JPS62260795A - Production of silicon wafer - Google Patents

Production of silicon wafer

Info

Publication number
JPS62260795A
JPS62260795A JP10391786A JP10391786A JPS62260795A JP S62260795 A JPS62260795 A JP S62260795A JP 10391786 A JP10391786 A JP 10391786A JP 10391786 A JP10391786 A JP 10391786A JP S62260795 A JPS62260795 A JP S62260795A
Authority
JP
Japan
Prior art keywords
wafer
silicon
crucible
single crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10391786A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yamato
充博 大和
Yoshitaka Higuchi
樋口 良孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10391786A priority Critical patent/JPS62260795A/en
Publication of JPS62260795A publication Critical patent/JPS62260795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce a wafer having uniform surface defects in high yield, by vertically applying a magnetic field to the surface of silicon melt in a crucible, pulling up single crystal, cutting the formed wafer, heating the cut wafer and carrying out these operations under specific conditions. CONSTITUTION:A magnetic field having 0.02-0.1T magnetic flux density is applied in the vertical direction to the surface of silicon melt in a crucible. In this case, seed crystal is immersed in the silicon melt and silicon single crystal is pulled up at number of revolutions of the crucible 0.1-10rpm and at number of revolutions of crystal of 15-25rpm. The wafer of the pulled silicon single crystal is cut out and the wafer is heat-treated at 700-800 deg.C for 10-25hr. Consequently, silicon wafer having a uniform minute defective layer on the interior and a uniform nondefective layer on the surface is obtained in high yield.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコンウニ/\の製造方法に関し、特に表面
の無欠陥層の形成が容易なシリコンウェハ域の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing silicon urchins, and particularly to a method for manufacturing a silicon wafer region in which a defect-free layer on the surface can be easily formed.

〔従来の技術〕[Conventional technology]

LSIを製造するために用いられるシリコンウェハには
、表面に汚染のない無欠陥層が必要である。こうしたシ
リコンウェハは、従来、以下のようにして製造されてい
る。
Silicon wafers used for manufacturing LSIs require a defect-free layer without contamination on the surface. Such silicon wafers have conventionally been manufactured as follows.

まず、通常のチョクラルスキー法(C2法)により、比
較的酸素濃度の高いシリコン単結晶を引上げる。このシ
リコン単結晶をスライスしてシリコンウェハを形成する
。その後、プロセス投入前に熱処理を行ない、ウェハ中
の酸素を外方拡散させ、ウェハ内部に微小欠陥層を、ウ
ェハ表面に無欠陥層を形成する。
First, a silicon single crystal with a relatively high oxygen concentration is pulled by the usual Czochralski method (C2 method). This silicon single crystal is sliced to form a silicon wafer. Thereafter, before starting the process, heat treatment is performed to diffuse oxygen in the wafer outward, forming a micro-defect layer inside the wafer and a defect-free layer on the wafer surface.

(発明が解決しようとする問題点〕 しかしながら、通常のC7法により引上げられたシリコ
ン単結晶では、高酸素濃度のシリコン単結晶はインゴッ
トの頭部近傍にしか存在しないため、上述した従来の方
法が適用できないものが多く、歩留りが悪い。しかも、
通常のC2法では引上げ時に融液の温度変動が大きいた
め、シリコン単結晶内の酸素濃度のミクロな/ヘラツキ
が大きく、プロセス投入前の熱処理によって、ウェハ内
部の微小欠陥層及びウェハ表面の無欠陥層を均質かつ一
定厚さに形成することが困難であるという問題がある。
(Problems to be Solved by the Invention) However, in silicon single crystals pulled by the normal C7 method, silicon single crystals with high oxygen concentration exist only near the head of the ingot, so the conventional method described above is difficult to solve. There are many things that cannot be applied, and the yield is low.Moreover,
In the normal C2 method, temperature fluctuations in the melt are large during pulling, resulting in large micro-fluctuations in the oxygen concentration within the silicon single crystal. There is a problem in that it is difficult to form layers homogeneously and with a constant thickness.

本発明は上記問題点を解決するためになされたものであ
り、内部の微小欠陥層及び表面の無欠陥層が均質なシリ
コンウェハを高歩留りで製造し得る方法を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method that can manufacture silicon wafers with a high yield in which the internal micro-defect layer and the surface defect-free layer are homogeneous.

〔問題点を解決するための手段及び作用〕本発明のシリ
コンウェハの製造方法は、ルツボ内のシリコン融液に融
液表面に対して垂直な方向に磁束密度0.02〜0.1
Tの磁界を印加した状態で、シリコン融液に種結晶を浸
し、ルツボ回転数を0.1〜10 rprs 、結晶回
転数を15〜25rpmとしてシリコン単結晶を引上げ
た後、ウェハを切出し、更にウェハを700〜800℃
で10〜25時間熱処理することを特徴とするものであ
る。
[Means and effects for solving the problem] The silicon wafer manufacturing method of the present invention provides a silicon melt in a crucible with a magnetic flux density of 0.02 to 0.1 in a direction perpendicular to the melt surface.
With a magnetic field of T applied, a seed crystal is immersed in a silicon melt, the crucible rotation speed is 0.1 to 10 rprs, and the crystal rotation speed is 15 to 25 rpm to pull up the silicon single crystal, and then the wafer is cut out and further Wafer at 700-800℃
It is characterized by heat treatment for 10 to 25 hours.

このような方法によれば、シリコン融液に融液表面に対
して垂直な方向に磁束密度0.02〜0.I Tの磁界
を印加した状態で、ルツボ回転数を0.1〜10 rp
m 、結晶回転数を15〜25rpa+とじてシリコン
単結晶を引上げることにより、結晶中の酸素濃度を通常
のCZ法と比較して同程度以上゛に高くし、かつ引上げ
中の融液の温度変動を小さくしてミクロな酸素濃度分布
を均一にすることができる。この結果、プロセス投入前
に700〜800°Cで10〜25時間の熱処理を行な
うと、均質な微小欠陥層及び無欠陥層を有するシリコン
ウェハを高歩留りで製造することができる。
According to such a method, a magnetic flux density of 0.02 to 0.02 is applied to the silicon melt in a direction perpendicular to the melt surface. With the IT magnetic field applied, the crucible rotation speed is set to 0.1 to 10 rp.
m. By pulling the silicon single crystal at a crystal rotation speed of 15 to 25 rpa+, the oxygen concentration in the crystal can be raised to at least the same level as in the normal CZ method, and the temperature of the melt during pulling can be increased. It is possible to reduce fluctuations and make the microscopic oxygen concentration distribution uniform. As a result, by performing heat treatment at 700 to 800° C. for 10 to 25 hours before starting the process, silicon wafers having homogeneous micro-defect layers and defect-free layers can be manufactured with high yield.

本発明において、シリコン融液に融液表面に対して垂直
な方向に磁界を印加するのは、シリコン融液の振動を減
少して温度分布を均一にするためである。また、磁界の
磁束密度を0.02〜0.1T、ルツボ回転数を0.1
〜10 rpm 、結晶回転数を15〜25 rpmと
したのは、シリコン単結晶中の酸素濃度を高くするため
である。上記の範囲をはずれた場合はいずれもシリコン
単結晶中の酸素濃度を高くする効果が小さくなる。
In the present invention, the reason why a magnetic field is applied to the silicon melt in a direction perpendicular to the surface of the melt is to reduce vibrations of the silicon melt and make the temperature distribution uniform. In addition, the magnetic flux density of the magnetic field is 0.02 to 0.1T, and the crucible rotation speed is 0.1
~10 rpm, and the crystal rotation speed was set to 15 to 25 rpm in order to increase the oxygen concentration in the silicon single crystal. If the above range is exceeded, the effect of increasing the oxygen concentration in the silicon single crystal will be reduced.

本発明において、プロセス投入前の熱処理条件を700
〜800℃、10〜25時間としたのは、微小欠陥の析
出及び無欠陥層の幅の制御が容易となるためである。上
記の範囲をはずれると、このような効果が小さくなる。
In the present invention, the heat treatment conditions before starting the process are set to 700°C.
The reason for setting the temperature to 800° C. for 10 to 25 hours is that the precipitation of micro defects and the width of the defect-free layer can be easily controlled. Outside the above range, this effect becomes smaller.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例 まず、外周に電磁石が設けられたシリコン単結晶引上装
置のルツボ内にシリコン原料を装填して溶融した0次に
、シリコン融液に融液面に対して垂直に0.087の磁
界を印加し、ルツボを0.1 rpmの回転数で、種結
晶を15〜25 rpmの回転数でそれぞれ回転させな
がら、シリコン単結晶を引上げた。つづいて、得られた
シリコン単結晶をスライスしてシリコンウェハを得た0
次いで、これらシリコンウェハに700℃、16時間の
熱処理を施した。
Example First, a silicon raw material was loaded into the crucible of a silicon single crystal pulling device equipped with an electromagnet on the outer periphery and melted. Next, a magnetic field of 0.087 perpendicular to the melt surface was applied to the silicon melt. was applied, and the silicon single crystal was pulled up while rotating the crucible at a rotation speed of 0.1 rpm and the seed crystal at a rotation speed of 15 to 25 rpm. Subsequently, the obtained silicon single crystal was sliced to obtain a silicon wafer.
Next, these silicon wafers were subjected to heat treatment at 700° C. for 16 hours.

比較例 まず、通常のシリコン単結晶引上装置のルツボ内にシリ
コン原料を装填して溶融した。次に、ルツボを8 rp
mの回転数で、種結晶を15 rpllの回転数でそれ
ぞれ回転させながら、シリコン単結晶を引上げた。つづ
いて、得られたシリコン単結晶をスライスしてシリ分つ
ウェハを得た0次いで、これらシリコンウェハに100
0℃、16時間の熱処理を施した。
Comparative Example First, a silicon raw material was charged into a crucible of a conventional silicon single crystal pulling apparatus and melted. Next, replace the crucible with 8 rp
The silicon single crystal was pulled up while rotating the seed crystal at a rotation speed of 15 rpll. Subsequently, the obtained silicon single crystal was sliced to obtain silicon wafers.
Heat treatment was performed at 0°C for 16 hours.

上記実施例及び比較例の方法により得られた一部のシリ
コンウェハについて、ウェハの初期酸素濃度とウェハ内
部の微小欠陥密度との関係を調べた。この結果を第1図
に示す。
For some silicon wafers obtained by the methods of the above examples and comparative examples, the relationship between the initial oxygen concentration of the wafer and the microdefect density inside the wafer was investigated. The results are shown in FIG.

第1図から明らかなように、比較例の方法では、シリコ
ンウェハの初期酸素濃度が比較的低く、しかも初期酸素
濃度のバラツキ(インゴットの長さ方向のバラツキ)が
大きい。また、マクロ的に同一の初期酸素濃度であって
も、生成する微小欠陥密度のバラツキが大きくなってい
る。これは、シリコン融液の温度変動によりウェハの面
内においても初期酸素濃度のミクロなバラツキがあるた
めである。これに対して実施例の方法では、シリコンウ
ェハの初期酸素濃度が比較的高く、しかもそのバラツキ
も小さい。また、シリコン融液の温度変動が小さいため
、生成する微小欠陥密度のバラツキも小さくなっている
As is clear from FIG. 1, in the method of the comparative example, the initial oxygen concentration of the silicon wafer is relatively low, and the variation in the initial oxygen concentration (variation in the length direction of the ingot) is large. Further, even if the initial oxygen concentration is macroscopically the same, the density of micro defects generated varies greatly. This is because there are microscopic variations in the initial oxygen concentration within the plane of the wafer due to temperature fluctuations in the silicon melt. On the other hand, in the method of the embodiment, the initial oxygen concentration of the silicon wafer is relatively high and its variation is small. Further, since the temperature fluctuation of the silicon melt is small, the variation in the density of generated micro defects is also small.

更に、実施例及び比較例の方法により得られた残りのシ
リコンウェハにプロセス相当の熱処理(1000℃)を
施した時の、熱処理時間と酸素析出量との関係を調べた
。この結果を第2図に示す。
Furthermore, when the remaining silicon wafers obtained by the methods of Examples and Comparative Examples were subjected to heat treatment equivalent to the process (1000° C.), the relationship between the heat treatment time and the amount of oxygen precipitated was investigated. The results are shown in FIG.

第2図から明らかなように、比較例の方法により得られ
たシリコンウェハでは、所定の酸素析出量が得られるま
でに時間がかかり、しかも酸素析出量のバラツキが大き
い、これに対して実施例の方法により得られたシリコン
ウェハでは、非常に短時間で酸素析出量が高くなり、酸
素析出量のバラツキも小さい、したがって、ウェハ表面
の無欠陥層の幅などの制御も容易となる。
As is clear from FIG. 2, in the silicon wafer obtained by the method of the comparative example, it takes time to obtain the predetermined amount of oxygen precipitate, and the variation in the amount of oxygen precipitate is large. In the silicon wafer obtained by the method described above, the amount of oxygen precipitated becomes high in a very short time, and the variation in the amount of oxygen precipitated is small. Therefore, it is easy to control the width of the defect-free layer on the wafer surface.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、内部の微小欠陥層及
び表面の無欠陥層が均質なシリコンウェハを高歩留りで
製造できる等顕著に効果を奏するものである。
As described in detail above, the present invention has remarkable effects such as being able to manufacture silicon wafers with a homogeneous internal micro-defect layer and surface defect-free layer at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例及び比較例の方法により得られ
たシリコンウェハ初期酸素濃度とウェハ内部の微小欠陥
密度との関係を示す特性図、第2図は本発明の実施例及
び比較例の方法により得られたシリコンウェハにプロセ
ス相当の熱処理を施した時の熱処理時間と酸素析出量と
の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the initial oxygen concentration of a silicon wafer and the microdefect density inside the wafer obtained by the method of the example and comparative example of the present invention, and FIG. 2 is the characteristic diagram of the example and comparative example of the present invention. FIG. 3 is a characteristic diagram showing the relationship between the heat treatment time and the amount of oxygen precipitated when a silicon wafer obtained by the method is subjected to heat treatment equivalent to the process.

Claims (1)

【特許請求の範囲】[Claims] ルツボ内のシリコン融液に融液表面に対して垂直な方向
に磁束密度0.02〜0.1Tの磁界を印加した状態で
、シリコン融液に種結晶を浸し、ルツボ回転数を0.1
〜10rpm、結晶回転数を15〜25rpmとしてシ
リコン単結晶を引上げた後、ウェハを切出し、更にウェ
ハを700〜800℃で10〜25時間熱処理すること
を特徴とするシリコンウェハの製造方法。
While a magnetic field with a magnetic flux density of 0.02 to 0.1 T is applied to the silicon melt in the crucible in a direction perpendicular to the melt surface, a seed crystal is immersed in the silicon melt, and the crucible rotation speed is set to 0.1.
10 rpm and a crystal rotation speed of 15 to 25 rpm, a silicon single crystal is pulled, the wafer is cut out, and the wafer is further heat-treated at 700 to 800° C. for 10 to 25 hours.
JP10391786A 1986-05-08 1986-05-08 Production of silicon wafer Pending JPS62260795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10391786A JPS62260795A (en) 1986-05-08 1986-05-08 Production of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10391786A JPS62260795A (en) 1986-05-08 1986-05-08 Production of silicon wafer

Publications (1)

Publication Number Publication Date
JPS62260795A true JPS62260795A (en) 1987-11-13

Family

ID=14366778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10391786A Pending JPS62260795A (en) 1986-05-08 1986-05-08 Production of silicon wafer

Country Status (1)

Country Link
JP (1) JPS62260795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080646A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727996A (en) * 1980-06-26 1982-02-15 Ibm Manufacture of single crystal
JPS6033289A (en) * 1983-07-29 1985-02-20 Toshiba Corp Preparation of single crystal of silicon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727996A (en) * 1980-06-26 1982-02-15 Ibm Manufacture of single crystal
JPS6033289A (en) * 1983-07-29 1985-02-20 Toshiba Corp Preparation of single crystal of silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080646A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
JP2005231944A (en) * 2004-02-19 2005-09-02 Komatsu Electronic Metals Co Ltd Method for manufacturing single crystal semiconductor
US7374614B2 (en) 2004-02-19 2008-05-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
JP4484540B2 (en) * 2004-02-19 2010-06-16 Sumco Techxiv株式会社 Manufacturing method of single crystal semiconductor

Similar Documents

Publication Publication Date Title
US6893499B2 (en) Silicon single crystal wafer and method for manufacturing the same
KR100453850B1 (en) Silicon single crystal with no crystal defect in peripheral part of wafer
WO2001036719A1 (en) Silicon single crystal wafer and production method thereof and soi wafer
WO2001027362A1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
JPH0453840B2 (en)
JPH11199387A (en) Production of silicon single crystal and silicon single crystal wafer
KR20180094102A (en) Silicon wafers with homogeneous radial oxygen variations
JP2705867B2 (en) Silicon rod manufacturing method
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
WO2006103837A1 (en) Process for producing silicon single-crystal, annealed wafer and process for producing annealed wafer
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
KR20000006046A (en) Production method for silicon epitaxial wafer
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JPH0750713B2 (en) Heat treatment method for semiconductor wafers
TW200408734A (en) Method for producing silicon wafer
JP3172389B2 (en) Manufacturing method of silicon wafer
JPS62260795A (en) Production of silicon wafer
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
KR101751789B1 (en) Silicon single crystal ingot and method for growing the same
JPH04298042A (en) Method of heat-treating semiconductor
JPH0543382A (en) Production of silicon single crystal
JPH0367994B2 (en)
KR20030039512A (en) Manufacturing method of silicon single crystal ingot
JPH05121319A (en) Manufacture of semiconductor device