JPS62260773A - High density silicon carbide sintered body and manufacture - Google Patents

High density silicon carbide sintered body and manufacture

Info

Publication number
JPS62260773A
JPS62260773A JP61103484A JP10348486A JPS62260773A JP S62260773 A JPS62260773 A JP S62260773A JP 61103484 A JP61103484 A JP 61103484A JP 10348486 A JP10348486 A JP 10348486A JP S62260773 A JPS62260773 A JP S62260773A
Authority
JP
Japan
Prior art keywords
density
silicon carbide
plasma
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61103484A
Other languages
Japanese (ja)
Inventor
木島 弌倫
阿部 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP61103484A priority Critical patent/JPS62260773A/en
Publication of JPS62260773A publication Critical patent/JPS62260773A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度炭化けい素焼結体及びその製造方法に関
する。更に詳しくは炭化けい素に遊離炭素を適当量含有
させ、高密度で、かつ高電気伝導度と機械的強度の優れ
た炭化けい素焼結体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high-density silicon carbide sintered body and a method for producing the same. More specifically, the present invention relates to a silicon carbide sintered body containing an appropriate amount of free carbon in silicon carbide, which has high density, high electrical conductivity, and excellent mechanical strength, and a method for producing the same.

従来技術 炭化けい素は元来難焼結性であるため高密度にするのは
困難であった。最近ポロンやアルミニウムなどの焼結助
剤を用いて高密度化することに成功している。
Prior Art Silicon carbide is inherently difficult to sinter, so it has been difficult to make it highly dense. Recently, we have succeeded in increasing the density using sintering aids such as poron and aluminum.

一方、炭化けい素に炭素を含ませることにより電気伝導
度を高くすることが試みられたが、従来の焼結法では炭
素を含ませるのは1重量%程度で、それより多く加える
と気孔率が20〜35%ともなり、(理論密度の65〜
80%)焼結し難く、高密度のものは得られなかった。
On the other hand, attempts have been made to increase the electrical conductivity by incorporating carbon into silicon carbide, but in the conventional sintering method, the amount of carbon included is about 1% by weight, and if more than that is added, the porosity increases. is 20-35% (65-35% of the theoretical density)
80%) It was difficult to sinter, and a high density product could not be obtained.

発明の目的 本発明は従来の問題点を解消すべくなされたもので遊離
炭素を3〜30重量%を含有し、かつ密度が理論密度の
85%以上である高密度炭化けい素焼結体とその製造方
法を提供するにある。
Purpose of the Invention The present invention has been made to solve the problems of the conventional art, and provides a high-density silicon carbide sintered body containing 3 to 30% by weight of free carbon and having a density of 85% or more of the theoretical density. To provide a manufacturing method.

発明の構成 本発明者らは従来法の炭化けい素焼粘性を改善すべく研
究の結果、さきに、炭化けい素粉束または炭化けい素粉
末に焼結助剤を混合したものを加圧成形し、該成形体を
非酸化雰囲気のプラズマにて焼結する方法を見出した。
Structure of the Invention As a result of research to improve the sintering viscosity of silicon carbide in the conventional method, the present inventors first pressure-molded a bundle of silicon carbide powder or a mixture of silicon carbide powder and a sintering aid. discovered a method of sintering the molded body using plasma in a non-oxidizing atmosphere.

(特願昭59−23824号)更に研究を重ねた結果、
該プラズマ焼結法によると、炭化けい素に対し、遊離炭
素量を最大30重量%含有させても理論密度85%以上
の高密度のものが得られることを見出した。この知見に
基づいて本発明を完成した。
(Patent Application No. 59-23824) As a result of further research,
It has been found that, according to the plasma sintering method, a high-density product with a theoretical density of 85% or more can be obtained even when silicon carbide contains a maximum of 30% by weight of free carbon. The present invention was completed based on this knowledge.

本発明の要旨は、 1)遊離炭素を3〜30重量%を含有し、かつ密度が理
論密度の85%以上である高密度炭化けい素焼結体。
The gist of the present invention is as follows: 1) A high-density silicon carbide sintered body containing 3 to 30% by weight of free carbon and having a density of 85% or more of the theoretical density.

2)炭化けい素微粉末に3〜30重量%の炭素質物また
は熱処理により炭素を前置生成する打機化合物を混合し
、混合物を成形し、該成形物を、非酸化雰囲気のプラズ
マにて焼結することを特徴とする遊離炭素を3〜30重
四%を含有し、かつ密度が理論密度の85%以上である
高密度炭化けい素焼結体の製造方法。にある。
2) Mix 3 to 30% by weight of a carbonaceous material or a punching compound that pre-generates carbon by heat treatment with silicon carbide fine powder, mold the mixture, and sinter the molded product in plasma in a non-oxidizing atmosphere. A method for producing a high-density silicon carbide sintered body containing 3 to 30% by weight of free carbon and having a density of 85% or more of the theoretical density. It is in.

本発明で用いる炭化けい素はα−5iC,β−SiCで
もまた非晶質であってもよく、その平均粒径は粒度が大
きくなると焼結が困難となるので、5μm以下、好まし
くは1μm以下であることが望ましい。また純度は焼結
体の特性を制御する点から出来るだけ高純度であること
が望ましい。
The silicon carbide used in the present invention may be α-5iC, β-SiC, or amorphous, and its average particle size is 5 μm or less, preferably 1 μm or less, since sintering becomes difficult when the particle size becomes large. It is desirable that Further, it is desirable that the purity is as high as possible from the viewpoint of controlling the characteristics of the sintered body.

炭化けい素に混合する炭素源としては、カーボンブラッ
ク、コークス、炭素粉末等の炭素質粉末、または加熱に
より炭素を生成する有機化合物例えばフェノール樹脂、
パラフィン、多核芳香族炭化水素が用いられる。
Carbon sources to be mixed with silicon carbide include carbonaceous powders such as carbon black, coke, and carbon powder, or organic compounds that generate carbon upon heating, such as phenol resins,
Paraffin and polynuclear aromatic hydrocarbons are used.

これらを炭化けい素粉末と均一に混合する。その混合割
合は焼結後の遊離炭素量として3〜30重量%になるよ
うにする。遊離炭素量が3重量%未満では電気伝導度が
小さくなり、30重量%を超えると成型性及び焼結性が
悪くなる。焼結助剤例えばボロン、アルミニウム、ベリ
リウム、バリウム、イツトリウム、ニオブ、等を添加す
ると焼結は容易になる。
These are uniformly mixed with silicon carbide powder. The mixing ratio is such that the amount of free carbon after sintering is 3 to 30% by weight. If the amount of free carbon is less than 3% by weight, the electrical conductivity will be low, and if it exceeds 30% by weight, the moldability and sinterability will be poor. Sintering is facilitated by adding sintering aids such as boron, aluminum, beryllium, barium, yttrium, niobium, etc.

必要に応じ結合剤、可塑剤、滑剤などを加えて成形性を
上げてもよい。
If necessary, binders, plasticizers, lubricants, etc. may be added to improve moldability.

これらを混合後、成形後乾燥する。After mixing these, they are molded and dried.

得られた成形物を非酸化雰囲気のプラズマ中に挿入する
。急激に挿入すると、プラズマが消失したり、試料にひ
びが入ったりするので、ゆっくり挿入することが肝要で
ある。
The obtained molded product is inserted into a plasma in a non-oxidizing atmosphere. It is important to insert slowly, as rapid insertion may cause the plasma to disappear or cracks in the sample.

プラズマの作動ガスは、アルゴン、窒素、ヘリウム、水
素の単独または混合ガスである。
The working gas of the plasma is argon, nitrogen, helium, or hydrogen, singly or in combination.

プラズマの発生は電気的な方法例えば直流または交流に
よるプラズマの発生、及び高周波(ラジオ波、マイクロ
波)によるプラズマの発生が好ましい。これらの方法で
発生するプラズマには、平衡プラズマと非平衡プラズマ
とがあり、いずれでもよい。効率から考えると平衡プラ
ズマの方が好ましい。平衡プラズマは電子温度、イオン
温度。
It is preferable to generate plasma using an electrical method such as direct current or alternating current, or using high frequency waves (radio waves, microwaves). Plasmas generated by these methods include either equilibrium plasma or non-equilibrium plasma. In terms of efficiency, equilibrium plasma is preferable. Equilibrium plasma has electron temperature and ion temperature.

ガス温度が等しいプラズマであり、非平衡プラズマは電
子温度が数千度から三万度であるが、イオン温度、ガス
温度は千度に以下と低いプラズマである。
It is a plasma in which the gas temperatures are equal, and in nonequilibrium plasma, the electron temperature is from several thousand degrees to 30,000 degrees, but the ion temperature and gas temperature are low, at less than 1,000 degrees.

プラズマによる焼結時間は、試料やプラズマの条件にも
よるが、数秒から士数分である。
The plasma sintering time ranges from several seconds to several minutes, depending on the sample and plasma conditions.

実施例1 β−SiCサブミクロン粉末に非晶質ボロンを0.5重
量%、および炭化後の残留炭素量にして3.0重量%の
フェノール樹脂をエタノール中でボ−ルミルにて16時
間混合した。混合後60〜70℃に加熱して乾燥させた
。これを成型圧30MPaで1軸加圧し、200 MP
aで2次成型した。次いでこの圧粉体中のフェノール樹
脂を炭化するためにアルコン気流中で加熱処理した。そ
の後アルゴンプラズマ中にゆっくり挿入し、2分間焼結
させた。
Example 1 β-SiC submicron powder, 0.5% by weight of amorphous boron, and 3.0% by weight of phenolic resin based on the amount of residual carbon after carbonization were mixed in ethanol in a ball mill for 16 hours. did. After mixing, the mixture was heated to 60 to 70°C and dried. This was uniaxially pressurized at a molding pressure of 30 MPa to 200 MPa.
Secondary molding was performed in a. Next, in order to carbonize the phenol resin in this green compact, it was heat-treated in an alcon gas stream. Thereafter, it was slowly inserted into an argon plasma and sintered for 2 minutes.

この時のプラズマの発生条件は次の通りであった。The plasma generation conditions at this time were as follows.

発振周波数4 MHzのラジオ波を4回巻コイルを通シ
て43mmφの石英反応管内のアルゴンガスに供給し、
アルゴンガスを絶縁破壊させてプラズマ化した。アノー
ド電圧は7.5 kV、アノード電流1.51 Aであ
った。ガス条件はアルゴン流量40SCCM.ガス圧力
50Torrであった。
Radio waves with an oscillation frequency of 4 MHz were supplied to argon gas in a 43 mmφ quartz reaction tube through a 4-turn coil.
Argon gas was caused to break down and turned into plasma. The anode voltage was 7.5 kV and the anode current was 1.51 A. The gas conditions were an argon flow rate of 40SCCM. The gas pressure was 50 Torr.

得られた焼結体の密度は理論密度の95.7%であり、
これの比抵抗値は室温で測定して335±14Ωcmで
あった。ビッカース硬度は2371kg/mm、破壊靱
性値は4.35MN/m3/2であった。
The density of the obtained sintered body was 95.7% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 335±14 Ωcm. The Vickers hardness was 2371 kg/mm, and the fracture toughness was 4.35 MN/m3/2.

実施例2゜ α−5iCサブミクロン粉末の非晶質ボロンを0.5重
量%、および炭化後の残留炭素量にして5.0重量%の
フェノール樹脂をエタノール中でボールミルにて16時
間混合した。混合後、加熱して乾燥させた。これを成型
圧30MPaで1軸加圧し、200 MPaで2次成型
した。次いでこの圧粉体中のフェノール樹脂を炭化する
ためにアルゴンガス気流中で加熱処理した。その後アル
ゴンプラズマにゆっくり挿入し、2分間焼結させた。
Example 2 0.5% by weight of α-5iC submicron powder amorphous boron and 5.0% by weight of phenolic resin based on the amount of residual carbon after carbonization were mixed in ethanol in a ball mill for 16 hours. . After mixing, the mixture was heated and dried. This was uniaxially pressurized at a molding pressure of 30 MPa, and secondary molded at 200 MPa. Next, in order to carbonize the phenol resin in this green compact, it was heat-treated in an argon gas stream. After that, it was slowly inserted into an argon plasma and sintered for 2 minutes.

この時のプラズマの発生条件は次の通りであった。The plasma generation conditions at this time were as follows.

発振周波数4 M)lzのラジオ波を4回巻コイルを通
じて43mmφの石英反応管内のアルゴンガスに供給し
、アルゴンガス絶縁破壊させてプラズマ化した。アノー
ド電圧は7.5 kV、アノード電流1.51Aである
。ガス条件はアルゴンガス流l 40 SCCM。
Radio waves with an oscillation frequency of 4 M)lz were supplied to argon gas in a 43 mmφ quartz reaction tube through a 4-turn coil to cause dielectric breakdown of the argon gas and turn it into plasma. The anode voltage is 7.5 kV and the anode current is 1.51A. Gas conditions were argon gas flow l 40 SCCM.

ガス圧力50Torrである。The gas pressure was 50 Torr.

得られた焼結体の密度は理論密度の94.7%であり、
これの比抵抗値は室温で測定して478±17Ωcmで
あった。ビッカース硬度は2299kg/mm2、破壊
靭性値は4.05MN/m5/2であった。
The density of the obtained sintered body was 94.7% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 478±17 Ωcm. The Vickers hardness was 2299 kg/mm2, and the fracture toughness was 4.05 MN/m5/2.

実施例3゜ α−3iCサブミクロン粉末に非晶質ボロンを0.5重
量%、および炭化後の残留炭素量にして7.0重量%の
パラフィンをエタノール中でボールミルにて16時間混
合した。以後実施例2と同じプロセスに従い成型し、2
分間プラズマ焼結した。
Example 3 α-3iC submicron powder was mixed in ethanol with 0.5% by weight of amorphous boron and 7.0% by weight of paraffin based on the amount of residual carbon after carbonization in a ball mill for 16 hours. Thereafter, molding was performed according to the same process as in Example 2, and 2
Plasma sintered for minutes.

プラズマ条件やガス条件などのプラズマ焼結条件を実施
例2と一致させた。
Plasma sintering conditions such as plasma conditions and gas conditions were made to match those of Example 2.

得られた焼結体の密度は理論密度の92.7%であり、
これの比抵抗値は室温で測定して206±42Ωcmで
あった。ビッカース硬度は2325kg / mu” 
、破壊靭性値は4.OIMN/m″′/2であった。
The density of the obtained sintered body was 92.7% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 206±42 Ωcm. Vickers hardness is 2325 kg/mu”
, the fracture toughness value is 4. OIMN/m''/2.

実施例4 α−SiCサブミクロン粉末にアルミニウムを2.0重
量%、および炭化後の残留炭素量にして:へ。
Example 4 2.0% by weight of aluminum was added to α-SiC submicron powder, and the amount of residual carbon after carbonization was changed to:.

IQ、0重量%フェノール樹脂をエタノール中でボール
ミルにて16時間混合した。以後実施例2と同じプロセ
スに従い成型し2分間プラズマ焼結した。
IQ, 0% by weight phenolic resin was mixed in ethanol in a ball mill for 16 hours. Thereafter, it was molded according to the same process as in Example 2 and plasma sintered for 2 minutes.

プラズマ条件やガス条件などのプラズマ焼結条件を実施
例2と一致させた。
Plasma sintering conditions such as plasma conditions and gas conditions were made to match those of Example 2.

得られた焼結体の密度は理論密度の97.5%であり、
これの比抵抗値は室温で測定して23Ω・cmであった
The density of the obtained sintered body was 97.5% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 23 Ω·cm.

実施例5゜ α−3iCサブミクロン粉末に非晶質ボロンを7.0重
量%、および炭化後の残留炭素量にして10.0重量%
のフェノール樹脂及びカーボンブラックを5.0重量%
を加えエタノール中でボールミルにて16時間混合した
。以後実施例2と同じプロセスに従い成型し2分間プラ
ズマ焼結した。プラズマ条件やガス条件などのプラズマ
焼結条件を実施例2と一致させた。
Example 5 α-3iC submicron powder with 7.0% by weight of amorphous boron and 10.0% by weight of residual carbon after carbonization
5.0% by weight of phenolic resin and carbon black
was added and mixed in ethanol for 16 hours in a ball mill. Thereafter, it was molded according to the same process as in Example 2 and plasma sintered for 2 minutes. Plasma sintering conditions such as plasma conditions and gas conditions were made to match those of Example 2.

得られた焼結体の密度は理論密度の92.6%であり、
これの比抵抗値は室温で測定して0.3Ω・cmであっ
た。
The density of the obtained sintered body was 92.6% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 0.3 Ω·cm.

実施例6゜ α−3iCサブミクロン粉末に非晶質ボロンを2.0重
量%、および炭素粉末を5.0重世%加えエタノール中
でボールミルにて16時間混合しな。
Example 6 2.0% by weight of amorphous boron and 5.0% by mass of carbon powder were added to α-3iC submicron powder and mixed in ethanol in a ball mill for 16 hours.

以後実施例2と同じプロセスに従い成型し2分間プラズ
マ焼結した。プラズマ条件やガス条件などのプラズマ焼
結条件を実施例2と一致させた。
Thereafter, it was molded according to the same process as in Example 2 and plasma sintered for 2 minutes. Plasma sintering conditions such as plasma conditions and gas conditions were made to match those of Example 2.

得られた焼結体の密度は理論密度の95.2%であり、
これの比抵抗値は室温で測定して1236Ω・cmであ
りた。ビ・・カース硬度は2247 kg / **・
、破壊靭″性値は4.15MN / m5/2であった
The density of the obtained sintered body was 95.2% of the theoretical density,
The specific resistance value of this was measured at room temperature and was 1236 Ω·cm. Bi-curse hardness is 2247 kg / **.
, the fracture toughness value was 4.15 MN/m5/2.

実施例7゜ 実施例5において、フェノール量15.0重星%。Example 7゜ In Example 5, the amount of phenol was 15.0%.

カーボンブランク15.0重量%に代えた以外は同様に
してプラズマ焼結した。
Plasma sintering was performed in the same manner except that the carbon blank was replaced with 15.0% by weight.

得られた焼結体の密度は理論密度の89.2%であり、
ビッカース硬度は2100kg/mm2であった。
The density of the obtained sintered body was 89.2% of the theoretical density,
Vickers hardness was 2100 kg/mm2.

発明の効果 本発明は実施例からも明らかな様に、従来では製造不可
能であった高密度で、炭素を多量含有する炭化けい素焼
結体を得ることが出来る。炭化けい素も炭素も高温に強
い物質であるため、しかも高密度焼結体であるため、種
々の雰囲気下で高温まで使用出来るようになった。電気
伝導度や潤滑性の制御ができると共に耐酸化性、耐蝕性
、耐摩耗性1機械的強度が上がった。これは炭化けい素
の特性に炭素の特性を加味した複合特性を存す焼結体で
あること。さらに高密度焼結体であり、粒成長のない微
細な微構造をした焼結体であることによる。
Effects of the Invention As is clear from the examples, the present invention makes it possible to obtain a silicon carbide sintered body that has a high density and contains a large amount of carbon, which was previously impossible to manufacture. Both silicon carbide and carbon are substances that are resistant to high temperatures, and because they are high-density sintered bodies, they can now be used in various atmospheres up to high temperatures. Electrical conductivity and lubricity can be controlled, and oxidation resistance, corrosion resistance, wear resistance, and mechanical strength have been improved. This is a sintered body with composite properties that combine the properties of silicon carbide with the properties of carbon. Furthermore, it is a high-density sintered body and has a fine microstructure without grain growth.

以上の様に材質が優れているために、高温条件下や厳し
い雰囲気下でも使用可能な電子材料、構造材料となる優
れた効果を有する。
As described above, since the material is excellent, it has excellent effects as an electronic material and a structural material that can be used even under high temperature conditions and harsh atmospheres.

Claims (1)

【特許請求の範囲】 1)遊離炭素を3〜30重量%含有し、かつ密度が理論
密度の85%以上である高密度炭化けい素焼結体。 2)炭化けい素微粉末に3〜30重量%の炭素質物また
は熱処理により炭素を前量生成する有機化合物を混合し
、混合物を成形し、該成形物を非酸化雰囲気のプラズマ
にて焼結することを特徴とする遊離炭素を3〜30重量
%を含有し、かつ密度が理論密度の85%以上である高
密度炭化けい素焼結体の製造方法。
[Scope of Claims] 1) A high-density silicon carbide sintered body containing 3 to 30% by weight of free carbon and having a density of 85% or more of the theoretical density. 2) Mix 3 to 30% by weight of a carbonaceous material or an organic compound that pre-generates carbon through heat treatment with silicon carbide fine powder, mold the mixture, and sinter the molded product in plasma in a non-oxidizing atmosphere. A method for producing a high-density silicon carbide sintered body containing 3 to 30% by weight of free carbon and having a density of 85% or more of the theoretical density.
JP61103484A 1986-05-06 1986-05-06 High density silicon carbide sintered body and manufacture Pending JPS62260773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103484A JPS62260773A (en) 1986-05-06 1986-05-06 High density silicon carbide sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103484A JPS62260773A (en) 1986-05-06 1986-05-06 High density silicon carbide sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS62260773A true JPS62260773A (en) 1987-11-13

Family

ID=14355281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103484A Pending JPS62260773A (en) 1986-05-06 1986-05-06 High density silicon carbide sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS62260773A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874578A (en) * 1981-08-10 1983-05-06 ステンカー・コーポレーション Method of sintering refractories by using heating gas directly
JPS59102872A (en) * 1982-12-06 1984-06-14 日本特殊陶業株式会社 Silicon carbide graphite composite sintered body and manufacture
JPS59131577A (en) * 1983-01-17 1984-07-28 イ−グル工業株式会社 Silicon carbide material and manufacture
JPS60166264A (en) * 1984-02-10 1985-08-29 科学技術庁無機材質研究所長 Method of sintering silicon carbide
JPS60191081A (en) * 1984-03-07 1985-09-28 イビデン株式会社 Precision work product of silicon carbide and manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874578A (en) * 1981-08-10 1983-05-06 ステンカー・コーポレーション Method of sintering refractories by using heating gas directly
JPS59102872A (en) * 1982-12-06 1984-06-14 日本特殊陶業株式会社 Silicon carbide graphite composite sintered body and manufacture
JPS59131577A (en) * 1983-01-17 1984-07-28 イ−グル工業株式会社 Silicon carbide material and manufacture
JPS60166264A (en) * 1984-02-10 1985-08-29 科学技術庁無機材質研究所長 Method of sintering silicon carbide
JPS60191081A (en) * 1984-03-07 1985-09-28 イビデン株式会社 Precision work product of silicon carbide and manufacture

Similar Documents

Publication Publication Date Title
US4701427A (en) Sintered silicon carbide ceramic body of high electrical resistivity
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
US4135937A (en) High density hot pressed thermal shock resistant silicon carbide
JPH0797264A (en) Preparation of boron carbide system polycrystal high density molded article by non-pressure sintering
US4455385A (en) Silicon carbide sintered body
JPS62197353A (en) Manufacture of silicon carbide sintered body
US5326732A (en) Carbon-silicon carbide composite material and method for the preparation thereof
US5252267A (en) Process for microwave sintering boron carbide
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
CN115557793B (en) High-entropy ceramic with fine grains, high hardness and high toughness, and preparation method and application thereof
JPS62260773A (en) High density silicon carbide sintered body and manufacture
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
US5139719A (en) Sintering process and novel ceramic material
CN110526713B (en) Porous silicon carbide ceramic and preparation method and application thereof
JP2001151579A (en) Silicon carbide porous body and method of producing the same
JPS632913B2 (en)
JPS62138361A (en) Manufacture of high density formed body from carbon material
JPS6121978A (en) Manufacture of aluminum nitride sintered body
US5045269A (en) Method for sintered shapes with controlled grain size
JPS6328873B2 (en)
JP3118557B2 (en) Method for growing graphite particles in carbon-based moldings
JPH07315819A (en) Raw material for producing fullerenes and production of fullerenes
JPH05279119A (en) Carbon material having oxidation resistance and its production
JPH0597549A (en) Graphite crucible for metal evaporation