JPS62263234A - Amorphous thin film forming system - Google Patents

Amorphous thin film forming system

Info

Publication number
JPS62263234A
JPS62263234A JP61106313A JP10631386A JPS62263234A JP S62263234 A JPS62263234 A JP S62263234A JP 61106313 A JP61106313 A JP 61106313A JP 10631386 A JP10631386 A JP 10631386A JP S62263234 A JPS62263234 A JP S62263234A
Authority
JP
Japan
Prior art keywords
electrodes
vessel
reaction vessel
thin film
amorphous thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61106313A
Other languages
Japanese (ja)
Other versions
JPH0697657B2 (en
Inventor
Hiroshi Fujiyama
寛 藤山
Masayoshi Murata
正義 村田
Takashi Yamamoto
山本 鷹司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61106313A priority Critical patent/JPH0697657B2/en
Priority to EP87106535A priority patent/EP0244842B1/en
Priority to DE3750349T priority patent/DE3750349T2/en
Priority to CA000536654A priority patent/CA1279411C/en
Priority to KR1019870004508A priority patent/KR910002819B1/en
Priority to US07/047,328 priority patent/US4901669A/en
Publication of JPS62263234A publication Critical patent/JPS62263234A/en
Priority to KR1019900021941A priority patent/KR910010168B1/en
Publication of JPH0697657B2 publication Critical patent/JPH0697657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide such a system capable of forming uniform amorphous thin film in large area that a barrel reaction vessel is equipped with electrodes contained parallel and permanent magnets arranged with the magnetic poles alternately changed along the outer wall surface of part of the vessel. CONSTITUTION:The objective system is such that a reaction vessel 1 is equipped, parallel each other, with electrodes 2, 4 for generating glow discharge plasma; at a place a little apart from the electrodes, a base plate 10 is supported in the rectangular direction to said electrodes, a vacuum pump 9 being driven to exhaust the air from the vessel 1 followed by feeding a mixed gas of monosilane and argon through a reaction gas introduction tube 7 and then applying a voltage from a low frequency power source 4 on said electrodes 2, 3 to generate a glow discharge plasma; this plasma being contained in the vessel by the surface magnetic field of permanent magnets 11 fitted on the outer surface of the reaction vessel followed by generating a magnetic field in the rectangular direction to a discharging electric field through a coil 5 to emit charged particles toward the base plate 10 according to the Larmor orbit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池1燃料電池、薄膜半導体。[Detailed description of the invention] [Industrial application field] The present invention relates to a solar cell, a fuel cell, and a thin film semiconductor.

電子写真感光体や光センサなどの、各種電子デバイスに
使用される非晶質薄膜の製造装置に関するものである。
The present invention relates to an apparatus for manufacturing amorphous thin films used in various electronic devices such as electrophotographic photoreceptors and optical sensors.

〔従来の技術〕[Conventional technology]

第2図には、従来よシ用いられている半導体薄膜の製造
装置を示しており、たとえば、特開昭57−04771
号公報などに記載されている公知の技術である。
FIG. 2 shows a semiconductor thin film manufacturing apparatus conventionally used.
This is a well-known technique described in publications such as No.

図において、気密の反応容器01内に放電空間を形成す
るための電極02,03が上下方向に設けてあり、この
電極02,03は高周波電源04に電気的に接続されて
いる。上記反応容器01の外周には、上記放電空間内の
電界方向と平行な磁界を発生させるためのコイル05が
水平に配置されており、交流電源06と電気的に接続さ
れている。排気孔07は図示しない真空ポンプに連通し
ており1反応ガス導入管08は、モノシラン(S 1H
a) と水素ガス(H2)のポンペにそれぞれ連通して
いる。なお、09はヒータで、基板010’i加熱する
ものである。
In the figure, electrodes 02 and 03 for forming a discharge space in an airtight reaction vessel 01 are provided in the vertical direction, and these electrodes 02 and 03 are electrically connected to a high frequency power source 04. A coil 05 for generating a magnetic field parallel to the direction of the electric field in the discharge space is horizontally arranged around the outer periphery of the reaction vessel 01, and is electrically connected to an AC power source 06. The exhaust hole 07 is connected to a vacuum pump (not shown), and the 1 reaction gas introduction pipe 08 is connected to a monosilane (S 1H
a) and a hydrogen gas (H2) pump, respectively. Note that 09 is a heater that heats the substrate 010'i.

さて、電極03上に基板010を載せ1反応容器01内
ヲIIIlflIHg程度に減圧した後1 モノシラン
と水素ガスとの混合ガスを反応ガス導入管08よシ反応
容器01(内に供給しつつ、電極02゜03間に13.
5M Hzの高周波電圧を印加する。
Now, after placing the substrate 010 on the electrode 03 and reducing the pressure inside the reaction vessel 01 to about III1Hg, the mixture gas of monosilane and hydrogen gas is supplied into the reaction vessel 01 (inside the reaction gas inlet pipe 08) and the electrode 13 between 02° and 03.
A high frequency voltage of 5 MHz is applied.

一方、コイル05には、50あるいは60H2の商業用
交流電圧を印加し、電極02,03間に約100ガウス
の磁界を発生させる。なお、基板010は、ヒータ09
により300℃程度に加熱しておく。
On the other hand, a commercial AC voltage of 50 or 60 H2 is applied to the coil 05 to generate a magnetic field of about 100 Gauss between the electrodes 02 and 03. Note that the substrate 010 has a heater 09
Heat to around 300℃.

反応ガス導入管08よシ反応容器01内に導入されたモ
ノシラン等のガスは、電極02,03間の放電空間で分
解され、コイル05により発生された変動する磁界によ
シ攪拌されつつ基板010の表面に付着し、非晶質薄膜
を形成する。
A gas such as monosilane introduced into the reaction vessel 01 through the reaction gas inlet pipe 08 is decomposed in the discharge space between the electrodes 02 and 03, and is stirred by the fluctuating magnetic field generated by the coil 05 while being transferred to the substrate 010. It adheres to the surface of and forms an amorphous thin film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来の装置では、2枚の電極02゜03間に発
生する電界の方向と平行にコイル05で発生させた変動
磁界を印加するので、電極02゜03間の放電空間に存
在するシリコン等のイオンが攪拌され、基板010上に
比較的均一な非晶質薄膜が形成される。
In the conventional device described above, since a varying magnetic field generated by the coil 05 is applied in parallel to the direction of the electric field generated between the two electrodes 02 and 03, silicon etc. existing in the discharge space between the electrodes 02 and 03 are applied. ions are stirred, and a relatively uniform amorphous thin film is formed on the substrate 010.

しかし。but.

■ 基板010が置かれる場所は、電極03の上であり
、電極02,03間の放電空間内に位置することになる
。このため1基本的に高エネルギーをもつイオンの直撃
を受けることになる。
(2) The substrate 010 is placed above the electrode 03, and is located within the discharge space between the electrodes 02 and 03. For this reason, 1. Basically, it will be directly hit by ions with high energy.

すなわち、電極02,03間の電界Eにより電荷qのイ
オンにはクーロン力F、=qEが働き、イオン粒子が基
板010t−直撃して形成されつつある非晶質薄膜に損
傷を与えることになる。
That is, the electric field E between the electrodes 02 and 03 causes a Coulomb force F, = qE to act on the ions with a charge q, and the ion particles directly hit the substrate 010t, damaging the amorphous thin film that is being formed. .

■ コイル05により発生される変動磁界Bの方向が、
放電空間に発生した電界Eに平行なため、放電空間内に
あるイオン、および電子はLarmor運動により旋回
運動を引き起こされるが、その旋回運動による攪拌作用
は余り大きくなく極めて大きな電力を必要とする。
■ The direction of the fluctuating magnetic field B generated by coil 05 is
Since it is parallel to the electric field E generated in the discharge space, the ions and electrons in the discharge space are caused to swirl due to Larmor motion, but the stirring effect due to the swirling motion is not very large and requires extremely large power.

■ 基板010が一方の電極の上に載せられるので、一
度に処理される基板010の大きさも限定されることに
なり、電極より面積の大きな基板010に非晶質薄膜を
形成することができない。
(2) Since the substrate 010 is placed on one of the electrodes, the size of the substrate 010 that can be processed at one time is limited, and an amorphous thin film cannot be formed on the substrate 010, which has a larger area than the electrode.

的となる直流放電や低周波放電では大面積基板上に均一
な成膜を行うことが困難である。
It is difficult to uniformly form a film on a large-area substrate using direct current discharge or low-frequency discharge, which are the main targets.

従って、高価な高周波電源がどうしても必要となる。Therefore, an expensive high frequency power source is absolutely necessary.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、グロー放電プラズマを用いて非晶質薄膜を形
成する装置であって、筒状の反応容器と、同容器内を減
圧し反応ガスを導入する手段と、上記反応容器内へ該容
器の軸芯に沿って。
The present invention is an apparatus for forming an amorphous thin film using glow discharge plasma, which comprises: a cylindrical reaction vessel; a means for reducing the pressure inside the vessel and introducing a reaction gas; along the axis of.

互いに平行に相対して収納された放電用電極と。and discharge electrodes housed parallel to each other and facing each other.

同放電用電極にグロー放電用電圧を供給するキ#填電源
と、上記容器の少なくとも一部分の壁面に沿って磁極を
交互に変えて並べられた複数個の永久磁石と、上記反応
容器の軸芯と平行な軸芯含有して該反応容器を囲繞する
コイルと。
A keyed power source that supplies a glow discharge voltage to the discharge electrode, a plurality of permanent magnets arranged with alternating magnetic poles along the wall surface of at least a portion of the container, and an axial center of the reaction container. and a coil surrounding the reaction vessel and having an axis parallel to the coil.

同コイルに磁界発生用の電流全供給する交流電源と、上
記放電電界空間外で該電界と平行に非晶質薄膜形成用の
基板を支持する支持手段とを有するものである。
It has an AC power source that supplies all of the current for generating a magnetic field to the coil, and support means that supports a substrate for forming an amorphous thin film outside the discharge electric field space and parallel to the electric field.

〔作用〕[Effect]

本発明の装置でも、電極間に呑井チ電圧全加えることに
よりグロー放電プラズマを発生させる訳であるが1電極
を収納する反応容器の壁に沿って永久磁石をその磁極を
交互に変えて並べたので、グロー放電プラズマは表面磁
界により反応容器内に封じ込められ、容器壁での荷電粒
子の表面再結金が防止されることになり、ラジカル粒子
の発生率が増加する。
In the device of the present invention, a glow discharge plasma is generated by applying the full Noiichi voltage between the electrodes, but permanent magnets are arranged along the wall of the reaction vessel housing one electrode with their magnetic poles alternately changed. Therefore, the glow discharge plasma is confined within the reaction vessel by the surface magnetic field, preventing surface recrystallization of charged particles on the vessel wall, and increasing the generation rate of radical particles.

また、電極間の放電用電界と直交する方向にコイルによ
り磁界を印加した。従って、荷電粒子は、放電用電界よ
り与えられたクーロン力と。
Further, a magnetic field was applied by a coil in a direction perpendicular to the electric field for discharge between the electrodes. Therefore, the charged particles react with the Coulomb force given by the electric field for discharge.

磁界により与えられたローレンツ力に初速を与えられた
形で電界と直交する方向にドリフトするが、電界空間を
出たところでクーロン力は弱マリローレンツカによるサ
イクロトロン運動によるLarmor軌道を描いて飛ん
でいく。
The Lorentz force given by the magnetic field has an initial velocity and drifts in a direction perpendicular to the electric field, but once it leaves the electric field space, the Coulomb force flies off in a Larmor orbit due to cyclotron motion due to the weak Marlorentz force. .

一方、電気的に中性であるラジカル粒子は荷電粒子群の
軌道からそれて直進するが、荷電粒子(特にイオン)と
衝突しその進路を修正させられる。しかも、この磁界は
変動しており、ラジカル粒子は均一に飛散する。
On the other hand, electrically neutral radical particles deviate from the trajectory of a group of charged particles and travel straight, but they collide with charged particles (especially ions) and are forced to correct their course. Moreover, this magnetic field is fluctuating, and the radical particles are scattered uniformly.

従って、放電電界空間外へ該電界と平行的に支持された
基板の表面には、均一な非晶質薄膜が形成されることに
なる。
Therefore, a uniform amorphous thin film is formed on the surface of the substrate supported outside the discharge electric field space and parallel to the electric field.

〔実施例〕〔Example〕

以下1本発明を第1図に示す一実施例の装置に基づき説
明する。
The present invention will be explained below based on an embodiment of the apparatus shown in FIG.

1は反応容器で、その中にグロー放電プラズの商用周波
数を用い放電抵抗12を介して上記電極2・3に接続さ
れている。コイル5は、上記反応容器1を囲繞するもの
で、交流電源6に接続されている。7は反応ガス導入管
で1図示しないボンベに連通し、モノシランとアルゴン
の混合ガスを上記反応容器1に供給するものである。排
気孔8は、真空ポンプ9に連通しており1反応容器1内
のガスを排気するものである2、11は永久磁石で、上
記反応容器1の外面にその隣り合うもの同士の磁極が異
なるように(市松模様のように)張り付けられている。
Reference numeral 1 denotes a reaction vessel in which a commercial frequency glow discharge plasma is used and connected to the electrodes 2 and 3 via a discharge resistor 12. The coil 5 surrounds the reaction vessel 1 and is connected to an AC power source 6. Reference numeral 7 denotes a reaction gas introduction pipe which communicates with a cylinder (not shown) and supplies a mixed gas of monosilane and argon to the reaction vessel 1. The exhaust hole 8 communicates with a vacuum pump 9 and exhausts the gas in the reaction vessel 1. Reference numerals 2 and 11 are permanent magnets, and adjacent ones on the outer surface of the reaction vessel 1 have different magnetic poles. It is pasted like a checkerboard pattern.

さて1図示しない支持手段により基板10’r電極2・
3の面と直交する方向で、かつ、電極2・3が形成する
放電空間の外側に支持する。
Now, 1. By supporting means (not shown), the substrate 10'r electrode 2.
3 and outside the discharge space formed by the electrodes 2 and 3.

真空ポンプ9を駆動して反応容器1内を排気した後3反
応ガス導入管7からモノシランとアルゴンの混合ガスを
供給する。上記混合ガスを反応容器1内に充満させて圧
力to、05ないし0.5Torr  に保ち、低周波
電源4から電極2・3に電圧を印加するとグロー放電プ
ラズマが電極2・3間に発生する。このプラズマは反応
容器1の外面に取り付けた永久磁石11により反応容器
1内に封じ込められ1反応容器1の内壁での荷電粒子の
表面再結合が防止され、プラズマ密度が増大するためラ
ジカル粒子の発生率が増加する。
After evacuating the inside of the reaction vessel 1 by driving the vacuum pump 9, a mixed gas of monosilane and argon is supplied from the reaction gas introduction pipe 7. When the reaction vessel 1 is filled with the above-mentioned mixed gas and maintained at a pressure of 0.05 to 0.5 Torr, and a voltage is applied from the low frequency power source 4 to the electrodes 2 and 3, glow discharge plasma is generated between the electrodes 2 and 3. This plasma is confined within the reaction vessel 1 by a permanent magnet 11 attached to the outer surface of the reaction vessel 1, preventing surface recombination of charged particles on the inner wall of the reaction vessel 1, increasing plasma density, and generating radical particles. rate increases.

一方、コイル5にはたとえば100Hz  の交流電圧
を印加し、電極2・3間に発生する電界Eと直交する方
向の磁界B=i発生させる。なお。
On the other hand, an AC voltage of, for example, 100 Hz is applied to the coil 5 to generate a magnetic field B=i in a direction perpendicular to the electric field E generated between the electrodes 2 and 3. In addition.

その磁界密度は10ガウス程度で良い。The magnetic field density may be about 10 Gauss.

反応ガス導入管7から供給されたガスのうちモノシラン
ガスは、電極2・3の間に生じるグロー放電プラズマで
ラジカルSi に分解され。
Among the gases supplied from the reaction gas introduction pipe 7, monosilane gas is decomposed into radical Si2 by glow discharge plasma generated between the electrodes 2 and 3.

基板10の表面に付着し薄膜を形成する。It adheres to the surface of the substrate 10 to form a thin film.

このとき、アルゴンイオン等の荷電粒子は。At this time, charged particles such as argon ions.

電極2・3間で電界Eによるクーロン力F、=qEとロ
ーレンツ力F2=q(Vx B )によっていわゆるE
xBドリフトの運動を起こす。
Between electrodes 2 and 3, the so-called E is generated by the Coulomb force F, = qE due to the electric field E and the Lorentz force F2 = q (Vx B).
Causes xB drift movement.

なお、■は荷電粒子の速度である。Note that ■ is the speed of charged particles.

すなわち、ExBドリフトにより初速を与えられた形で
、電極2・3と直交する方向に飛び出し、基板10に向
けて飛んでいく。しかし。
That is, it flies out in a direction perpendicular to the electrodes 2 and 3 and flies toward the substrate 10 with an initial velocity given by the ExB drift. but.

電極2・3間に生じる電界Eの影響が小さい放電空間の
外側では、コイル6により生じた磁界Bによるサイクロ
トロン運動によりL a rrn o r軌道を描いて
飛んでいく。
Outside the discharge space, where the influence of the electric field E generated between the electrodes 2 and 3 is small, the cyclotron movement caused by the magnetic field B generated by the coil 6 causes the particles to fly in a L a rrn or r orbit.

従って、アルゴンイオン等の荷電粒子が基板10を直撃
することはなくなる。
Therefore, charged particles such as argon ions will not directly hit the substrate 10.

一方、電気的に中性であるラジカルSiは磁界Bの影響
を受けず、上記荷電粒子群の軌道よりそれて基板10に
至り、その表面に非晶質薄膜を形成する。この時、ラジ
カルSiはLarmor軌道を飛んでゆく荷電粒子と衝
突するため、電極2・3の前方だけでなく左あるいは右
に広がった形で非晶薄膜が形成される。しかも、磁界B
i変動させているので、基板10の表面に均一に非晶質
薄膜を形成させることが可能となる。
On the other hand, the electrically neutral radicals Si are not affected by the magnetic field B, deviate from the trajectory of the charged particle group, reach the substrate 10, and form an amorphous thin film on its surface. At this time, the radical Si collides with the charged particles flying in the Larmor orbit, so that an amorphous thin film is formed not only in front of the electrodes 2 and 3 but also spread to the left or right. Moreover, the magnetic field B
Since i is varied, it is possible to uniformly form an amorphous thin film on the surface of the substrate 10.

なお、電極2・3の長さは1反応容器1の長さの許す限
り長くしても何等問題がないので。
Note that the lengths of the electrodes 2 and 3 can be made as long as the length of one reaction vessel 1 allows without any problem.

長尺な基板であってもその表面に均一な非晶質薄膜を形
成することが可能となる。
It becomes possible to form a uniform amorphous thin film on the surface of even a long substrate.

また1図示は省略するが、基板10を電極2・3の両側
に配置することにより、一度に2枚の大面積の非晶質薄
膜を形成することも可能であり、処理能率も向上する。
Furthermore, although not shown in the drawing, by arranging the substrates 10 on both sides of the electrodes 2 and 3, it is possible to form two large-area amorphous thin films at once, and processing efficiency is also improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、太陽電池・燃料電池・電子写真感光体
などの各種ディバイスの製造において、均一な非晶質薄
膜が、しかも、大面積のものが形成されることになるの
で、産業上きわめて価値がある。
According to the present invention, a uniform amorphous thin film with a large area can be formed in the production of various devices such as solar cells, fuel cells, and electrophotographic photoreceptors, which is extremely useful in industry. worth it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例を示す装置の横断面図、
第2図は従来装置ヲ示す鉗断面図である。 1・・・反応容器、2.3・・・電極、4・・・低周波
電源、5・・・コイル、6・・・交流電源、7・・・・
反応ガス導入管、8・・・排気孔、9・・・真空ポンプ
、10・・・基板、11・・・永久磁石、12・・・放
電抵抗。
FIG. 1 is a cross-sectional view of an apparatus showing one embodiment of the present invention;
FIG. 2 is a sectional view of a forceps showing a conventional device. DESCRIPTION OF SYMBOLS 1... Reaction container, 2.3... Electrode, 4... Low frequency power supply, 5... Coil, 6... AC power supply, 7...
Reaction gas introduction pipe, 8... Exhaust hole, 9... Vacuum pump, 10... Substrate, 11... Permanent magnet, 12... Discharge resistor.

Claims (1)

【特許請求の範囲】 筒状の反応容器と、同容器内を減圧し反応ガスを導入す
る手段と、上記反応容器内へ該容器の軸芯に沿って互い
に平行に相対して収納された放電用電極と、同放電用電
極にグロー放電用電圧を供給する電源と、上記容器の少
な くとも一部分の壁面に沿って磁極を交互に変えて並べら
れた複数個の永久磁石と、上記反応容器の軸芯と平行な
軸芯を有して該反応容器を囲繞するコイルと、同コイル
に磁界発生用の電流を供給する交流電源と、上記放電電
界空間外で該電界と平行に非晶質薄膜形成用の基板を支
持する支持手段とを有することを特徴とする非晶質薄膜
形成装置。
[Scope of Claims] A cylindrical reaction vessel, means for reducing the pressure inside the vessel and introducing a reaction gas, and electric discharges housed in the reaction vessel parallel to each other and facing each other along the axis of the vessel. a power source for supplying glow discharge voltage to the discharge electrode; a plurality of permanent magnets arranged with alternating magnetic poles along at least a portion of the wall surface of the container; and an axis of the reaction container. a coil that surrounds the reaction vessel and has an axis parallel to the core; an AC power source that supplies a current for generating a magnetic field to the coil; and an amorphous thin film that is formed outside the discharge electric field space in parallel with the electric field. 1. An amorphous thin film forming apparatus comprising: support means for supporting a substrate for use in forming an amorphous thin film.
JP61106313A 1986-05-09 1986-05-09 Amorphous thin film forming equipment Expired - Fee Related JPH0697657B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61106313A JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment
EP87106535A EP0244842B1 (en) 1986-05-09 1987-05-06 Apparatus for forming thin film
DE3750349T DE3750349T2 (en) 1986-05-09 1987-05-06 Arrangement for the production of thin layers.
CA000536654A CA1279411C (en) 1986-05-09 1987-05-08 Method and apparatus for forming thin film
KR1019870004508A KR910002819B1 (en) 1986-05-09 1987-05-08 Forming method and device of amorphous thin film
US07/047,328 US4901669A (en) 1986-05-09 1987-05-08 Method and apparatus for forming thin film
KR1019900021941A KR910010168B1 (en) 1986-05-09 1990-12-27 Amorphous thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106313A JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment

Publications (2)

Publication Number Publication Date
JPS62263234A true JPS62263234A (en) 1987-11-16
JPH0697657B2 JPH0697657B2 (en) 1994-11-30

Family

ID=14430493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106313A Expired - Fee Related JPH0697657B2 (en) 1986-05-09 1986-05-09 Amorphous thin film forming equipment

Country Status (1)

Country Link
JP (1) JPH0697657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172101A (en) * 2011-02-23 2012-09-10 Toppan Printing Co Ltd Gas-barrier film, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742118A (en) * 1980-08-27 1982-03-09 Mitsubishi Electric Corp Plasma cvd device
JPS59187136U (en) * 1983-05-30 1984-12-12 三洋電機株式会社 Semiconductor thin film forming equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742118A (en) * 1980-08-27 1982-03-09 Mitsubishi Electric Corp Plasma cvd device
JPS59187136U (en) * 1983-05-30 1984-12-12 三洋電機株式会社 Semiconductor thin film forming equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172101A (en) * 2011-02-23 2012-09-10 Toppan Printing Co Ltd Gas-barrier film, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0697657B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
CA2092756A1 (en) Plasma cvd method and apparatus therefor
TWI553687B (en) Self-sustained non-ambipolar direct current (dc) plasma at low power
JPS60135573A (en) Method and device for sputtering
JPH0353065A (en) Sputtering device
TW509964B (en) Plasma generating apparatus and semiconductor manufacturing method
US8698400B2 (en) Method for producing a plasma beam and plasma source
US6909086B2 (en) Neutral particle beam processing apparatus
JPH04236781A (en) Plasma cvd device
KR950000310B1 (en) Plasma cvd apparatus
JPS61226925A (en) Discharge reaction device
KR910002819B1 (en) Forming method and device of amorphous thin film
JPS62263234A (en) Amorphous thin film forming system
JPS62263236A (en) Formation of amorphous thin film and its system
JPS6314876A (en) Amorphous thin film forming device
KR910010168B1 (en) Amorphous thin film manufacturing device
JPS62263235A (en) Amorphous thin film forming system
JPH0760797B2 (en) Amorphous thin film forming equipment
JPH10172793A (en) Plasma generator
JPH07118463B2 (en) Plasma CVD equipment
JPS62260837A (en) Method of forming amorphous thin film
WO2013162267A1 (en) Ion treatment apparatus using position control of ion beam source including pole-type antenna
JP3095565B2 (en) Plasma chemical vapor deposition equipment
JPS6333575A (en) Electron cyclotron plasma cvd device
JPH0633680Y2 (en) Electron cyclotron resonance plasma generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees