JPS6225776Y2 - - Google Patents

Info

Publication number
JPS6225776Y2
JPS6225776Y2 JP4370382U JP4370382U JPS6225776Y2 JP S6225776 Y2 JPS6225776 Y2 JP S6225776Y2 JP 4370382 U JP4370382 U JP 4370382U JP 4370382 U JP4370382 U JP 4370382U JP S6225776 Y2 JPS6225776 Y2 JP S6225776Y2
Authority
JP
Japan
Prior art keywords
movable sheave
force
pedal
tension spring
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4370382U
Other languages
Japanese (ja)
Other versions
JPS58147029U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4370382U priority Critical patent/JPS58147029U/en
Publication of JPS58147029U publication Critical patent/JPS58147029U/en
Application granted granted Critical
Publication of JPS6225776Y2 publication Critical patent/JPS6225776Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Control Devices (AREA)
  • Gear-Shifting Mechanisms (AREA)

Description

【考案の詳細な説明】 本考案はベルト式無段変速機に設けられる入力
プーリ側可動シーブ(以下「入力可動シーブ」と
いう)の押込機構に関し、特に入力可動シーブを
入力プーリ側固定シーブ(以下「入力固定シー
ブ」という)に接近させる時の押込操作をスムー
スに行なえる様に構成した入力可動シーブ押込機
構に関するものである。
[Detailed description of the invention] The present invention relates to a pushing mechanism for a movable sheave on the input pulley side (hereinafter referred to as "input movable sheave") provided in a belt-type continuously variable transmission. This invention relates to an input movable sheave pushing mechanism configured to smoothly perform a pushing operation when approaching a fixed input sheave (referred to as an "input fixed sheave").

内燃機関等を用いて運転される農業機械や建設
機械等の機械装置において、出力回転数を確実に
制御する為には通常無段変速機構が用いられる。
例えば第1,2図はベルト式無段変速機の概略説
明図で、第1図は高速運転時の状態を、又第2図
は低速運転時の状態を夫々示す。1は入力プー
リ、2は出力プーリで、これら両プーリ1,2の
間には一定長さの無端ベルト3が巻架されてお
り、入力プーリ1の回転を出力プーリ2に伝達す
る様に構成されている。そして入力プーリ1は、
押込杆4によつて移動する入力可動シーブ1aと
入力固定シーブ1bから構成されると共に、出力
プーリ2は押しばね5で押圧される出力プーリ側
可動シーブ(以下「出力可動シーブ」という)2
aと出力プーリ側固定シーブ(以下「出力固定シ
ーブ」という)2bとから構成される。押しばね
5は出力プーリ2に巻装されるベルト3を両シー
ブ2a,2b間で確実に挟持し得る様にばね設計
されている。
BACKGROUND ART In mechanical devices such as agricultural machinery and construction machinery that are operated using an internal combustion engine or the like, a continuously variable transmission mechanism is usually used to reliably control the output rotation speed.
For example, FIGS. 1 and 2 are schematic explanatory diagrams of a belt-type continuously variable transmission, with FIG. 1 showing the state during high-speed operation, and FIG. 2 showing the state during low-speed operation, respectively. 1 is an input pulley, 2 is an output pulley, and an endless belt 3 of a certain length is wound between these pulleys 1 and 2, and is configured to transmit the rotation of the input pulley 1 to the output pulley 2. has been done. And input pulley 1 is
The output pulley 2 is composed of an input movable sheave 1a and an input fixed sheave 1b that are moved by a push rod 4, and an output pulley-side movable sheave (hereinafter referred to as "output movable sheave") 2 that is pressed by a push spring 5.
a and an output pulley side fixed sheave (hereinafter referred to as "output fixed sheave") 2b. The push spring 5 is designed to reliably hold the belt 3 wound around the output pulley 2 between the sheaves 2a and 2b.

この様に構成される無段変速機で低速運転を高
速運転に切換る場合には、押込杆4を矢印A方向
(第2図から第1図の状態)へ移動させて、入力
可動シーブ1aを入力固定シーブ1bへ接近させ
る。入力可動シーブ1aが入力固定シーブ1bへ
接近すると、入力プーリ1に巻装されているベル
ト3は両シーブ1a,1bのテーパ面で形成され
るV形溝6に沿つて入力プーリ1の外周側へ摺動
する。即ち第2図の如く出力プーリ2の外周側に
巻装されていたベルト3を第1図の如く図面の上
方へ引き上げようとし、これによつて出力プーリ
2の出力可動シーブ2aが矢印B側へ押し戻さ
れ、V形溝6aの間隙が広くなる。その結果ベル
ト3は入力プーリ1の遠心側と出力プーリ2の軸
心側に巻架され、入力プーリ1の低速回転を出力
プーリ2の高速回転として伝達する。
When switching from low-speed operation to high-speed operation in a continuously variable transmission configured as described above, the push rod 4 is moved in the direction of arrow A (from the state shown in FIG. 2 to FIG. 1), and the input movable sheave 1a is brought closer to the input fixed sheave 1b. When the input movable sheave 1a approaches the input fixed sheave 1b, the belt 3 wound around the input pulley 1 moves along the V-shaped groove 6 formed by the tapered surfaces of both sheaves 1a and 1b to the outer peripheral side of the input pulley 1. Slide to. That is, as shown in FIG. 2, the belt 3 wound around the outer periphery of the output pulley 2 is pulled upward in the drawing as shown in FIG. The gap between the V-shaped grooves 6a becomes wider. As a result, the belt 3 is wound around the distal side of the input pulley 1 and the axial side of the output pulley 2, and transmits the low speed rotation of the input pulley 1 as high speed rotation of the output pulley 2.

ところで出力可動シーブ2aを矢印B方向へ押
し戻すに当つては、押しばね5の押圧力より強い
力を押込杆4に作用して該押込杆4を矢印A方向
に移動させる必要がある。その為従来では第3図
に示す様なリンク機構を採用し、比較的小さな力
を作用するだけでも押込杆4の押込圧が押しばね
5の押圧力を上回わることができる様な変速伝達
機構が提案されている。即ち押込杆4は連結杆7
を介してペダル8に連結されており、ペダル8の
踏込みによつて押込杆4が作動される様に構成す
ると共に、ペダル8の踏込方向側に引きばね9を
張設し、ペダルの踏込みに必要とする力を、引き
ばね9の縮みによる引張力で補充している。従つ
てペダル8は矢印側に常時付勢されており、ペダ
ル8を踏込めば上記付勢力と踏込力の合力が連結
杆7を介して押込杆4に大きな力として伝達さ
れ、押込杆4が作動するので、結局ごくわずかな
力でペダル8を踏込める様になつている。
By the way, in order to push back the movable output sheave 2a in the direction of arrow B, it is necessary to apply a force stronger than the pressing force of the push spring 5 to the pushing rod 4 to move the pushing rod 4 in the direction of arrow A. For this reason, in the past, a link mechanism as shown in Fig. 3 was used to transmit the speed change so that the pushing force of the pushing rod 4 could exceed the pushing force of the pushing spring 5 even when a relatively small force was applied. A mechanism has been proposed. In other words, the push rod 4 is the connecting rod 7.
The push rod 4 is connected to the pedal 8 via the pedal 8, and the push rod 4 is actuated when the pedal 8 is depressed, and a tension spring 9 is provided on the side of the pedal 8 in the direction in which the pedal is depressed. The necessary force is supplemented by the tensile force caused by the contraction of the tension spring 9. Therefore, the pedal 8 is always biased in the direction of the arrow, and when the pedal 8 is depressed, the resultant force of the above-mentioned biasing force and the depression force is transmitted as a large force to the push lever 4 via the connecting lever 7, and the push lever 4 is As the pedal operates, the pedal 8 can be depressed with very little force.

ところでペダル8の踏込み開始時点では引きば
ね9の縮みによる引張力が大きく作用するが、ペ
ダル8を踏込んで行くにつれて引きばね9が縮ん
でくるのでその引張力が次第に小さくなる。一方
低速回転から高速回転へ移行させるときには、前
述した様に押込杆4を矢印A方向に作動させなけ
ればならないが、作動量の増加に伴つて押しばね
5の圧縮弾性力も大きくなるので、押込杆4には
その力(抗力)以上の大きな力を作動させて入力
可動シーブ1aを押込む必要がある。しかし上記
の構成ではこの必要が生じたときに引きばね9の
引張力が非常に小さくなるので、ペダル踏込力助
勢効果は著しく低下し、その結果大きなペダル踏
込力を作用させなければならず、運転者にとつて
相変わらず大きな負担となつていた。
By the way, when the pedal 8 starts to be depressed, a large tensile force is exerted due to the compression of the tension spring 9, but as the pedal 8 is depressed, the tension spring 9 is compressed and the tension gradually becomes smaller. On the other hand, when transitioning from low-speed rotation to high-speed rotation, the push rod 4 must be operated in the direction of arrow A as described above, but as the amount of operation increases, the compressive elastic force of the push spring 5 also increases. 4, it is necessary to apply a force greater than that force (resistance) to push the input movable sheave 1a. However, in the above configuration, when this need arises, the tensile force of the tension spring 9 becomes very small, so the effect of assisting the pedal depression force is significantly reduced, and as a result, a large pedal depression force must be applied, and the operation This continued to be a huge burden for people.

本考案はこうした事情に着目してなされたもの
でその目的とするところは、低速運転から高速運
転への移行に当つてのペダル踏込力助勢効果を簡
単且つ経済的に発揮させて、無段変速機の入力可
動シーブを、比較的小さいペダル踏込力でも押込
むことのできる入力可動シーブ押込機構を提供し
ようとするにある。
The present invention was developed in light of these circumstances, and its purpose is to easily and economically exert the effect of assisting pedal depression force when transitioning from low-speed driving to high-speed driving, and to provide continuously variable speed control. To provide an input movable sheave pushing mechanism capable of pushing an input movable sheave of a machine even with a relatively small pedal depression force.

しかしてこの様な目的を達成し得た本考案の押
込機構とは、ペダルとペダル踏込力助勢用引きば
ね(以下単に「引きばね」という)の間に、両先
端側に夫々作用点を有し、且つ根本部を支点とす
る鋭角のV形レバーを配設すると共に該レバーの
1つの作用点をペダルに、他の作用点を引きばね
に連結して構成した点に要旨が存在する。
However, the pushing mechanism of the present invention that was able to achieve this purpose has a point of action on each tip side between the pedal and a tension spring for assisting the pedal depression force (hereinafter simply referred to as "tension spring"). However, the gist lies in the fact that an acute-angled V-shaped lever with its base as a fulcrum is provided, and one point of action of the lever is connected to the pedal, and the other point of action is connected to a tension spring.

以下実施例図面に基づき本考案の構成及び作用
効果を説明するが、下記実施例は単に一代表例を
示すに過ぎず、前・後記の趣旨に沿つてV型レバ
ーの開き角度や、長腕杆と短腕杆の比等を適宜設
計変更することは全て本考案の技術的範囲に含ま
れる。
The configuration and effects of the present invention will be explained below based on the drawings of the embodiments. Appropriate design changes such as the ratio of the rod to the short arm rod are all within the technical scope of the present invention.

第4図は本考案に係る入力可動シーブ押込機構
の概略説明図で、第1図乃至第3図の従来例と同
一構成のものには同一符号を付してある。以下本
考案が従来例と特に異なり又特徴とする構成を中
心に説明を進める。10は長腕杆11と短腕杆1
2を有するV形レバーで、各腕杆11,12の先
端側には作用点となる穴11a,12aが夫々設
けられ、且つ根本部には支点となる穴10aが設
けられている。尚以下の説明で必要に応じ11
a,12aを作用点、10aを支点と称すること
がある。又長腕杆11の先端穴11aは連結杆1
3を介してペダル8と連結され、一方短腕杆12
の先端穴12aは引きばね9と連結されている。
このような構成によつてペダル8と引きばね9と
の間にいわゆる倍力機構を介在せしめた状態にな
る。この原理を第5図の力作用状態説明図により
説明すれば、V形レバー10が実線位置にあると
きに作用点11aでの作用力をF1、作用腕長をa1
とし、作用点12aでの作用力をP1、作用腕長を
b1とすると、力の釣合の関係から次式が成立す
る。
FIG. 4 is a schematic explanatory diagram of the input movable sheave pushing mechanism according to the present invention, and the same components as those of the conventional example shown in FIGS. 1 to 3 are given the same reference numerals. The present invention will be explained below, focusing on the configuration that is particularly different from the conventional example and is characterized by the present invention. 10 is a long arm rod 11 and a short arm rod 1
2, each arm rod 11, 12 is provided with a hole 11a, 12a at its tip side, which serves as a point of action, and a hole 10a, which serves as a fulcrum, at its base. 11 as necessary in the explanation below.
a, 12a may be referred to as a point of action, and 10a may be referred to as a fulcrum. Also, the tip hole 11a of the long arm rod 11 is connected to the connecting rod 1.
3 to the pedal 8, while the short arm lever 12
The tip hole 12a is connected to the tension spring 9.
With this configuration, a so-called boosting mechanism is interposed between the pedal 8 and the tension spring 9. To explain this principle with reference to the force action state explanatory diagram in FIG. 5, when the V-shaped lever 10 is in the solid line position, the acting force at the point of action 11a is F 1 and the acting arm length is a 1
The acting force at the point of action 12a is P 1 and the length of the acting arm is
If b is 1 , the following equation holds from the force balance relationship.

F1a1=P1b1 ……… 次いでV形レバー10が10aを支点に左回り
に旋回して一点鎖線の位置に至つたときに作用点
11aでの作用力をF2、作用腕長をa2とし、作用
点12aでの作用力をP2、作用腕長をb2とする
と、力の釣合の関係から次式が成立する。
F 1 a 1 = P 1 b 1 …Next, when the V-shaped lever 10 turns counterclockwise around the fulcrum 10a and reaches the position indicated by the dashed-dotted line, the acting force at the point of action 11a is F 2 , and the acting arm When the length is a 2 , the acting force at the point of action 12a is P 2 , and the acting arm length is b 2 , the following equation holds true from the force balance relationship.

F2a2=P2b2 ……… 従つてF1とF2の比をとると、下記式とな
る。
F 2 a 2 = P 2 b 2 ...... Therefore, taking the ratio of F 1 and F 2 , the following formula is obtained.

F1/F2=P1b1a2/P2b2a1 ……… ところで作用点12aは引きばね9に連結され
ているので、引きばね9のばね特性によつてP1
P2となつてもa1>a2,b1<b2の関係が成り立つの
でF2/F1はP2/P1ほど大きくならず、押しばね
5の特性に対応できる。またV形レバー10の長
腕杆11における作用点11aにある力を作用さ
せた状態で該レバー10を旋回させるにつれて力
は倍加されることになり、その倍加された力は短
腕杆12の作用点12aを介して引きばね9に作
用する。
F 1 /F 2 =P 1 b 1 a 2 /P 2 b 2 a 1 … By the way, since the point of action 12a is connected to the tension spring 9, P 1 > due to the spring characteristics of the tension spring 9.
Even if P 2 , the relationships of a 1 > a 2 and b 1 < b 2 hold, so F 2 /F 1 is not as large as P 2 /P 1 and can correspond to the characteristics of the push spring 5. Further, as the lever 10 is rotated with a certain force applied to the point of application 11a on the long arm lever 11 of the V-shaped lever 10, the force is doubled, and the doubled force is applied to the short arm lever 12. It acts on the tension spring 9 via the point of action 12a.

上記の如く倍力機構を介在せしめてなる入力可
動シーブ押込機構により低速運転から高速運転へ
移行させるに当つては、ペダルを踏込むことによ
つて行なう。即ち第4図において引きばね9によ
つて助勢されつつ作用されたペダル踏込力を、連
結杆7を有するリンク機構L及び押込杆4を介し
てベルト式無段変速機Gの入力可動シーブ1aに
作用させ、該入力可動シーブ1aを入力固定シー
ブ1bへ接近させることにより行なう。このとき
前述した様にベルト3を介して出力可動シーブ2
aを矢印B方向へ押し戻すことになるので、押し
ばね5の押圧力より強い力を押込杆4に作用させ
て該押込杆4を矢印A方向に移動させる必要があ
る。特に高速になればなるほど押込杆4に作用さ
せる力もより大きく要求される。
The transition from low speed operation to high speed operation using the input movable sheave pushing mechanism including the booster mechanism as described above is carried out by depressing the pedal. That is, in FIG. 4, the pedal depression force applied while being assisted by the tension spring 9 is transmitted to the input movable sheave 1a of the belt type continuously variable transmission G via the link mechanism L having the connecting rod 7 and the pushing rod 4. This is done by causing the input movable sheave 1a to approach the input fixed sheave 1b. At this time, as described above, the output movable sheave 2 is
Since a is pushed back in the direction of arrow B, it is necessary to apply a force stronger than the pressing force of the push spring 5 to the pushing rod 4 to move the pushing rod 4 in the direction of the arrow A. In particular, the higher the speed, the greater the force required to act on the push rod 4.

しかるに本実施例では、ペダル8と引きばね9
の間に前述の如き特有の倍力機構を介設せしめて
いるのでその要求にたやすく応えられる様になつ
ている。即ちペダル8に作用した踏込力は連結杆
13を介してV形レバー10の長腕杆11におけ
る作用点11aに伝達される。その結果、V形レ
バー10は10aを支点として左回りに旋回する
と共にペダル踏込力は短腕杆12における作用点
12aを介して引きばね9に伝達される。このと
き作用点11aに作用する作用力はV形レバー1
0が旋回するにつれて倍加する。即ちペダル8を
踏込めば踏込むほど引きばね9のペダル踏込力助
勢効果は高まることになるので、比較的小さなペ
ダル踏込力で押込杆4に大きな力をたやすく作用
させることができる。従つて低速運転から高速運
転への移行に当つてもペダル踏込力を特に大きく
する必要はなくなり、運転者の負担は大きく軽減
される。
However, in this embodiment, the pedal 8 and the tension spring 9
Since the above-mentioned unique boosting mechanism is interposed between the two, it is possible to easily meet this demand. That is, the depression force acting on the pedal 8 is transmitted via the connecting rod 13 to the point of application 11a on the long arm rod 11 of the V-shaped lever 10. As a result, the V-shaped lever 10 pivots counterclockwise about the fulcrum 10a, and the pedal depression force is transmitted to the tension spring 9 via the point of action 12a on the short arm lever 12. At this time, the acting force acting on the point of action 11a is the V-shaped lever 1
0 doubles as it turns. That is, the more the pedal 8 is depressed, the more the pedal depression force assisting effect of the tension spring 9 increases, so that a large force can be easily applied to the pushing rod 4 with a relatively small pedal depression force. Therefore, there is no need to particularly increase the pedal depression force when transitioning from low-speed driving to high-speed driving, and the burden on the driver is greatly reduced.

本考案の入力可動シーブ押込機構は以上の様に
構成したので、低速運転から高速運転への移行に
当つてのペダル踏込力助勢効果を簡単且つ経済的
に発揮させて、無段変速機の入力可動シーブを、
比較的に小さいペダル踏込力でも押込むことので
きる入力可動シーブ押込機構とすることができ
た。
Since the input movable sheave pushing mechanism of the present invention is constructed as described above, the effect of assisting the pedal depression force when transitioning from low-speed operation to high-speed operation can be easily and economically exerted, and the input movable sheave pushing mechanism of the continuously variable transmission can be easily and economically exerted. movable sheave,
It was possible to create an input movable sheave pushing mechanism that can be pushed in even with a relatively small pedal depression force.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はベルト式無段変速機の概略
説明図、第2図は従来の入力可動シーブ押込機構
の概略説明図、第4図は本考案の入力可動シーブ
押込機構の概略説明図、第5図はV形レバーに作
用する力の関係説明図を夫々示す。 1……入力プーリ、1a……入力可動シーブ、
1b……入力固定シーブ、2……出力プーリ、2
a……出力可動シーブ、2b……出力固定シー
ブ、3……ベルト、4……押込杆、5……押しば
ね、7,13……連結杆、8……ペダル、9……
引きばね、10……V形レバー。
1 and 2 are schematic illustrations of a belt-type continuously variable transmission, FIG. 2 is a schematic illustration of a conventional input movable sheave pushing mechanism, and FIG. 4 is a schematic illustration of the input movable sheave pushing mechanism of the present invention. Figures 5 and 5 respectively show explanatory diagrams of the relationship of forces acting on the V-shaped lever. 1...Input pulley, 1a...Input movable sheave,
1b...Input fixed sheave, 2...Output pulley, 2
a... Output movable sheave, 2b... Output fixed sheave, 3... Belt, 4... Push rod, 5... Push spring, 7, 13... Connection rod, 8... Pedal, 9...
Extension spring, 10...V-shaped lever.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 引きばねによつて助勢されつつ作用されたペダ
ル踏込力を、リンク機構を介してベルト式無段変
速機の入力プーリ側可動シーブに作用させること
により、同変速機の出力プーリ側可動シーブに付
勢配設される押圧ばねに抗して前記入力プーリ側
可動シーブを固定シーブ側へ押込接近させるよう
にしてなる可動シーブ押込機構において、ペダル
とペダル踏込力助勢用引きばねの間に、両先端側
に夫々作用点を有し、且つ根本部を支点とする鋭
角のV形レバーを配設すると共に該レバーの1つ
の作用点をペダルに、他の作用点をペダル踏込力
助勢用引きばねに連結してなることを特徴とする
ベルト式無段変速機の可動シーブ押込機構。
By applying the pedal depression force assisted by the tension spring to the movable sheave on the input pulley side of the belt-type continuously variable transmission through the link mechanism, the force is applied to the movable sheave on the output pulley side of the transmission. In the movable sheave pushing mechanism, which pushes the movable sheave on the input pulley side toward the fixed sheave side against a pressure spring disposed therein, a movable sheave pushing mechanism is provided between the pedal and the pedal depression force assisting tension spring. An acute-angled V-shaped lever is provided that has a point of action on each side and uses the base as a fulcrum, and one point of action of the lever is used as a pedal, and the other point of action is used as a tension spring for assisting pedal depression force. A movable sheave pushing mechanism for a belt type continuously variable transmission characterized by being connected.
JP4370382U 1982-03-26 1982-03-26 Movable sheep pushing mechanism of belt type continuously variable transmission Granted JPS58147029U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4370382U JPS58147029U (en) 1982-03-26 1982-03-26 Movable sheep pushing mechanism of belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4370382U JPS58147029U (en) 1982-03-26 1982-03-26 Movable sheep pushing mechanism of belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS58147029U JPS58147029U (en) 1983-10-03
JPS6225776Y2 true JPS6225776Y2 (en) 1987-07-01

Family

ID=30054779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4370382U Granted JPS58147029U (en) 1982-03-26 1982-03-26 Movable sheep pushing mechanism of belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS58147029U (en)

Also Published As

Publication number Publication date
JPS58147029U (en) 1983-10-03

Similar Documents

Publication Publication Date Title
KR880001081A (en) Hydraulic crimping tool
ITTO20020930A1 (en) PULLEY FOR A VARIABLE RATIO TRANSMISSION WITH CONTINUITY.
US5358450A (en) Driven pulley with flyweights effective at low speeds
JPS6225776Y2 (en)
JPH10231905A (en) Chain tension relieving device
US20100184558A1 (en) Friction type continuously variable transmission
EP0937913A3 (en) Speed control device of toroidal type continuously variable transmission
KR100483152B1 (en) Release cylinder assembly of clutch
JPS5846250A (en) Belt type stepless transmission
JP3170026B2 (en) Direct-acting electric actuator
JPS58195223A (en) Movable sheave pressing-in mechanism of belt type stepless speed change gear
JP2596201Y2 (en) Belt continuously variable transmission
JP3131935B2 (en) Belt-type continuously variable transmission
CN211073293U (en) Positioning device suitable for clutch pressure plate
KR20070062122A (en) Clutch of manual transmission
SE7503820L (en) MECHANICAL CONTROLLER FOR MODULATOR VALVE IN TRANSMISSION.
JPS63225753A (en) Variable speed pulley device
JP2771371B2 (en) Belt continuously variable transmission
JPS62190161U (en)
JPS5921159U (en) screw transmission
JPS5846249A (en) Belt type stepless transmission
JPH0133878Y2 (en)
KR19990041953A (en) Turnover Springs for Automotive Clutch
CA1038203A (en) Driven clutch device for v-belt type automatic transmission
KR19980014014A (en) Foot reduction structure of clutch pedal for vehicle