JPS62259001A - Manufacture of magnetic scale - Google Patents

Manufacture of magnetic scale

Info

Publication number
JPS62259001A
JPS62259001A JP10247086A JP10247086A JPS62259001A JP S62259001 A JPS62259001 A JP S62259001A JP 10247086 A JP10247086 A JP 10247086A JP 10247086 A JP10247086 A JP 10247086A JP S62259001 A JPS62259001 A JP S62259001A
Authority
JP
Japan
Prior art keywords
scale
base body
magnetic
graphite material
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10247086A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP10247086A priority Critical patent/JPS62259001A/en
Publication of JPS62259001A publication Critical patent/JPS62259001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To finely work a scale with high accuracy by working and forming the scale on a base body made of a graphite material with a laser beam, and fixing a magnetic material to recessed or projection parts of the scale. CONSTITUTION:The center shaft 1a of the discoid base body 1 made of the graphite material (containing various kinds of carbon) is rotated by a rotating motor 2. Then, the beam 6 which is emitted by a laser oscillator 3 and converged 5 is projected on the peripheral edge of the base body 1. Then, the irradiated point is heated and vaporized speedily to work a hole and the output beam irradiation of the oscillator 3 is controlled 7 impulsively according to the rotation control 7 by the motor 2 to form, for example, fine holes 1c at equal intervals in the circumferential direction of the base body 1. Thus, the working is carried out corresponding to the spot diameter of the beam 6 because of heat the insulation property of the graphite material. Then, grains of a magnetic material such as a magnet are adhered in recessed parts of the holes 1c by using resin. Thus, a magnetic scale which has high heat resistance and provides high-accuracy and high-resolution detection is manufactured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気スケールの製作方法に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for manufacturing a magnetic scale.

〔従来技術〕[Prior art]

磁気スケールとして、従来磁性若しくは非磁性基体に目
盛用の溝を形成し、その溝に記録媒体の磁性金属線を埋
込んだ磁気スケールが公知ぐある。
As a conventional magnetic scale, there is a known magnetic scale in which a scale groove is formed in a magnetic or non-magnetic substrate, and a magnetic metal wire of a recording medium is embedded in the groove.

前記基体材としては、ステンレス、アルミニウム合金、
プラスチック等が用いられている。
The base material includes stainless steel, aluminum alloy,
Plastic etc. are used.

(問題点) 前記ステンレス等の基体に目盛を加工するのには、放電
加工、レーザ加工、プレス加工、切削加工等によるが、
基体材によって加工方法に制約があり、加工精度も高く
得られない欠点があった。
(Problem) Machining scales on the base material such as stainless steel can be done by electric discharge machining, laser machining, press machining, cutting machining, etc.
There are restrictions on the processing method depending on the base material, and there are disadvantages in that high processing accuracy cannot be obtained.

ワイA7カツト放電加工方法を用いてスリブ1〜加工す
るにはワイヤ電極の線径以下に加工することができない
し、レーザ加工を利用ケるとステンレス材の良熱伝導性
のために焦点が拡がり加工孔がテーバ状になったり加工
拡大して加工精度が低く、分割数も少ない欠点があった
Wire A7 cut When machining from 1 to slit using the electric discharge machining method, it is not possible to process the wire to a diameter smaller than that of the wire electrode, and when laser machining is used, the focus is expanded due to the good thermal conductivity of the stainless steel material. The disadvantages were that the machining hole became tapered or enlarged, resulting in low machining accuracy and a small number of divisions.

(問題点の解決手段) 本発明は以上の欠点を改良するために提案されたらので
、1」体にグラファイト(各秤カーボンを含む)を用い
、目盛を加工形成するのにレーザビームを利用する。そ
して加工された目盛の凹部若しくは凸部に磁気材を固着
して磁気スケールを製作Jるようにしたことを特徴とす
る。
(Means for Solving the Problems) The present invention was proposed to improve the above-mentioned drawbacks, and therefore: 1) Graphite (including carbon for each scale) is used for the body, and a laser beam is used to process and form the scales. . The present invention is characterized in that the magnetic scale is manufactured by fixing a magnetic material to the concave or convex portions of the processed scale.

〔実施例〕〔Example〕

以下図面の一実施例により本発明を説明する。 The present invention will be explained below with reference to an embodiment of the drawings.

第1図に於て、1は円板状の基体で、グラフフイト、パ
イログラファイト、グラジ−カーボン、その他のカーボ
ン材が用いられ、中心軸1aに回転を与える。2がその
回転モータ、3はYAG1C02等のレーザ発振器、4
は直角反射ミラー、5は集束レンズで、集束ビーム6は
基体1の周縁に照射され、加工が施される。7はモータ
2の回転とレーザ発振器3のビーム発射とをl1il1
111制御する制御装置である。
In FIG. 1, reference numeral 1 denotes a disc-shaped base body made of graphite, pyrographite, grady carbon, or other carbon material, which imparts rotation to the central axis 1a. 2 is its rotating motor, 3 is a laser oscillator such as YAG1C02, 4
5 is a right-angle reflecting mirror, 5 is a focusing lens, and a focused beam 6 is irradiated onto the periphery of the substrate 1 to be processed. 7 controls the rotation of the motor 2 and the beam emission of the laser oscillator 3.
This is a control device that performs 111 control.

基体1のレーザ照射点は急速に加熱し蒸発して穿孔加工
が行なわれ、モータ2による回転制御に合せて発fi器
3の出力ビーム照射をパルス的にDI御することにより
、第3図に示すように基体1の周縁に円周方向に沿った
微小な穿孔1cを等間隔に加工形成する。基体1のグラ
フフィト材は、金属材に比較して熱伝導性が悪く、断熱
、熱絶縁が良い材料であるから、レーザビームスポット
は熱の拡散がな(、スポット径に対応した高精度の穿孔
加工ができる。穿孔精度はレーザビーム6の照射点のス
ポット径の±5μ程度以下の精度で微細に高精度に加工
することができる。尚、このレーザ加工に当たり、加工
部分に酸素ガスを供給することにより照射点部分の酸化
腐食作用が准み加工速度を高めることができる。基体1
の回転速度とレーザビーム6のパルス照射i+I II
+によって第3図のように基体円周上に高精度に穿孔し
た等間隔目盛を微細分割して加工形成することができる
The laser irradiation point on the substrate 1 is rapidly heated and evaporated to perform the perforation process, and by controlling the output beam irradiation of the fiducer 3 in a pulsed manner in accordance with the rotation control by the motor 2, As shown, minute perforations 1c are formed along the circumferential direction on the periphery of the base 1 at equal intervals. The graphite material of the base 1 has poor thermal conductivity and good thermal insulation compared to metal materials, so the laser beam spot has no heat diffusion (and a high-precision measurement corresponding to the spot diameter). Perforation processing is possible.Drilling accuracy is fine and highly accurate with an accuracy of less than ±5μ of the spot diameter of the irradiation point of the laser beam 6.In addition, during this laser processing, oxygen gas is supplied to the processing part. By doing so, the oxidation corrosion effect at the irradiation point is reduced and the processing speed can be increased.Substrate 1
rotation speed and pulse irradiation of laser beam 6 i+I II
With +, it is possible to finely divide and form evenly spaced scales drilled on the circumference of the base body with high precision as shown in FIG.

第2図は基体円板1の外周側面に等間隔目盛の満1bを
レーザ加工により形成したものである。この溝の加工に
は基体側面に照射したレーザビームを上下に振らせなが
ら加工し、基体円板1を等ピッチで断続回転$1 ti
llすることにより加工することができる。この溝1b
の加工形成においても、基体1がグラファイトであり、
断熱的にビームスポットのみを加工することができ、高
精度に加工することかできる。
In FIG. 2, evenly spaced graduations 1b are formed on the outer peripheral side surface of the base disk 1 by laser processing. To process this groove, the laser beam applied to the side surface of the substrate is swung up and down, and the substrate disk 1 is intermittently rotated at a constant pitch of $1 ti.
It can be processed by ll. This groove 1b
Also in processing and forming, the substrate 1 is graphite,
Only the beam spot can be processed adiabatically, allowing for highly accurate processing.

第4図は、他の実施例の切断側面図で、(a)が基体円
板1の周縁上面に凹部1dを形成し、(b)が周側面に
四部1eを形成し、(C)が周縁上面から傾斜する凹部
1bを形成したものである。 次に以上のレーザ加工に
よって得られた基体1の目盛の溝1b又は孔10等の凹
部に若しくは溝間の凸部に磁気材の固着をするが、磁気
材としては磁石、セミハード磁石、又はソフト磁性材が
任意に選択利用でき、これを線状、帯状、粒状、若しく
は片状にして固着する。
FIG. 4 is a cutaway side view of another embodiment, in which (a) a recess 1d is formed on the upper surface of the peripheral edge of the base disk 1, (b) a four part 1e is formed on the peripheral side, and (C) A recessed portion 1b is formed that slopes from the upper surface of the periphery. Next, a magnetic material is fixed to the concave parts such as the grooves 1b or holes 10 of the scale of the base body 1 obtained by the above laser processing, or to the convex parts between the grooves. Any magnetic material can be selected and fixed in the form of a line, band, grain, or piece.

例えば、磁気材の粉粒を溝等の加工目盛に樹脂で接着し
、磁気目盛を形成する。又磁気材の線を目盛に巻付ける
ことができる。磁気材として例えばSm Co系、Ba
Fe+20+9 (又はBa0・6(Fe 203 )
系、Fe Cr Co系、NdB系、その他の磁性材が
利用できる。基体への固着を機械的にしたものは耐熱性
が高く、250〜300℃程度で実用することができた
For example, a magnetic scale is formed by bonding particles of magnetic material to a processed scale such as a groove with a resin. Also, a wire of magnetic material can be wrapped around the scale. Examples of magnetic materials include Sm Co, Ba
Fe+20+9 (or Ba0.6 (Fe 203 )
Magnetic materials such as Fe Cr Co based, NdB based, and other magnetic materials can be used. Those that were mechanically fixed to the substrate had high heat resistance and could be put to practical use at temperatures of about 250 to 300°C.

磁気スケールの検出には、目盛に着磁して対向する磁気
ヘッドにより検出し、又外部磁界を作用して磁気変化に
より検出することができ、これにより位置、角度、速度
等の検出ができる。
The magnetic scale can be detected by magnetizing the graduations and using opposing magnetic heads, or by applying an external magnetic field to detect magnetic changes, thereby making it possible to detect positions, angles, speeds, etc.

尚、スケール基体は、円板を回転するものに限□   
らず、リニアスケールにより直線に移動させるもの、そ
の他が利用できる。
Note that the scale base is limited to one that rotates a disc.
You can also use one that moves in a straight line using a linear scale, and others.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によればグラフ1イトを基体とし
て、これにレーザビームを照射して目盛の溝、孔、傷等
を加工形成するようにしたから、グラフフィト材の断熱
特性によりビームスポットが拡がらずに微細にE1精度
に目盛の加工ができ、レーザビームの集束によって目盛
加工を極めて微細分割して加工形成することができ、分
解能の高いエンコーダ、スケールを製作することができ
る。
As described above, according to the present invention, the graphite material is used as a base material, and the grooves, holes, scratches, etc. of the scale are processed and formed by irradiating the laser beam onto the substrate. It is possible to finely process scales with E1 accuracy without the spot spreading, and by focusing the laser beam, it is possible to process and form the scales by extremely fine divisions, making it possible to manufacture encoders and scales with high resolution.

加工された目盛にはその凹部又は凸部に磁気材を固着し
、着磁して又は外部磁界を作用して磁気検出を行なうよ
うにしたから、高精度、高分解能の検出ができ、位置、
角度、速度等が検出できる。
Magnetic material is fixed to the concave or convex portions of the machined scale, and magnetic detection is performed by magnetizing it or by applying an external magnetic field, making it possible to perform high-precision, high-resolution detection.
Angle, speed, etc. can be detected.

又、スケール基板がグラファイト材の耐熱、断熱材であ
り、熱膨張係数が小さく高精度の検出ができる。又、グ
ラファイト材は比重が小さり、義械装置への組込みにお
いて任意の部分に利用でき、軽量で高精度に位置、角度
検出ができる。勿論アブソリュート型スケールとしても
有効である。
In addition, the scale substrate is made of graphite, which is a heat-resistant and heat-insulating material, and has a small coefficient of thermal expansion, allowing for highly accurate detection. In addition, graphite material has a low specific gravity, so it can be used in any part of the prosthetic device, and it is lightweight and allows highly accurate position and angle detection. Of course, it is also effective as an absolute type scale.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一工程図、第2図は本発明の一実施例
スケール側面及び正面図、第3図は他の実施例スケール
の側面及び正面図、第4図(a )(b )  (C)
は何れも本発明の他の実施例スケールの切断側面図であ
る。 1・・・・・・・・・6体 2・・・・・・・・・回転モータ 3・・・・・・・・・レーザ発振器 6・・・・・・・・・シー1fビーム 7・−・・・・・・・シItll装置 lb、1c、1d、1e、H・・・・・・・・・加工目
盛特  許  出  願  人 株式会社井上ジ11パックス研究所 代表者 井 上   潔
Fig. 1 is a process diagram of the present invention, Fig. 2 is a side and front view of a scale according to one embodiment of the present invention, Fig. 3 is a side and front view of a scale of another embodiment, and Figs. 4 (a) and (b). ) (C)
Both are cut side views of scales according to other embodiments of the present invention. 1...6 bodies 2...Rotating motor 3...Laser oscillator 6...Sea 1f beam 7・・・・・・・・・Itll device lb, 1c, 1d, 1e, H・・・・・・・・・ Machining scale patent applicant Kiyoshi Inoue, Representative of Inoue Ji11 Pax Research Institute

Claims (1)

【特許請求の範囲】[Claims] グラファイトへ(各種カーボンを含む)を基体とし、該
基体にレーザビームにより目盛を加工形成し、該加工形
成された目盛の凹部若しくは凸部に磁気材を固着して成
ることを特徴とする磁気スケールの製作方法。
A magnetic scale characterized in that the base material is graphite (including various types of carbon), a scale is formed on the base by processing with a laser beam, and a magnetic material is fixed to the concave or convex portions of the processed scale. production method.
JP10247086A 1986-05-02 1986-05-02 Manufacture of magnetic scale Pending JPS62259001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10247086A JPS62259001A (en) 1986-05-02 1986-05-02 Manufacture of magnetic scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10247086A JPS62259001A (en) 1986-05-02 1986-05-02 Manufacture of magnetic scale

Publications (1)

Publication Number Publication Date
JPS62259001A true JPS62259001A (en) 1987-11-11

Family

ID=14328335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10247086A Pending JPS62259001A (en) 1986-05-02 1986-05-02 Manufacture of magnetic scale

Country Status (1)

Country Link
JP (1) JPS62259001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182998A (en) * 2017-09-29 2020-05-19 株式会社钟化 Graphite laminate processed product, method for producing same, and laser cutting device for graphite laminate processed product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182998A (en) * 2017-09-29 2020-05-19 株式会社钟化 Graphite laminate processed product, method for producing same, and laser cutting device for graphite laminate processed product
CN111182998B (en) * 2017-09-29 2022-06-21 株式会社钟化 Graphite laminate processed product, method for producing same, and laser cutting device for graphite laminate processed product

Similar Documents

Publication Publication Date Title
JP3388968B2 (en) Laser measurement and finishing equipment for diamond surface
JPS62259001A (en) Manufacture of magnetic scale
US5204192A (en) Magnetic recording member
JP2905589B2 (en) Film forming equipment
JPS6176689A (en) Production of floating head slider
Siekman Cutting of thin carbon films with a CO2-gas laser—I Theoretical considerations and experiments on flat plates
JPS6082285A (en) Working method of hole or indentation of very small diameter at very small space
JPS60257986A (en) Optical device for laser beam machining
JP2002216932A (en) Manufacturing method and manufacturing device of spark plug
JPS61197102A (en) Manufacture of object having fine groove
JPS5772050A (en) Goniometer such as x-ray microanalyzer
JPS57134933A (en) Electrically charged beam lithographer
Kibria et al. Improvement in Surface Finish and Geometrical Accuracy by Laser Micro-turning
JPH05305472A (en) Laser beam machine
JPS61269004A (en) Magnetic scale
JP3057089B2 (en) Rotary encoder
JPS62102901A (en) Manufacture of optical parts
JPH0716887B2 (en) Cutting blade and manufacturing method thereof
JPS59226308A (en) Minute hole for optical connector
JPS61238986A (en) Laser beam processing device
JPS6217614A (en) Rotary encoder
De Silva et al. The fabrication of foil masks using laser cutting
JPS58125390A (en) Galvanometer optical scanning type laser working device
Maier-Komor THICK TARGETS FOR IN–BEAM HYPERFINE STRUCTURE STUDY-D. RamSay
Schiesser CHARLES STARK DRAPER LABORATORY