、アモルファスのチタン化合
物ゲル繊維であった。
Comparative example! The gel fibers in Example 1 were heat-treated at 300°C for 5 minutes.
After a long period of time, a NH3 gas tanker was installed at a rate of 160 m1/mi.
n (space velocity 1440 sec-'), the fiber became cloudy. When this fiber was identified by X-ray diffraction, no peak was observed, indicating that it was an amorphous titanium compound gel fiber.

比較例7 実施例1におけるゲル繊維の熱処理を600°Cで1時
間行ない、N I−[3ガスの供給量を300m(’ 
7m1n(空間速度660sec−’ )とした場合も
繊維が白濁した。
Comparative Example 7 The gel fibers in Example 1 were heat-treated at 600°C for 1 hour, and the supply amount of N I-[3 gas was increased to 300 m('
The fibers also became cloudy when it was set to 7 m1n (space velocity 660 sec-').

この繊維をX線回折で同定したところアナタースのピー
クが認められ、結晶化した酸化チタンを含む繊維である
ことがわかり、窒化反応は起きていないことがわかった
When this fiber was identified by X-ray diffraction, an anatase peak was observed, indicating that the fiber contained crystallized titanium oxide, and that no nitriding reaction had occurred.

比較例It 実施例22において熱処理を750°Cで1時間行ない
N I−I 3ガスの供給量を160m/ /min 
(空間速度1=I40sec−’ )とした場合は銀色
の繊維か得られた。
Comparative Example It Heat treatment was performed at 750°C for 1 hour in Example 22, and the supply amount of N I-I 3 gas was 160 m//min.
When the space velocity was set to 1=I40 sec-', silver colored fibers were obtained.

この繊維をX線回折で同定したところ、ルチルのピーク
が認められfこ。さらに繊維の表面層をオージェ電子分
光器で同定したところTiとOおよび微量のNか認めら
れ、表面層の極く一部のみが窒化−た酸化チタン繊維で
あることがわかった。
When this fiber was identified by X-ray diffraction, a rutile peak was observed. Furthermore, when the surface layer of the fiber was identified using an Auger electron spectrometer, Ti, O, and a trace amount of N were found, indicating that only a small portion of the surface layer was nitrided titanium oxide fiber.

比較例12 前記比較例において熱処理を5時間に延長した場合も銀
色の長@維しか得られず、比較例11と同様の分析を行
なったところ、比較例11と同様の繊維か得られたのみ
であり、加熱時間を増しても、表面が窒化した黄金色の
繊維は得られなかった。
Comparative Example 12 Even when the heat treatment was extended to 5 hours in the above Comparative Example, only silver-colored long fibers were obtained, and when the same analysis as Comparative Example 11 was performed, only the same fibers as Comparative Example 11 were obtained. Even if the heating time was increased, golden-yellow fibers with a nitrided surface could not be obtained.

比較例14 実施例22においてNH3ガスの供給量のみを550m
/ /min (空間速度420sec−’ )と増や
して窒化を行なったところ、白色ないし白1蜀色の繊〜
′佳しか得られず、窒化反応か充分に起っていないこと
がイっかった。
Comparative Example 14 In Example 22, only the supply amount of NH3 gas was increased to 550 m
When nitriding was carried out by increasing the space velocity to / /min (space velocity 420 sec-'), the fibers were white to white and dark brown.
Only good results were obtained, and the problem was that the nitriding reaction did not occur sufficiently.

比較例15 実施例1においてNH3ガスの供給量のみを28゜5m
/ /min (空間速度8100sec−’ )と減
らして窒化を行なったところ、白濁の繊維しか得られず
、窒化に特有の黄金色の繊維とはならなかった。
Comparative Example 15 In Example 1, only the supply amount of NH3 gas was changed to 28°5m
When nitriding was carried out at a reduced speed of / /min (space velocity 8100 sec-'), only cloudy white fibers were obtained, and the golden yellow fibers characteristic of nitriding were not obtained.

〔発明の効果〕〔Effect of the invention〕

面述した本発明の実施例および従来技術、比較例から明
らかなように、本発明によれば、チタンアルコキシドを
出発原料として作製したチタン化合物ゲル繊維を、所定
量のN H3ガスを流しつつ焼成することによって、従
来の方法では、作製し得なかった窒化チタン繊維若しく
は表面層のみか窒化チタンで覆われた酸化チタン結晶の
、細い長繊維が得られるものである。
As is clear from the examples of the present invention, the prior art, and the comparative examples described above, according to the present invention, titanium compound gel fibers produced using titanium alkoxide as a starting material are fired while flowing a predetermined amount of NH3 gas. By doing so, it is possible to obtain thin long fibers of titanium nitride fibers or titanium oxide crystals whose surface layer is only covered with titanium nitride, which could not be produced using conventional methods.

本方法によれば、工程的に簡便に高強度・高弾性など機
械的特性に極めて優れ、導電性など物理的特性を持ち、
耐蝕性など化学的特性に浸れ、さらには装飾的にも黄金
色を呈すなど極めて多くの特性を持った材料を用途に応
じて、自由に選択し得て、完全な窒化チタン長繊維から
種々の窒化チタン層をもつ酸化チタン長繊維を提供する
ことができるものである。さらにこれらの長繊維をカッ
ティングまたは粉砕して種々の用途に使用し得ることは
言うまでもない。
According to this method, it is easy to process, has excellent mechanical properties such as high strength and high elasticity, and has physical properties such as electrical conductivity.
Depending on the application, you can freely select materials that have a wide variety of properties, such as chemical properties such as corrosion resistance, and even a decorative golden color. It is possible to provide titanium oxide long fibers having a titanium nitride layer. Furthermore, it goes without saying that these long fibers can be cut or crushed and used for various purposes.

手続補正杏(自発) 昭和61年5月27日Procedural amendment apricot (voluntary) May 27, 1986

Claims (1)

【特許請求の範囲】 チタニウムアルコキシドを加水分解、縮重合反応させ、
直接紡糸したチタン化合物ゲル繊維を、反応容器容積〔
l〕/反応ガス体積流量〔l/sec〕=空間速度S〔
sec^−^1〕で表わされるSの値が460〜800
0sec^−^1の範囲にあるNH_3ガスを供給しつ
つ、800℃以上の温度で焼成することを特徴とする窒
化チタン繊維もしくは窒化チタンで被覆された酸化チタ
ン繊維の製造法。
[Claims] Titanium alkoxide is subjected to hydrolysis and polycondensation reaction,
Directly spun titanium compound gel fibers were added to the reaction vessel volume [
l]/reactant gas volumetric flow rate [l/sec] = space velocity S[
The value of S expressed as sec^-^1] is 460 to 800
A method for producing titanium nitride fibers or titanium oxide fibers coated with titanium nitride, which comprises firing at a temperature of 800° C. or higher while supplying NH_3 gas in the range of 0 sec^-^1.
JP10804986A 1986-05-12 1986-05-12 Production of titanium boride fiber or titanium oxide fiber coated with titanium boride Pending JPS62263322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10804986A JPS62263322A (en) 1986-05-12 1986-05-12 Production of titanium boride fiber or titanium oxide fiber coated with titanium boride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10804986A JPS62263322A (en) 1986-05-12 1986-05-12 Production of titanium boride fiber or titanium oxide fiber coated with titanium boride

Publications (1)

Publication Number Publication Date
JPS62263322A true JPS62263322A (en) 1987-11-16

Family

ID=14474629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10804986A Pending JPS62263322A (en) 1986-05-12 1986-05-12 Production of titanium boride fiber or titanium oxide fiber coated with titanium boride

Country Status (1)

Country Link
JP (1) JPS62263322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114887A (en) * 1990-04-27 1992-05-19 Colloid Research Institute Process for preparing oxynitride ceramic fibers
WO2009135446A3 (en) * 2008-05-06 2010-01-21 Elmarco S.R.O. Method for production of inorganic nanofibres and/or nanofibrous structures comprising titanium nitride, inorganic nanofibres and/or nanofibrous structures
CN114367248A (en) * 2021-11-19 2022-04-19 东华大学 Linear inorganic polymer sol and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200241A (en) * 1981-06-03 1982-12-08 Furukawa Electric Co Ltd:The Production unit for optical fiber covered with metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200241A (en) * 1981-06-03 1982-12-08 Furukawa Electric Co Ltd:The Production unit for optical fiber covered with metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114887A (en) * 1990-04-27 1992-05-19 Colloid Research Institute Process for preparing oxynitride ceramic fibers
WO2009135446A3 (en) * 2008-05-06 2010-01-21 Elmarco S.R.O. Method for production of inorganic nanofibres and/or nanofibrous structures comprising titanium nitride, inorganic nanofibres and/or nanofibrous structures
CN114367248A (en) * 2021-11-19 2022-04-19 东华大学 Linear inorganic polymer sol and preparation method thereof

Similar Documents

Publication Publication Date Title
Motojima et al. Low temperature deposition of hexagonal BN films by chemical vapour deposition
Yoshimura et al. In situ fabrication of morphology-controlled advanced ceramic materials by Soft Solution Processing
Kamiya et al. Nitridation of TiO 2 fibres prepared by the sol-gel method
Kamiya et al. Nitridation of the Sol–Gel‐Derived Titanium Oxide Films by Heating in Ammonia Gas
JPS643948B2 (en)
Choi et al. Sol-gel-derived magnesium oxide precursor for thin-film fabrication
ICHINOSE et al. Properties of anatase films for photocatalyst from peroxotitanic acid solution and peroxo-modified anatase sol
JPS62263322A (en) Production of titanium boride fiber or titanium oxide fiber coated with titanium boride
JPH0411023A (en) Production of oxynitride ceramic fiber
Sakka Sol-gel glasses and their future applications
CN108660442B (en) LaxTiyOzOxide comprising the LaxTiyOzComposite material of oxide and preparation method thereof
CN1077611C (en) Process for preparing zinc oxide crystal whisker
JPS59207812A (en) Production of silicon nitride
JPH0123420B2 (en)
JPH02259112A (en) Ceramic fiber wherein sio2 and zro2 are base material and preparation thereof
CN110577413B (en) Aluminum borate whisker and preparation method and application thereof
Sun et al. Effects of oxygen on the properties of titania nanoparticles prepared by MOCVD
JP2862283B2 (en) Method for producing conductive ceramic fiber
JP2852297B2 (en) Conductive ceramic fiber
JPH0114177B2 (en)
CN110904494A (en) Preparation method of alumina whisker
JPH10167728A (en) Production of crystalline metal oxide
JPH04292426A (en) Production of flake-like glass
Yogya et al. Sol-gel processing of high-yield, dense alumina bioceramics
JPS63248800A (en) Production of whisker in high yield