JPS62260877A - Anisotropically electroconductive adhesive - Google Patents

Anisotropically electroconductive adhesive

Info

Publication number
JPS62260877A
JPS62260877A JP8928286A JP8928286A JPS62260877A JP S62260877 A JPS62260877 A JP S62260877A JP 8928286 A JP8928286 A JP 8928286A JP 8928286 A JP8928286 A JP 8928286A JP S62260877 A JPS62260877 A JP S62260877A
Authority
JP
Japan
Prior art keywords
film
adhesive
resin
aluminum
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8928286A
Other languages
Japanese (ja)
Inventor
Osamu Oda
修 小田
Fumio Tanimoto
文男 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawakami Paint Manufacturing Co Ltd
Research Institute for Production Development
Original Assignee
Kawakami Paint Manufacturing Co Ltd
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawakami Paint Manufacturing Co Ltd, Research Institute for Production Development filed Critical Kawakami Paint Manufacturing Co Ltd
Priority to JP8928286A priority Critical patent/JPS62260877A/en
Publication of JPS62260877A publication Critical patent/JPS62260877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To provide a readily available anisotropically electroconductive adhesive in film or paste form, which has excellent adhesive strength and excellent electrical characteristics, e.g., persistent electroconductivity, and which comprises a resin having thermal adhesiveness and a particular powdery alloy as an electroconductive filler dispersed therein. CONSTITUTION:The title adhesive is obtd. by compounding a thermoplastic resin (e.g., polyester resin) and/or thermosetting resin (e.g., crosslinkable acrylic resin) having thermal adhesiveness with an electroconductive filler comprised of a porous aluminum alloy powder having multiple sharp corners and having a particle diameter of 2-100mum in an amt. of 3-70wt%, which powder is obtd. by melting 50-90wt% Al and 50-10wt% divalent metal (e.g., Mg) of Group II or Group VIII iron family metal, cooling for crystallization the melt and pulverizing crystallized alloy in a non-oxidizing atmosphere. Optionally, the title adhesive may further comprise an additive. If necessary, the adhesive may be formed into a film of 10-200mum in thickness by means of extrusion etc. or a paste by addition of a solvent to facilitate the application thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、異方導電性接着剤に関するものである。さら
に詳しくは、本発明は、熱接着性を有する樹脂内に、特
殊なアルミニウム合金粉を導電性フィラーとして分散配
合させた電気的特性が良好なフィルム状又はペースト状
の異方導電性接着剤である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anisotropically conductive adhesive. More specifically, the present invention is an anisotropic conductive adhesive in the form of a film or paste with good electrical properties, which is made by dispersing special aluminum alloy powder as a conductive filler in a resin having thermal adhesive properties. be.

〔従来の技術とその問題点〕[Conventional technology and its problems]

異方導電性接着剤については、樹脂中に分散する導電性
フィラーの含量を制御することにより異方導電性を持た
せたものと、導電性フィラーを配向させることによって
異方導電性を持たせたものとがあったが、前者は後者に
比べ電気的特性が劣ると言われていた。
Regarding anisotropically conductive adhesives, there are two types of adhesives: those that have anisotropic conductivity by controlling the content of conductive filler dispersed in the resin, and those that have anisotropic conductivity by orienting the conductive filler. However, the former was said to have inferior electrical characteristics compared to the latter.

後者については、導電性フィラーをシリコーンゴム中に
分散させた後、導電性フィラーに磁力をかけて配向させ
、導電路を形成したものがよ(知られている。しかし、
このものは、フィルムを軟質状態に維持しながら磁場中
を通すという特殊な工程を経る必要があるだけでなく、
その工程中、膜の厚さ方向に導電性フィラーの偏りが進
むため、接着膜の接着強度がどうしても低下するという
問題点があった。さらに、このようにして作られた異方
導電性フィルムが接着層として強磁場中にさらされた場
合には、導電性フィラーの配向が変わり、導電性の保証
(一方では絶縁性の保証)が長期にわたってできなくな
るという問題点もあった。
Regarding the latter, a method is known in which a conductive filler is dispersed in silicone rubber and then a magnetic force is applied to orient the conductive filler to form a conductive path.However,
Not only does this require a special process of passing the film through a magnetic field while maintaining it in a soft state, but
During this process, the conductive filler becomes uneven in the thickness direction of the film, which causes a problem in that the adhesive strength of the adhesive film inevitably decreases. Furthermore, when the anisotropically conductive film made in this way is exposed to a strong magnetic field as an adhesive layer, the orientation of the conductive filler changes, and the guarantee of conductivity (on the other hand, the guarantee of insulation) is lost. There was also the problem that it could not be done for a long time.

そこで、本発明者らは、このような問題点を持つ導電性
フィラーを配向させることによって異方導電性を持たせ
たものではなく、樹脂中に分散する導電性フィラーの含
量を制御することにより異方導電性を持たせる異方導電
性接着剤について研究を重ねた。その結果、樹脂中に、
特殊なアルミニウム合金粉を導電性フィラーとして分散
させ、その含量を制御することにより、従来の導電性フ
ィラーを配向させることによって異方導電性を持たせた
異方導電性フィルムと比べて、電気的特性において遜色
がなく、用途面の広い製品を作ることに成功したのであ
る。
Therefore, the present inventors did not achieve anisotropic conductivity by orienting the conductive filler, which has such problems, but by controlling the content of the conductive filler dispersed in the resin. We have conducted repeated research on anisotropic conductive adhesives that provide anisotropic conductivity. As a result, in the resin,
By dispersing special aluminum alloy powder as a conductive filler and controlling its content, it has improved electrical conductivity compared to conventional anisotropic conductive films that have anisotropic conductivity by orienting the conductive filler. They succeeded in creating a product with comparable characteristics and a wide range of uses.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る異方導電性接着剤は、熱接着性を有する樹
脂に、アルミニウム50〜90重量%。
The anisotropically conductive adhesive according to the present invention contains 50 to 90% by weight of aluminum in a thermoadhesive resin.

二価金属10〜50重量%を含む粒径2〜100μmの
範囲の合金粉を導電性フィラーとして分散配合させたこ
とを特徴とするものである。
It is characterized in that alloy powder containing 10 to 50% by weight of a divalent metal and having a particle size in the range of 2 to 100 μm is dispersed and blended as a conductive filler.

このような構成を採る本発明に係る異方導電性接着剤は
、異方導電性と同時に熱接着性を有するものである。
The anisotropically conductive adhesive according to the present invention having such a configuration has anisotropically conductive properties and thermal adhesive properties at the same time.

本発明の異方導電性接着剤の基材となる熱接着性を有す
る樹脂は、使用温度が高温、長時間にわたる場合には熱
硬化性樹脂では好ましくなく、一般には熱可塑性樹脂の
方が良い。この熱可塑性樹脂としては、ポリオレフィン
、ポリ酢酸ビニル。
As for the thermoadhesive resin that serves as the base material of the anisotropically conductive adhesive of the present invention, thermosetting resin is not preferable when the usage temperature is high and for a long period of time, and thermoplastic resin is generally better. . Examples of this thermoplastic resin include polyolefin and polyvinyl acetate.

100%フェノール樹脂、ポリスチレン、ポリ (メタ
)アクリレート、ポリエステル、ポリイミド。
100% phenolic resin, polystyrene, poly(meth)acrylate, polyester, polyimide.

ポリアミド、ポリアクリロニトリル、ポリビニルアセク
ール、各種合成ゴム、さらにこれらの変性物に相当する
もの、もしくはこれらの混合物等を挙げることができる
Examples include polyamide, polyacrylonitrile, polyvinyl acecool, various synthetic rubbers, modified products thereof, and mixtures thereof.

他方、この熱接着性樹脂に分散配合される導電性フィラ
ーとしての特殊なアルミニウム合金粉は、アルミニウム
50〜90重量%、二価金属10〜50重量%を含むも
のである。このアルミニウム合金粉は、導電性フィラー
として、磁性のないあるいは磁性の非常に弱いものであ
り、これを使用する点に本発明の基本的な特長が存する
。アルミニウムおよび二価金属の含有量は、前記した範
囲に止めるべきであり、その範囲を越える場合には次の
ような問題点があるので好ましくない。即ち、前記した
範囲を越える場合には、アルミニウムおよび二価金属の
混合、攪拌を充分に行っても、各溶質の偏析が極めて甚
だしく起こり、その結果、アルミニウム合金溶湯の冷却
に際して、外周部と内芯部との結晶の形ならびに組成が
不均一になるのである。
On the other hand, the special aluminum alloy powder used as a conductive filler to be dispersed and blended in this thermoadhesive resin contains 50 to 90% by weight of aluminum and 10 to 50% by weight of divalent metal. This aluminum alloy powder is non-magnetic or has very weak magnetism as a conductive filler, and the basic feature of the present invention lies in its use. The contents of aluminum and divalent metals should be kept within the above-mentioned ranges, and exceeding these ranges is not preferred because the following problems may occur. In other words, if the above-mentioned range is exceeded, even if aluminum and divalent metals are sufficiently mixed and stirred, segregation of each solute will occur, and as a result, when the molten aluminum alloy is cooled, the outer peripheral part and the inner part will be separated. This results in non-uniformity in the shape and composition of the crystal relative to the core.

また、本発明において使用する導電性フィラーとしての
アルミニウム合金粉の粒径は、2〜100μmとくに好
ましくは3〜70trmの範囲が良いことが、本発明者
らの実験から明らかにされた。
Furthermore, it has been revealed through experiments by the present inventors that the particle size of the aluminum alloy powder as the conductive filler used in the present invention is preferably in the range of 2 to 100 μm, particularly preferably 3 to 70 trm.

つまり、アルミニウム合金粉の粒径が、2μmより小さ
いときには電極ピッチ間の絶縁抵抗が悪くなり、100
μmを越えるときには電極間の接続抵抗が悪くなるとい
うことを確認した。
In other words, when the particle size of the aluminum alloy powder is smaller than 2 μm, the insulation resistance between the electrode pitches deteriorates, and the
It was confirmed that when the thickness exceeds μm, the connection resistance between the electrodes deteriorates.

本発明の目的を達成する上では、使用する導電性フィラ
ーとしてのアルミニウム合金粉の形状が、多孔性で、且
つ多くの鋭い角があり、さらに展性の小さいものが好ま
しい。このようなアルミニウム合金粉を得るためには、
先ず、所定量のアルミニウムと二価金属とを所定の温度
にて溶融させてアルミニウム合金溶湯を得る。次いで、
これを溶質偏析を起こさないように冷却、結晶化させる
In order to achieve the object of the present invention, it is preferable that the aluminum alloy powder used as the conductive filler is porous, has many sharp corners, and has low malleability. In order to obtain such aluminum alloy powder,
First, a predetermined amount of aluminum and a divalent metal are melted at a predetermined temperature to obtain a molten aluminum alloy. Then,
This is cooled and crystallized without causing solute segregation.

最後に、得られたアルミニウム合金を、非酸化性雰囲気
下で乾式法或いは湿式法により粉砕すればよい。
Finally, the obtained aluminum alloy may be pulverized by a dry method or a wet method in a non-oxidizing atmosphere.

前記した二価金属は、周期律表における第2族元素また
は第8族鉄族元素であり、それらはへゾリウム。マグネ
シウム、カルシウム、亜鉛、カドミウム、i失、コバル
ト、ニッケルよりなる群から選ばれた金属である。これ
らの金属は、1種のみでなく2種以上を混合して用いて
も良い。もっとも、この場合でもアルミニウムのもつ導
電性、軽量性、非磁性を阻害しないためには、アルミニ
ウムを50〜90重量%含重量とが必要である。
The divalent metal mentioned above is a group 2 element or a group 8 iron group element in the periodic table, and they are hesolium. It is a metal selected from the group consisting of magnesium, calcium, zinc, cadmium, cobalt, and nickel. These metals may be used not only alone, but also as a mixture of two or more. However, even in this case, the aluminum content must be 50 to 90% by weight in order not to impede the conductivity, lightness, and nonmagnetism of aluminum.

アルミニウム単独の粉末は、表面の酸化が非常に早く、
導電性が低下し易い。しかし、アルミニウムを合金化す
ると、かなりこの酸化が押さえられ、長期に亘って良好
な導電性を維持していることを本発明者らは確認してい
る。特に、アルミニウムにマグネシウムまたはニッケル
を加えて合金化したものが実用的であることを、本発明
者らは確認している。この場合、マグネシウムまたはニ
ッケルの混合率は、アルミニウム合金に対し10〜35
%であることが好ましい。
The surface of aluminum powder oxidizes very quickly,
Conductivity tends to decrease. However, the present inventors have confirmed that when aluminum is alloyed, this oxidation is considerably suppressed and good conductivity is maintained over a long period of time. In particular, the present inventors have confirmed that an alloy made by adding magnesium or nickel to aluminum is practical. In this case, the mixing ratio of magnesium or nickel is 10 to 35% of the aluminum alloy.
% is preferable.

なお、本発明においては以上の特別なアルミニウム合金
粉からなる導電性フィラーのほかに、この導電性フィラ
ーのスペーサーとなる無機粉体または有機粉体を使用で
きるが、これらの粉体の粒径は導電性フィラーの粒径よ
りも小であることが望ましい。
In addition to the above conductive filler made of special aluminum alloy powder, in the present invention, inorganic or organic powder can be used as a spacer for the conductive filler, but the particle size of these powders is It is desirable that the particle size is smaller than the particle size of the conductive filler.

本発明に係る異方導電性接着剤は、フィルム状としても
ペースト状としても使用することができる。フィルム状
とする場合、厚すぎると熱圧した時の樹脂の流動量が大
きくなって変形し易く、同時に導電性フィラーであるア
ルミニウム合金粉も移動し易くなって、その際生じるア
ルミニウム合金粉同志の接触点が多くなり、横方向の絶
縁性が妨げられる様になる。そして時として絶縁不良に
なることもある。従って、フィルムの厚さは、200μ
mを越えないようにするのが良い。一方、厚さ10μm
以下のフィルムは、アルミニウム合金粉を均一に分散し
たフィルムの製法が難しく特に経済的であるとは言い難
い。そこで、多くの場合フィルムの厚さは20〜150
μmの範囲にするのが良い。なお、前記した導電性フィ
ラーの充填量は、フィルムの厚さや粒径等を考慮して決
められるべきであるが、本発明では固型分の3〜70重
量%が好ましい。3重量%に満たないと、横方向(膜厚
に沿った方向)のみならず、膜の厚み方向(膜面に垂直
な方向)にも導通しな(なる。
The anisotropically conductive adhesive according to the present invention can be used either in the form of a film or in the form of a paste. If it is made into a film, if it is too thick, the amount of resin flowing during hot pressing will increase and it will easily deform.At the same time, the aluminum alloy powder, which is a conductive filler, will also move easily, causing the aluminum alloy powder produced at that time to move. The number of contact points increases and lateral insulation becomes impaired. And sometimes there may be insulation failure. Therefore, the thickness of the film is 200μ
It is best not to exceed m. On the other hand, the thickness is 10 μm
The following film cannot be said to be particularly economical because it is difficult to produce a film in which aluminum alloy powder is uniformly dispersed. Therefore, in most cases, the film thickness is 20 to 150 mm.
It is preferable to set it in the μm range. The amount of the conductive filler described above should be determined in consideration of the film thickness, particle size, etc., but in the present invention, it is preferably 3 to 70% by weight of the solid content. If it is less than 3% by weight, there will be no conductivity not only in the lateral direction (direction along the film thickness) but also in the thickness direction of the film (direction perpendicular to the film surface).

又、70重重量を越えると、導電性の異方性が得られず
横方向にも導通するし、フィルムの接着強度も低下する
On the other hand, if the weight exceeds 70 weight, anisotropy in conductivity cannot be obtained, conduction occurs in the lateral direction, and the adhesive strength of the film also decreases.

付言すれば、本発明の異方導電性接着剤には、以上説明
した熱接着性を有する熱可ヅ性樹脂2導電性フィラーと
してのアルミニウム合金粉以外に、導電性補助剤、防錆
剤、軟化剤1分散剤、耐熱性向上剤、接着力補強剤、劣
化防止剤3着色剤などを適宜添加してもよいのは勿論で
ある。
In addition, the anisotropically conductive adhesive of the present invention includes, in addition to the above-described thermoplastic resin having thermal adhesive properties and aluminum alloy powder as a conductive filler, a conductive auxiliary agent, a rust preventive agent, Of course, a softener 1, a dispersant, a heat resistance improver, an adhesive force reinforcing agent, a deterioration inhibitor 3, a coloring agent, etc. may be added as appropriate.

次に、本発明に係る異方導電性接着剤の製造法について
説明する。前記した熱接着性を有する熱可塑性樹脂に、
m電性フィラーおよび要すれば添加剤を加えて充分に分
散させ、必要に応じて溶剤を加えたのち、適当な流動状
態にするか、もしくは若干の溶剤を加えたのち、加熱す
ることによって適当な流動状態にする。フィルム状異方
導電性接着剤の場合、これをシルクスクリーン法による
かロールコータ−法によるかして、離型紙、離型シート
または離型板上においてシート化し、次いで、80°C
〜100℃にて乾燥してフィルム状物にする。あるいは
、押出成形法またはインフレーション法によってフィル
ム状物にすることもできる。このようにして成形された
フィルムは、厚み方向(膜面に垂直な方向)には導電性
を示すが、横方向(膜面に沿った方向)には絶縁性を示
すようになる。このフィルムを適当なサイズに切断すれ
ば異方導電性フィルムになり、コネクターもしくはター
ミナルの熱接着に用いられる。又、ペースト状異方導電
性接着剤の場合、前記した流動状態の配合物を、ターミ
ナルの端部にスクリーン印刷法等にてシート状に塗布し
た後、80〜100℃にて乾燥させる。これらの異方導
電性接着剤を電極端間に挟み、電極の上あるいは上下か
ら、温度80℃〜200°C程度、圧力5〜80kg/
ad。
Next, a method for producing an anisotropically conductive adhesive according to the present invention will be explained. The above-mentioned thermoplastic resin having thermal adhesive properties,
After adding the conductive filler and any additives and sufficiently dispersing them, and adding a solvent if necessary, it is made into a suitable fluid state, or by adding a small amount of solvent and heating. to a fluid state. In the case of a film-like anisotropic conductive adhesive, it is formed into a sheet on release paper, a release sheet, or a release plate by a silk screen method or a roll coater method, and then heated at 80°C.
Dry at ~100°C to form a film. Alternatively, it can also be made into a film by extrusion or inflation. The film formed in this manner exhibits conductivity in the thickness direction (direction perpendicular to the film surface), but exhibits insulation in the lateral direction (direction along the film surface). If this film is cut to an appropriate size, it becomes an anisotropically conductive film that can be used for thermal bonding of connectors or terminals. In the case of a paste-like anisotropic conductive adhesive, the fluidized composition described above is applied to the end of the terminal in a sheet form by screen printing or the like, and then dried at 80 to 100°C. These anisotropically conductive adhesives are sandwiched between the electrodes, and applied from above or above the electrodes at a temperature of about 80°C to 200°C and a pressure of 5 to 80kg.
ad.

時間数秒〜数分間ホットプレスすることにより、両電極
間を電気的に接続することができる。
By hot pressing for several seconds to several minutes, both electrodes can be electrically connected.

〔実施例〕〔Example〕

次に、本発明を実施例に基づき説明する。 Next, the present invention will be explained based on examples.

実施例1〜5 アルミニウムとマグネシウムとを1000 ’cにて溶
融させてアルミニウム合金溶湯を得、これを溶質偏析を
起こさないように冷却、結晶化し、得られたアルミニウ
ム合金を非酸化性雰囲気で乾式粉砕し、粒径10〜30
μmのアルミニウム・マグネシウム(AI/Mg=70
/30)合金粉を得た。
Examples 1 to 5 Aluminum and magnesium are melted at 1000'C to obtain a molten aluminum alloy, which is cooled and crystallized so as not to cause solute segregation, and the obtained aluminum alloy is dry-processed in a non-oxidizing atmosphere. Grind, particle size 10-30
μm aluminum/magnesium (AI/Mg=70
/30) Alloy powder was obtained.

表−1に示す割合で、熱可塑性ポリエステル樹脂液バイ
ロン200S〔東洋紡績KK製の商品名〕、バイロン3
00S〔東洋紡績にに製の商品名〕、前記したアルミニ
ウム・マグネシウム(Al/Mg=70/30)合金粉
を配合し、その中ヘチタネート系カップリング剤プレン
アクト138S(味)素KL製の商品名〕、アエロジル
380 〔日本アエロジルKK製の商品名〕、メチルエ
チルケトン、トルエン60をニーグーを用いて充分混練
し、樹脂中にアルミニウム・マグネシウム合金粉を分散
させ、異方導電性接着剤ペーストを得た。その後、これ
をロールコーク−でシート化し、オーブン中で80℃、
5分加熱してフィルム状物を得た。得られたものは、ア
ルミニウム・マグネシウム合金が均一に分散した可撓性
のあるフィルム状異方4電性接着剤であった。
The thermoplastic polyester resin liquid Vylon 200S [trade name manufactured by Toyobo KK] and Vylon 3 were prepared in the proportions shown in Table-1.
00S (trade name manufactured by Toyobo Co., Ltd.), which contains the above-mentioned aluminum-magnesium (Al/Mg=70/30) alloy powder, contains a hetitanate coupling agent Prene Act 138S (trade name manufactured by Ajimoto KL). ], Aerosil 380 (trade name, manufactured by Nippon Aerosil KK), methyl ethyl ketone, and toluene 60 were thoroughly kneaded using a Ni-Goo, and aluminum-magnesium alloy powder was dispersed in the resin to obtain an anisotropically conductive adhesive paste. Thereafter, this was formed into a sheet using roll coke, and placed in an oven at 80°C.
A film-like product was obtained by heating for 5 minutes. What was obtained was a flexible film-like anisotropic four-electrode adhesive in which aluminum-magnesium alloy was uniformly dispersed.

このフィルム状異方導電性接着剤を、電極間ピッチ1.
5鰭のパターンを画いたポリエチレンテレフタレートフ
ィルムのフレキシブル基板の電1間に挾み、ホットプレ
スにより温度180°C1圧力15kg/a艷の熱圧を
約10秒間加えて接着した。
This film-like anisotropic conductive adhesive was applied with an inter-electrode pitch of 1.
A flexible substrate made of polyethylene terephthalate film with a 5-fin pattern was sandwiched between two wires, and hot pressure was applied at a temperature of 180° C. and a pressure of 15 kg/a for about 10 seconds to adhere.

得られたフレキシブル基板の電極間の接続抵抗及び電極
ピッチ間の絶縁抵抗は表−1に示す通りであり、本実施
例のフィルム状異方4電性接着剤は優れた異方導電性を
示した。
The connection resistance between the electrodes and the insulation resistance between the electrode pitches of the obtained flexible substrate are as shown in Table 1, and the film-like anisotropic tetraconductive adhesive of this example exhibits excellent anisotropic conductivity. Ta.

更に、得られたフレキシブル基板について、50℃、9
5%RHの耐湿試験を行ったところ、500時間経過後
においても、電極間の接続抵抗及び電極ピッチ間の絶縁
抵抗の変化はほとんど認められなかった。また、−30
℃、30分−60℃。
Furthermore, the obtained flexible substrate was heated at 50°C at 9°C.
When a humidity test was conducted at 5% RH, almost no change was observed in the connection resistance between the electrodes and the insulation resistance between the electrode pitches even after 500 hours had passed. Also, -30
°C, 30 minutes - 60 °C.

30分の温度サイクル試験を10サイクル行ったところ
、電極間の接続抵抗及び電極ピンチ間の絶縁抵抗の変化
はほとんど認められなかった。
When a 30-minute temperature cycle test was performed for 10 cycles, almost no change was observed in the connection resistance between the electrodes and the insulation resistance between the electrode pinches.

比較例1 導電性フィラーとしてアルミニウム粉(粒径20〜40
μ)を用いた他は、実施例2と同じ条件にてフィルム状
異方導電性接着剤を得た。このものの電極間の接続抵抗
及び電極ピンチ間の絶縁抵抗を実施例2と同様にして調
べた結果を、表−1に示す。この場合、膜方向の導電性
が悪く商品価値がなかった。
Comparative Example 1 Aluminum powder (particle size 20-40
A film-like anisotropically conductive adhesive was obtained under the same conditions as in Example 2, except that μ) was used. The connection resistance between the electrodes and the insulation resistance between the electrode pinches of this product were investigated in the same manner as in Example 2, and the results are shown in Table 1. In this case, the conductivity in the film direction was poor and there was no commercial value.

比較例2 導電性フィラーとして粒径120〜150μmのアルミ
ニウム・マグネシウム(A l / M g = 70
/30)合金粉を用い、フィルムの厚みを140μmと
した他は、実施例2と同じ条件にてフィルム状異方導電
性接着剤を得た。このものの電極間の接続抵抗及び電極
ピッチ間の絶縁抵抗を実施例2と同様にして調べた結果
を、表−1に示す。
Comparative Example 2 Aluminum/magnesium (A l / M g = 70
/30) A film-like anisotropic conductive adhesive was obtained under the same conditions as in Example 2, except that alloy powder was used and the film thickness was 140 μm. The connection resistance between the electrodes and the insulation resistance between the electrode pitches of this product were investigated in the same manner as in Example 2, and the results are shown in Table 1.

この場合、導電性はほぼ等方性であり、フィルム状にし
た時表面が均一でなかった。
In this case, the conductivity was almost isotropic, and the surface was not uniform when formed into a film.

比較例3 導電性フィラーとして粒径2μm以下のアルミニウム・
マグネシウム(A I/Mg=70/30)合金粉を用
いた他は、実施例4と同じ条件にてフィルム状異方導電
性接着剤を得た。このものの電極間の接続抵抗及び電極
ピンチ間の絶縁抵抗を実施例4と同様にして調べた結果
を、表−1に示す。この場合、膜方向の導電性が悪い結
果を示した。
Comparative Example 3 Aluminum with a particle size of 2 μm or less was used as a conductive filler.
A film-like anisotropically conductive adhesive was obtained under the same conditions as in Example 4, except that magnesium (AI/Mg=70/30) alloy powder was used. The connection resistance between the electrodes and the insulation resistance between the electrode pinches of this product were investigated in the same manner as in Example 4, and the results are shown in Table 1. In this case, the conductivity in the film direction was poor.

比較例4 導電性フィラーとして粒径2μm以下のアルミニウム・
マグネシウム(A I/Mg=70/30)合金粉を用
いた他は、実施例2と同じ条件にてフィルム状異方導電
性接着剤を得た。このものの電極間の接続抵抗及び電極
ピッチ間の絶縁tl(抗を実施例2と同様にして調べた
結果を、表−1に示す。この場合、膜方向の導電性が悪
い結果を示した。
Comparative Example 4 Aluminum with a particle size of 2 μm or less was used as a conductive filler.
A film-like anisotropically conductive adhesive was obtained under the same conditions as in Example 2, except that magnesium (AI/Mg=70/30) alloy powder was used. The connection resistance between the electrodes and the insulation tl (resistance) between the electrode pitches of this material were investigated in the same manner as in Example 2, and the results are shown in Table 1. In this case, the conductivity in the membrane direction was poor.

実施例6〜10 アルミニウムとニッケルとを1000℃にて溶融させて
アルミニウム合金溶湯を得、これを溶質偏析を起こさな
いように冷却、結晶化し、得られたアルミニウム合金を
非酸化性雰囲気で乾式粉砕し、粒径20〜40μmのア
ルミニウム・ニッケル(AI/N1=80/20)合金
粉を得た。
Examples 6 to 10 Aluminum and nickel are melted at 1000°C to obtain a molten aluminum alloy, which is cooled and crystallized so as not to cause solute segregation, and the obtained aluminum alloy is dry-pulverized in a non-oxidizing atmosphere. An aluminum-nickel (AI/N1=80/20) alloy powder with a particle size of 20 to 40 μm was obtained.

表−2に示す割合で、ブチラール樹脂エスレノクBBM
−1(積木化学KL製の商品名〕、可塑剤ジブチルフタ
レート、ポリオレフィン樹脂モディソクL−100F(
三菱油化KK製の商品名〕、前記したアルミニウム・ニ
ッケル(AI/N1=80/20)合金粉を配合した後
、メチルエチルケトン、トルエンを加え充分に分散させ
、異方導電性接着剤ペーストを得た。その後、これらを
スリットより押出成形法によって押出し、フィルム状異
方導電性接着剤を得た。このものは、アルミニウム・ニ
ッケル合金が均一に分散した可撓性のあるフィルム状異
方導電性接着剤であった。
Butyral resin Eslenok BBM in the proportions shown in Table-2.
-1 (trade name manufactured by Building Block Chemical KL), plasticizer dibutyl phthalate, polyolefin resin Modisoku L-100F (
After blending the aluminum-nickel (AI/N1=80/20) alloy powder described above, methyl ethyl ketone and toluene were added and thoroughly dispersed to obtain an anisotropically conductive adhesive paste. Ta. Thereafter, these were extruded through a slit using an extrusion molding method to obtain a film-like anisotropically conductive adhesive. This was a flexible film-like anisotropic conductive adhesive in which aluminum-nickel alloy was uniformly dispersed.

このフィルム状異方導電性接着剤を、実施例1〜5と同
様の条件にて処理したところ、電極間の接続抵抗、さら
に電極ピッチ間の絶縁抵抗は表−2に示す通りであり、
本実施例のフィルム状異方導電性接着剤は優れた異方導
電性を示した。
When this film-like anisotropic conductive adhesive was treated under the same conditions as in Examples 1 to 5, the connection resistance between the electrodes and the insulation resistance between the electrode pitches were as shown in Table 2.
The film-like anisotropic conductive adhesive of this example exhibited excellent anisotropic conductivity.

また、得られたフレキシブル基板について、実施例1〜
5におけると同様に、50℃、95%RHの耐湿試験お
よび一30℃、30分−60℃。
Further, regarding the obtained flexible substrates, Examples 1 to 2
50°C, 95% RH humidity test and -30°C, 30 minutes -60°C as in 5.

30分の温度サイクル試験を10サイクル行ったところ
、電気的特性の変化はほとんど認められなかった。
When a 30-minute temperature cycle test was performed for 10 cycles, almost no change in electrical characteristics was observed.

なお、本実施例によって得られた異方導電性フィルムを
、ガラス板上に画かれた酸化スズ・酸化インジウム電極
とプラスチックス・フィルム上に画かれた銀電極間のホ
ットプレス接着に使用したところ、良好な導電性が得ら
れた。
The anisotropic conductive film obtained in this example was used for hot press bonding between a tin oxide/indium oxide electrode drawn on a glass plate and a silver electrode drawn on a plastic film. , good conductivity was obtained.

表−2 比較例5 導電性フィラーとしてアルミニウム・ニッケル(AI/
Ni =40/60)合金粉を用いた他は、実施例6と
同じ条件でフィルム状異方導電性接着剤を作った。この
ものは、合金溶湯を冷却・結晶化させる時の条件が少し
でも異なれば、膜方向の2!!電性が変化するという欠
点を示した。また、このものを、約4000ガウスの磁
場中に約20分間放置したところ、膜方向の導電性が急
になくなった。
Table 2 Comparative Example 5 Aluminum/nickel (AI/
A film-like anisotropic conductive adhesive was produced under the same conditions as in Example 6, except that Ni = 40/60) alloy powder was used. If the conditions for cooling and crystallizing the molten alloy are slightly different, the film direction will be 2! ! It showed the drawback that the electric property changes. Further, when this material was left in a magnetic field of about 4000 Gauss for about 20 minutes, the conductivity in the film direction suddenly disappeared.

実施例11〜15 実施例1〜3と同じ条件によって得た異方導電性接着剤
ペーストを、電極間ピッチ1.51のパターンを描いた
フィルムのフレキシブル基板に、150〜250メソシ
ユのスクリーンを使ってスクリーン印刷を行い、80℃
にて5分加熱して乾燥させた後、同じパターンを描いた
フレキシブル基板を載せ、温度180℃、圧力15kg
/catO熱圧で約10秒加えて接着した。得られたフ
レキシブル基板の電極間の接続抵抗及び絶縁抵抗は表−
3に示した通りであり、優れた異方導電性を示した。ま
た、得られたフレキシブル基板について、実施例1〜3
における条件と同じ条件にて、耐湿試験及び温度サイク
ル試験を行ったところ、電気的特性の変化は殆ど見られ
なかった。
Examples 11 to 15 An anisotropically conductive adhesive paste obtained under the same conditions as Examples 1 to 3 was applied to a film flexible substrate with a pattern of 1.51 interelectrode pitch using a 150 to 250 mesh screen. Screen print at 80℃
After drying by heating for 5 minutes at
/catO was bonded by applying heat and pressure for about 10 seconds. The connection resistance and insulation resistance between the electrodes of the obtained flexible substrate are shown in Table-
3, and showed excellent anisotropic conductivity. Further, regarding the obtained flexible substrates, Examples 1 to 3
When a moisture resistance test and a temperature cycle test were conducted under the same conditions as in , almost no change in electrical characteristics was observed.

表−3 〔効果〕 本発明に係る異方導電性接着剤は、熱接着性を有する樹
脂内に特殊なアルミニウム合金粉を導電性フィラーとし
て分散配合させているので、従来の導電性フィラーを配
向させることによって異方導電性を持たせた異方導電性
接着剤き比べて、電気的特性において遜色がない。また
、本発明に係る異方導電性接着剤は、従来の導電性フィ
ラーを配向させることによって異方導電性を持たせた異
方導電性接着剤のごとき製造工程上の問題点がないので
、各種の電極や回路部分の接着とくに上。
Table 3 [Effects] The anisotropic conductive adhesive according to the present invention has a special aluminum alloy powder dispersed as a conductive filler in a thermoadhesive resin. It is comparable in electrical properties to anisotropically conductive adhesives that have anisotropically conductive properties. In addition, the anisotropic conductive adhesive according to the present invention does not have problems in the manufacturing process unlike conventional anisotropic conductive adhesives that have anisotropic conductivity by orienting conductive fillers. For adhesion of various electrodes and circuit parts, especially on top.

下接着に用いられ、粗大なものから極精密な図柄に至る
まで広く適応できるので産業上の利用価値は絶大である
It is used for bottom gluing and can be applied to a wide range of designs, from coarse ones to extremely precise designs, so it has great industrial value.

Claims (4)

【特許請求の範囲】[Claims] (1)熱接着性を有する樹脂に、アルミニウム50〜9
0重量%、二価金属10〜50重量%を含む粒径2〜1
00μmの範囲の合金粉を導電性フィラーとして分散配
合させたことを特徴とする異方導電性接着剤。
(1) Aluminum 50 to 9
Particle size 2-1 containing 0% by weight and 10-50% by weight of divalent metals
An anisotropic conductive adhesive characterized in that alloy powder in the range of 00 μm is dispersed and blended as a conductive filler.
(2)二価金属が、周期律表における第2族元素および
第8族鉄族元素よりなる群から選ばれた少なくとも一つ
の金属である特許請求の範囲第(1)項に記載の異方導
電性接着剤。
(2) Anisotropic according to claim (1), wherein the divalent metal is at least one metal selected from the group consisting of Group 2 elements and Group 8 iron group elements in the periodic table. conductive adhesive.
(3)合金粉が、接着剤中固型分の3〜70重量%添加
されてなる特許請求の範囲第(1)項〜(2)項のいず
れかに記載の異方導電性接着剤。
(3) The anisotropically conductive adhesive according to any one of claims (1) to (2), wherein the alloy powder is added in an amount of 3 to 70% by weight of the solid content in the adhesive.
(4)接着剤が、フィルム状の形態でその厚さが10〜
200μmである特許請求の範囲第(1)項〜(3)項
のいずれかに記載の異方導電性接着剤。
(4) The adhesive is in the form of a film and its thickness is 10~
The anisotropically conductive adhesive according to any one of claims (1) to (3), which has a diameter of 200 μm.
JP8928286A 1986-04-17 1986-04-17 Anisotropically electroconductive adhesive Pending JPS62260877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8928286A JPS62260877A (en) 1986-04-17 1986-04-17 Anisotropically electroconductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8928286A JPS62260877A (en) 1986-04-17 1986-04-17 Anisotropically electroconductive adhesive

Publications (1)

Publication Number Publication Date
JPS62260877A true JPS62260877A (en) 1987-11-13

Family

ID=13966355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8928286A Pending JPS62260877A (en) 1986-04-17 1986-04-17 Anisotropically electroconductive adhesive

Country Status (1)

Country Link
JP (1) JPS62260877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507594B1 (en) 1997-09-30 2003-01-14 Canon Kabushiki Kaisha Optical device structure and fabrication method thereof
WO2014119463A1 (en) * 2013-01-30 2014-08-07 Dic株式会社 Conductive paste, method for forming conductive pattern, and object with printed conductive pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129277A (en) * 1980-03-17 1981-10-09 Sumitomo Electric Ind Ltd Conductive powdered adhesive and preparation of the same
JPS5874766A (en) * 1982-09-17 1983-05-06 Oike Kogyo Kk Electrically conductive adhesive
JPS5975968A (en) * 1982-10-25 1984-04-28 Aisin Chem Co Ltd Adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129277A (en) * 1980-03-17 1981-10-09 Sumitomo Electric Ind Ltd Conductive powdered adhesive and preparation of the same
JPS5874766A (en) * 1982-09-17 1983-05-06 Oike Kogyo Kk Electrically conductive adhesive
JPS5975968A (en) * 1982-10-25 1984-04-28 Aisin Chem Co Ltd Adhesive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507594B1 (en) 1997-09-30 2003-01-14 Canon Kabushiki Kaisha Optical device structure and fabrication method thereof
US6771677B2 (en) 1997-09-30 2004-08-03 Canon Kabushiki Kaisha Optical device structure and fabrication method thereof
WO2014119463A1 (en) * 2013-01-30 2014-08-07 Dic株式会社 Conductive paste, method for forming conductive pattern, and object with printed conductive pattern
JP5610112B1 (en) * 2013-01-30 2014-10-22 Dic株式会社 Conductive paste, conductive pattern forming method, and printed conductive pattern

Similar Documents

Publication Publication Date Title
US4731282A (en) Anisotropic-electroconductive adhesive film
US5336443A (en) Anisotropically electroconductive adhesive composition
US9723715B2 (en) Anisotropic conductive film, connection method, and assembly
EP2118911B1 (en) Intrinsically heatable hot melt adhesive sheet materials
US5162087A (en) Anisotropic conductive adhesive compositions
US4595606A (en) Solderable conductive compositions having high adhesive strength
CN107189721B (en) A kind of conductive pressure sensitive glue composition and its application in production thickening bondline conductive tape
JPS6177278A (en) Connection member for circuit
JPS62260877A (en) Anisotropically electroconductive adhesive
TWI784126B (en) Conductive Adhesive Composition
JP2018135422A (en) Hot-melt adhesive composition and laminate
KR100598679B1 (en) Pressure-sensitive conductive film and method of preparing it
JP3904097B2 (en) Anisotropic conductive connection member
JPS62127194A (en) Production of anisotropic conductive solder joining material
JPS63215745A (en) Pressure-sensitive electroconductive elastomer composition
JP2836337B2 (en) Anisotropic conductive resin film adhesive
JPH09296158A (en) Conductive adhesive
JPS61287974A (en) Anisotropically conductive adhesive
JPH01249880A (en) Anisotropically electrically conductive adhesive sheet
US20090297697A1 (en) Silver doped white metal particulates for conductive composites
JPH10116640A (en) Connection structure for circuit
JPH072938B2 (en) Anisotropic conductive adhesive
JP7459048B2 (en) conductive adhesive composition
JPH0547922B2 (en)
JPH0697573B2 (en) Circuit connection member