JPS62258335A - Production of methyl isobutyl ketone - Google Patents

Production of methyl isobutyl ketone

Info

Publication number
JPS62258335A
JPS62258335A JP61101325A JP10132586A JPS62258335A JP S62258335 A JPS62258335 A JP S62258335A JP 61101325 A JP61101325 A JP 61101325A JP 10132586 A JP10132586 A JP 10132586A JP S62258335 A JPS62258335 A JP S62258335A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
oxide
hydrogen
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61101325A
Other languages
Japanese (ja)
Other versions
JPH062702B2 (en
Inventor
Yasuhiko Too
東尾 保彦
Toshio Nakayama
敏男 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61101325A priority Critical patent/JPH062702B2/en
Publication of JPS62258335A publication Critical patent/JPS62258335A/en
Publication of JPH062702B2 publication Critical patent/JPH062702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the aimed compound in high yield by simple operation, by using a catalyst containing palladium supported on a carrier consisting of alumina and a specific metal oxide, e.g. calcium oxide, etc., in reacting acetone with hydrogen to produce the titled compound. CONSTITUTION:Acetone is reacted with hydrogen in the presence of a catalyst prepared by supporting normally 0.01-5.0wt%, preferably 0.05-1.0wt% palladium on a carrier consisting of alumina and one or more metal oxides selected from calcium oxide, magnesium oxide and strontium oxide normally at 80-250 deg.C, preferably 120-200 deg.C under atmospheric pressure - 50atm, preferably 10-30atm pressure, preferably in the liquid phase to stably afford the aimed methyl isobutyl ketone useful as a raw material for organic solvents, coating materials, stabilizers, etc., in high yield for a long period using the above- mentioned readily preparable catalyst having high activity, selectivity and stability as well as long life.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はアセトンと水素とを原料とし、一段の反応でメ
チルイソブチルケトンを製造する方法しこ関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing methyl isobutyl ketone in a one-step reaction using acetone and hydrogen as raw materials.

メチルイソブチルケトン(以下MIBKと称す)は有機
溶剤、塗料、安定剤等の原料として有用である。
Methyl isobutyl ketone (hereinafter referred to as MIBK) is useful as a raw material for organic solvents, paints, stabilizers, and the like.

〈従来の技術〉 MIBKは通常アセトンと水素を原料として。<Conventional technology> MIBK usually uses acetone and hydrogen as raw materials.

次のような三段法蚤こよって工業的(こ製造されている
It is manufactured industrially using the following three-stage method.

この三段法の特徴は上式(こ示される縮合、脱水、およ
び水素添加の工程を順次行なうものである。まずアセト
/を水酸化バリウム等の団体塩基触媒を用いて10〜2
0℃、常圧液相で反応させることによりジアセトンアル
コールヲ合pltし1次に縮合して得られたジアセトン
アルコールを硫酸、リン酸等の酸触媒の存在下に液相で
100〜120’cに加熱して脱水反応を行ないメンチ
ルオキシドを得る。続いて、このメンチルオキシドを分
離精製した後、ライ・−ニッケル触媒等の存在下に水素
添加を行なうことによりMIBKを製造するという方法
である。
The feature of this three-step method is that the steps of condensation, dehydration, and hydrogenation shown in the above formula are carried out sequentially.
Diacetone alcohol is mixed by reacting it in a liquid phase at 0°C and normal pressure, and the diacetone alcohol obtained by first condensation is reacted in a liquid phase in the presence of an acid catalyst such as sulfuric acid or phosphoric acid to a concentration of 100 to 120 'C to perform a dehydration reaction and obtain menthyl oxide. Subsequently, this menthyl oxide is separated and purified, and then hydrogenated in the presence of a lye-nickel catalyst or the like to produce MIBK.

この方法は広く工業的に行なわれているが。This method is widely used industrially.

縮合、脱水、水素添加工程と三つの反応工程があり、ま
たそれぞれの工程でジアセトンアルコール Xルオキシ
ド等の中間体の分離精製が必要であり、操作が繁雑であ
る。さらにアセトンからジアセトンアルコールへの縮合
反応は平衡反応のため、その転化率は15%程度と低い
という問題点がある。
There are three reaction steps: condensation, dehydration, and hydrogenation, and each step requires separation and purification of intermediates such as diacetone alcohol X oxide, making the operation complicated. Furthermore, since the condensation reaction from acetone to diacetone alcohol is an equilibrium reaction, there is a problem that the conversion rate is as low as about 15%.

そのためにアセトンと水素から一工程でメチルイソブチ
ルケトンを製造する検討が行なわれている。この方法は
平衡的に有利であり、1回通過あたりの原料転化率を上
げることができ。
To this end, studies are being conducted to produce methyl isobutyl ketone in one step from acetone and hydrogen. This process is equilibrium-friendly and can increase feed conversion per pass.

三段法に比して経済的に有利となる。このような−投法
によるMIBKの製造法として従来、酸型イオン交換樹
脂とパラジウム−炭素を触媒として使用する方法(ドイ
ツ特許第1238453号明細書)、リン酸ジルコニウ
ムにパラジウムを担持させた触媒を用いる方法(特公昭
49−6994号公報)、H型ゼオライトにパラジウム
を担持させた触媒を用いる方法(特公昭46−2643
号公報)等が報告されている。
It is economically advantageous compared to the three-stage method. Conventional methods for producing MIBK by such a casting method include a method using an acid type ion exchange resin and palladium-carbon as a catalyst (German Patent No. 1238453), and a method using a catalyst in which palladium is supported on zirconium phosphate. (Japanese Patent Publication No. 49-6994), method using a catalyst in which palladium is supported on H-type zeolite (Japanese Patent Publication No. 46-2643)
Publication No.) etc. have been reported.

しかしながら、これらの従来の方法においては樹脂を用
いるために反応温度を上げることができず原料転化率が
低い、触媒の調製が煩雑である。あるいはM IBK収
率が低いという欠点を有しており工業的に満足できる結
果が得られていなかりな。
However, in these conventional methods, since a resin is used, the reaction temperature cannot be raised, the raw material conversion rate is low, and the preparation of the catalyst is complicated. Alternatively, MIBK has the disadvantage of a low yield, and industrially satisfactory results have not been obtained.

〈発明が解決しようとする問題点〉 本発明は、アセトンと水素とを原料として。<Problem that the invention seeks to solve> The present invention uses acetone and hydrogen as raw materials.

MIBKを製造する方法において従来の方法の欠点、即
ち原料転化率が低く、MIBKの収率が低いこと、触媒
調製が煩雑であること等の欠点を改善し、簡単な操作で
M IBKを高収率で得ることを目的とする。
In the method for producing MIBK, the disadvantages of the conventional method, such as low raw material conversion rate, low yield of MIBK, and complicated catalyst preparation, have been improved, and MIBK can be produced in high yield with simple operations. The aim is to obtain at a high rate.

く問題点を解決するだめの手段〉 本発明は、アセトンと水素を反応させてメチルイソブチ
ルケトンを製造する方法において。
Means for Solving the Problems The present invention relates to a method for producing methyl isobutyl ketone by reacting acetone and hydrogen.

アルミナと酸化カルシウム、酸化マ!゛イ・シウム。Alumina and calcium oxide, MA oxide!゛I-Shium.

酸化ストロンチウムのうちから選ばれた一種又は二種以
上の金属酸化物とから成る担体にパラジウムを担持した
触媒を用いることを特徴とするメチルイソブチルケトン
の製造法に関するものである。
The present invention relates to a method for producing methyl isobutyl ketone, characterized by using a catalyst in which palladium is supported on a carrier comprising one or more metal oxides selected from strontium oxide.

以下1本発明を具体的に説明する。The present invention will be specifically explained below.

本発明方法に用いられる触媒はアルミナと酸化カルシウ
ム、酸化マグネシウム、酸化ストロンチウムのうちから
選ばれた一種又は二種以上の金属酸化物とから成る担体
にパラジウムを担持したものである。本発明方法に用い
られる担体は通常アルミナを酢酸カルシウム等の水溶液
をこ浸漬した後、焼成することにより製造される3゜ア
ルミナとしてはガンマ−アルミナが好ましく用いられる
。カルシウム、マグネシウム、ストロンチウムの水溶液
としてはこれらの金属の酢酸塩、硝酸塩、シーウ酸塩等
の水溶液が用いられ、好ましくはこれらの金属の酢酸塩
の水溶液が用いられる。焼成は通常300〜600℃の
温度で行なわれる。300℃以下或いは600℃以上の
焼成では低い活性しか得られない。
The catalyst used in the method of the present invention has palladium supported on a carrier consisting of alumina and one or more metal oxides selected from calcium oxide, magnesium oxide, and strontium oxide. The carrier used in the method of the present invention is usually produced by dipping alumina in an aqueous solution of calcium acetate or the like, followed by firing.Gamma alumina is preferably used as the 3° alumina. As the aqueous solution of calcium, magnesium, and strontium, aqueous solutions of acetates, nitrates, and cealates of these metals are used, and preferably aqueous solutions of acetates of these metals are used. Firing is usually carried out at a temperature of 300 to 600°C. Calcination at temperatures below 300°C or above 600°C will only result in low activity.

パラジウムの担持量は通常0.01〜5.ON1%であ
り、好ましくは0.05〜1.0重量%である。
The amount of palladium supported is usually 0.01 to 5. ON is 1%, preferably 0.05 to 1.0% by weight.

0.01重量%以下では良好な活性が得られず、5.0
重量%以上では担持されたパラジウムが有効に用いられ
ない。
If it is less than 0.01% by weight, good activity cannot be obtained;
If the amount exceeds % by weight, the supported palladium will not be used effectively.

本発明方法に用いられる触媒は通常アルミナを酢酸カル
シウム等の水溶液に浸漬、焼成した後パラジウムを担持
することにより製造されるが、場合によってはアルミナ
担体にパラジウムを担持した後にこれを酢酸カルシウム
等の水溶液に浸漬、焼成して製造することもできる。
The catalyst used in the method of the present invention is usually produced by immersing alumina in an aqueous solution such as calcium acetate, calcining it, and then supporting palladium. It can also be manufactured by immersing it in an aqueous solution and firing it.

本発明方法の反応形態としては触媒を断熱あるいは等星
型反応器に充填し、そこにアセトンと水素とを通じるい
わゆる固定床流通反応を採用してもよいし、または触媒
をアセトン中に懸濁させ、そこに水素を吹き込んで反応
を行なわしめてもよい。固定床流通反応で反応を行なう
場合、気相で反応させてもよいし、液相で反応させても
よいが好ましくは液相でヌ応が行なわれる。懸濁法で反
応を行なう場合2反応を回分式または連続式のいずれの
方法で行なってもよい0 温度では反応速度が小さくなり、またこの温度より高温
ではアセトンの高縮合生成物が増罪する。
As for the reaction form of the method of the present invention, a so-called fixed bed flow reaction may be adopted in which the catalyst is packed in an adiabatic or isogaster reactor and acetone and hydrogen are passed therein, or the catalyst may be suspended in acetone. The reaction may be carried out by blowing hydrogen into the reaction mixture. When the reaction is carried out in a fixed bed flow reaction, the reaction may be carried out in the gas phase or in the liquid phase, but preferably the reaction is carried out in the liquid phase. When the reaction is carried out using the suspension method, the two reactions may be carried out either batchwise or continuously.At temperatures above 0, the reaction rate decreases, and at temperatures higher than this temperature, high condensation products of acetone increase. .

反応圧力は通常大気圧〜50気圧で反応が行なわれ1反
応温度にもよるが好ましくは10〜30気圧である。
The reaction pressure is usually atmospheric pressure to 50 atm, and is preferably 10 to 30 atm, although it depends on the reaction temperature.

本発明方法は触媒の調製が容易であり、また触媒の活性
が高く2選択性も良好である。さらに触媒の安定性が高
く、その寿命が長いため長時間安定して高収率でMIB
Kを製造することができる。
In the method of the present invention, the catalyst can be easily prepared, and the catalyst has high activity and good two-selectivity. Furthermore, the catalyst is highly stable and has a long lifespan, so MIB can be produced stably for a long time and in high yield.
K can be produced.

以下暑こ実施例によって本発明方法をさらに具体的に説
明するが1本発明の範囲はこれをこよって制限を受ける
ものではない。
The method of the present invention will be explained in more detail below using examples, but the scope of the present invention is not limited thereby.

〈実施例〉 実施例1゜ アルミナペレット(住友アルミWKHD −24)lo
O−を1モル/リットルの酢酸力ルンウム水溶液500
−に3時間浸漬した。その後このペレットを取り出し4
00℃で焼成した。
<Example> Example 1゜Alumina pellet (Sumitomo Aluminum WKHD-24) lo
1 mol/liter of O- in aqueous acetic acid solution 500
- Soaked in water for 3 hours. Then take out this pellet 4
It was fired at 00°C.

この担体を塩化パラジウムの水溶液に浸漬し。This carrier is immersed in an aqueous solution of palladium chloride.

とドラジンで還元後300℃で焼成した。パラジウムの
担持量はO,l M量%であった。
After reduction with dorazine and sintering at 300°C. The amount of palladium supported was 0,1M%.

この触媒100−を内径28謹の垂直に配置した反応管
内に充填し、温度160℃、圧力20Kp/Jの条件下
アセトノを1589 /hr (LH3V = 2 )
This catalyst 100- was packed into a vertically arranged reaction tube with an inner diameter of 28 mm, and the acetonate was heated at 1589/hr (LH3V = 2) under conditions of a temperature of 160°C and a pressure of 20 Kp/J.
.

水素256N、//”の供給速度で反応器に導入し反応
を行ない、第1表をこ示す結果を得た。反応結果は反応
液のガスクロマトグラフィー分析によって得た。
Hydrogen was introduced into the reactor at a supply rate of 256N, //'' to carry out the reaction, and the results shown in Table 1 were obtained.The reaction results were obtained by gas chromatography analysis of the reaction solution.

第  1  表 実施例2.〜4゜ 実施例1.で用いた酢酸カルシウムのかわりに第2表に
記載した化合物を用いて触媒の調製を行ない、これらの
触媒を用いてMIBKの合成反応を行なった。なお酢酸
カルシウムのかわりに第2表に記載した化合物を用いる
以外の触媒調製条件及び反応条件についてはすべて実施
例1゜(こ記載したのと同じ条件で行なった。
Table 1 Example 2. ~4゜Example 1. Catalysts were prepared using the compounds listed in Table 2 instead of the calcium acetate used in Example 1, and MIBK synthesis reactions were carried out using these catalysts. The catalyst preparation conditions and reaction conditions were all the same as those described in Example 1, except that the compounds listed in Table 2 were used in place of calcium acetate.

第  2  表 実施例5.〜7゜ 実施例1.1こ記載した調製法【こ従って調製した触媒
を用いて第3表に示した反応条件で反応を行ない、第3
表に示す結果を得た。なお第3表(こ示した反応条件以
外はすべて実施例1.ニ記載したのと同じ条件で反応を
行なった。
Table 2 Example 5. ~7゜Example 1.1 Preparation method described [Using the catalyst thus prepared, a reaction was carried out under the reaction conditions shown in Table 3.
The results shown in the table were obtained. Note that the reaction was carried out under the same conditions as described in Table 3 (Example 1.D except for the reaction conditions shown).

第3表 (注)第3表の値は反応開始10時間後の値である。Table 3 (Note) The values in Table 3 are the values 10 hours after the start of the reaction.

実施例8゜ 内容積200艷の電磁攪拌機付オートクレーブ中にアセ
トン100tntと実施例1.に記載した方法で調製し
た触媒を粉砕し、粉末状にした触媒2fを加えた。オー
トクレーブを160℃に加熱し。
Example 8 100 tons of acetone and Example 1 were placed in an autoclave with an internal volume of 200 mm and equipped with a magnetic stirrer. The catalyst prepared by the method described in 1 was pulverized and powdered catalyst 2f was added. Heat the autoclave to 160°C.

オートクレーブ内の圧力が20Kg/ Cjになるよう
に水素を加え攪拌しながら反応を行なりた。反応の進行
に伴りて消費される水素は連続的に補給し、全圧を常に
20V4/iに保った。2時間反応を行なった後、オー
トクレーブを冷却し反応生成物を取り出し、水素ならび
に触媒を分離した後、ガスクロマトグラフィーにより分
析し下記の結果を得た。
Hydrogen was added to the autoclave so that the pressure within the autoclave was 20 kg/Cj, and the reaction was carried out with stirring. Hydrogen consumed as the reaction progressed was continuously replenished, and the total pressure was always maintained at 20 V4/i. After carrying out the reaction for 2 hours, the autoclave was cooled, the reaction product was taken out, hydrogen and the catalyst were separated, and then analyzed by gas chromatography to obtain the following results.

アセトン転化率・・・・・・・・・45゜7%MIBK
  選択率・・・・・・・・・93,1%IPA選択率
・・・・・・・・・1.5%DI BK 選択率・・・
・・・・・・ 264%比較例1゜ アルミナペレット(住友アルミ製KHD−24)+00
 Tnlを塩化パラジウムの水溶液に浸漬し、ヒドラジ
ンで還元後300°Cで焼成し、触媒を調製した。パラ
ジウムの担持量は0.1重量%であった。
Acetone conversion rate...45°7% MIBK
Selection rate...93.1% IPA selection rate...1.5% DI BK selection rate...
...... 264% Comparative Example 1゜Alumina pellets (Sumitomo Aluminum KHD-24) +00
Tnl was immersed in an aqueous solution of palladium chloride, reduced with hydrazine, and then calcined at 300°C to prepare a catalyst. The amount of palladium supported was 0.1% by weight.

この触媒+00 dを用いてMIBKの合成反応を行な
った。なお触媒以外の反応条件は実施例1゜に記載した
のと同じ条件で行なった。
MIBK synthesis reaction was carried out using this catalyst +00 d. The reaction conditions other than the catalyst were the same as those described in Example 1.

反応開始10時間後にサンプリングを行ない。Sampling was performed 10 hours after the start of the reaction.

反応液をガスクロマトグラフィーで分析し、下記の結果
を得た。
The reaction solution was analyzed by gas chromatography, and the following results were obtained.

アセトン転化率・・・・・・I9.8% IPA選択率
・・・・・・9.6%MIBK選択率・・・・・・86
,4% DIBK選択率・・・・・・3.0%〈発明の
効果〉 以上の如く本発明によりアルミナと酸化カルシウム、酸
化マグネシウム、酸化ストロンチウムのうちから選ばれ
た1種又は二種以上の金属酸化物とから成る担体にパラ
ジウムを担持した触媒の存在下にアセトンと水素とを反
応させることにより一段の反応でメチルイソグチルケト
ンが収率よく得られるようになりた。
Acetone conversion rate...I9.8% IPA selectivity...9.6% MIBK selectivity...86
, 4% DIBK selectivity...3.0% <Effect of the invention> As described above, according to the present invention, alumina and one or more selected from calcium oxide, magnesium oxide, and strontium oxide are combined. By reacting acetone with hydrogen in the presence of a catalyst in which palladium is supported on a carrier consisting of a metal oxide, methyl isobutyl ketone can now be obtained in good yield in a single reaction.

Claims (1)

【特許請求の範囲】[Claims] アセトンと水素を反応させてメチルイソブチルケトンを
製造する方法において、アルミナと酸化カルシウム、酸
化マグネシウム、酸化ストロンチウムのうちから選ばれ
た一種又は二種以上の金属酸化物とから成る担体にパラ
ジウムを担持した触媒を用いることを特徴とするメチル
イソブチルケトンの製造法。
In a method for producing methyl isobutyl ketone by reacting acetone and hydrogen, palladium is supported on a carrier consisting of alumina and one or more metal oxides selected from calcium oxide, magnesium oxide, and strontium oxide. A method for producing methyl isobutyl ketone, characterized by using a catalyst.
JP61101325A 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone Expired - Lifetime JPH062702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101325A JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101325A JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Publications (2)

Publication Number Publication Date
JPS62258335A true JPS62258335A (en) 1987-11-10
JPH062702B2 JPH062702B2 (en) 1994-01-12

Family

ID=14297667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101325A Expired - Lifetime JPH062702B2 (en) 1986-04-30 1986-04-30 Method for producing methyl isobutyl ketone

Country Status (1)

Country Link
JP (1) JPH062702B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149881A (en) * 1990-05-21 1992-09-22 Mitsubishi Kasei Corporation Method for producing methyl isobutyl ketone
US6706928B2 (en) 2000-05-18 2004-03-16 Johnson Matthey Plc Aldol condensation reaction and catalyst therefor
CN102190568A (en) * 2010-03-19 2011-09-21 中国石油天然气股份有限公司 Method for synthesizing methyl isobutyl ketone
CN107185566A (en) * 2017-06-15 2017-09-22 中南大学 A kind of catalyst of acetone hydrogenation liquid phase method synthesizing methyl isobutyl ketone and application
CN116041158A (en) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 Method for preparing methyl isobutyl ketone by liquid phase hydrogenation of 4-methyl-3-pentene-2-one

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149881A (en) * 1990-05-21 1992-09-22 Mitsubishi Kasei Corporation Method for producing methyl isobutyl ketone
US6706928B2 (en) 2000-05-18 2004-03-16 Johnson Matthey Plc Aldol condensation reaction and catalyst therefor
CN102190568A (en) * 2010-03-19 2011-09-21 中国石油天然气股份有限公司 Method for synthesizing methyl isobutyl ketone
CN107185566A (en) * 2017-06-15 2017-09-22 中南大学 A kind of catalyst of acetone hydrogenation liquid phase method synthesizing methyl isobutyl ketone and application
CN107185566B (en) * 2017-06-15 2020-01-07 中南大学 Catalyst for synthesizing methyl isobutyl ketone by acetone hydrogenation liquid phase method and application
CN116041158A (en) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 Method for preparing methyl isobutyl ketone by liquid phase hydrogenation of 4-methyl-3-pentene-2-one

Also Published As

Publication number Publication date
JPH062702B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
AU592431B2 (en) Improved silver catalyst
US6403844B1 (en) Condensed phase catalytic hydrogenation of lactic acid to propylene glycol
US6790983B1 (en) Integrated process for the production of vinyl acetate
EP0277562B1 (en) Hydrogenation of citric acid and substituted citric acids to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactones and mixtures thereof
JPS6178745A (en) Production of methyl isobutyl ketone
JPS63119436A (en) Production of methyl isobutyl ketone
JPS62258335A (en) Production of methyl isobutyl ketone
JPS58166936A (en) Catalyst for producing carboxylic ester and use thereof
US20230295102A1 (en) A process for preparation of 2, 5-furan dicarboxylic acid from 5-hydroxymethyl furfural
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPH08165256A (en) Production of 1,1,1,2,3,3-hexafluoropropane
JPH0987217A (en) Production of ethanol
JP3951006B2 (en) Process for producing alkylene carbonate and catalyst used therefor
US4351908A (en) Process for the manufacture of acetic acid, acetic aldehyde and ethanol from synthesis gas
JPH026414A (en) Preparation of isobutylene
JPS584704B2 (en) Method for producing methyl methacrylate
JPH0393743A (en) Production of methylisobutylketone
KR20230093017A (en) Method for producing methionine
JP3804697B2 (en) Method for producing methyl formate
KR930005305B1 (en) Catalyst for preparation of dimethyl carbonate and process for preparation of it and its use
JPH0219346A (en) Production of carbonic acid ester
JPS63141937A (en) Production of higher alcohol
JPH0737411B2 (en) Method for producing methyl isobutyl ketone
JPS5934692B2 (en) Production method of trimethylolacetic acid
JPS6260376B2 (en)