JPS6225745B2 - - Google Patents

Info

Publication number
JPS6225745B2
JPS6225745B2 JP55075239A JP7523980A JPS6225745B2 JP S6225745 B2 JPS6225745 B2 JP S6225745B2 JP 55075239 A JP55075239 A JP 55075239A JP 7523980 A JP7523980 A JP 7523980A JP S6225745 B2 JPS6225745 B2 JP S6225745B2
Authority
JP
Japan
Prior art keywords
fluidized bed
gas
fuel gas
furnace
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55075239A
Other languages
Japanese (ja)
Other versions
JPS56169769A (en
Inventor
Daburu Reinorudoson Aaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP7523980A priority Critical patent/JPS56169769A/en
Publication of JPS56169769A publication Critical patent/JPS56169769A/en
Publication of JPS6225745B2 publication Critical patent/JPS6225745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は浸炭窒化方法に関するものである。更
に詳しくは、表面硬度が約700Hvの浸炭窒化製品
を得るのに好適な浸炭窒化方法に関するものであ
る。 (従来の技術) ある種の装置に用いられるクラツチプレート等
においては、所望の耐摩耗性、剛性を得るため
に、表面硬度が約700Hvになるように浸炭窒化処
理することが要求される。そこで従来においては
塩浴浸炭窒化法により処理していたが、この法
は、Ac1点(約723℃)より高温に加熱されたシ
アン塩のソルトバス中に被処理物を浸漬して処理
するので被処理物の厚さ方向の部分に変態がおこ
り、被処理物が変形して不良品になる率が大きか
つた。またガス浸炭窒化法により処理することも
行なわれいたが、これもAc1点より高温に加熱さ
れたガス炉中で処理するので同様な欠点があつ
た。なお、これら従来の方法は公害の面からも好
ましくなかつた。 (発明において解決しようとする問題点) 本発明は、このような従来方法の欠点に鑑みて
発明されたものであり、変形がなく、かつ表面硬
度が約700Hvの浸炭窒化製品を常に得ることがで
き、不良品の発生を防止してコストダウン化が図
れると共に公害の心配がない浸炭窒化方を提供し
ようとするものである。 (問題点を解決するための手段) すなわち本方法は、窒素と、アンモニアと、二
酸化炭素と、メタンもしくはプロパンとを混合し
たガスを、炉床の耐火性粒状物が流動層を形成し
うるように供給すると共に、前記流動層の上面よ
りわずか下方もしくは上方に、燃料ガスと、この
燃料ガス及び前記流動層を通過して来る前記雰囲
気用ガスを燃焼させるに必要な空気とを供給し、
前記流動層の上面付近領域のみにおいて前記燃料
ガス及び前記雰囲気用ガスを燃焼させて600℃〜
710℃内の所定温度に炉内を加熱しながら前記流
動層中に浸漬されている被処理物を浸炭窒化する
ことを特徴とするものである。 (実施例) 以下、図面に基いて説明すると、第1図及び第
2図において、炉1には配管2から雰囲気用ガス
が供給されると共に、配管3a,3bから燃料ガ
スが、また配管4a,4bから空気が供給され
る。なお前記雰囲気用ガスは、窒素と、アンモニ
アと、二酸化炭素と、メタンもしくはプロパンと
を混合したガスであり、これらは図示しない適当
な混合装置を介して所定割合に混合されている。
また、前記燃料ガスは、メタン、エタン、プロパ
ン、ブタン等の炭化水素系ガス、あるいは天然ガ
スなどが用いられる。 配管2から炉1の圧力室5に供給される雰囲気
用ガスは、多孔性のセラミツク材で構成される分
散板6を介して均一にコンテナー7内に分散さ
れ、分散板6上に堆積されているアルミナ粒子を
流動させて流動層を形成する。 耐熱性粒状物としては、アルミナ粒子の他、ジ
ルコン砂、硅砂などが、分散板には金属性多孔
板、積層金網等が用いられる。なおこの流動層の
上面は図示Aの所に位置されている。一方、配管
3a,3bで供給される燃料ガスの必要量は、ノ
ズル8a,8bから前記流動層中に噴出される。
また配管4a,4bで供給される空気もノズル9
a,9bから前記流動層中に噴出される。 これらノズル8a,8b及び9a,9bは、図
示のように流動層の上面Aよりわずか下方に配さ
れ、かつノズル8a,8bはノズル9a,9bよ
りわずか下方に配されている。このためノズル8
a,8bから流動層中に噴出された燃料ガスは、
配管2から供給されて流動層中を上昇して来る雰
囲気用ガスによつて上方へ流されると共に雰囲気
用ガスと混合し、さらにノズル9a,9bから流
動層中に噴出される空気と混合して燃焼しうる状
態になり、図示しない着火装置で着火されると燃
焼し、流動層を加熱する。流動層は上面A側から
次第に下方に向つて加熱され、所定時間が経過す
ると所定温度に均一に加熱される。 たとえば700℃±5℃のように加熱される。 なお炉1からの排ガスは、炉1の上端に着脱で
きるように装着された蓋体10のフイルター11
a,11bを通過して排気される。また処理する
プレス加工されたクラツチプレート等の被処理物
は、図示しない適当な手段によつて炉1の上方か
ら流動層中に浸漬され、水平格子12で支持され
る。この場合、蓋体10は事前に炉1から離脱さ
れ、流動層中に被処理物が浸漬されると再び装着
される。流動層中に浸漬されている被処理物は、
均一に加熱されて流動している雰囲気用ガスと接
触して浸炭窒化される。ノズル8a,8bより下
方領域の流動層中においては雰囲気用ガスは不完
全燃焼状態になつている。 そしてこの雰囲中で所定の反応が行なわれ、雰
囲気用ガス中の各成分が所定に消耗される。一般
に、処理温度がAc1点(約723℃)以下であれば
被処理物の変態はおこらないが、炭素、特に窒素
が被処理物の表面に拡散すると、Fe−C−N系
Ac1点が700℃以下に下がり、ごく表層部のみは
変態がはじまる。全浸透深さは約2時間の処理後
で0.1mm、焼入れ、焼戻しによつてマルテンサイ
トになる。構造的には約20ミクロンの表層部の下
はマルテンサイト層であつて650Hv〜700Hvであ
る。このように被処理物の厚さ方向のほとんどの
部分には変態がおこらないので問題になる変形は
なく、かつ所望の表面硬度と耐摩耗性が得られ
る。なお処理中においては、雰囲気用ガスの供給
量、燃料ガスの供給量及び空気の供給量が所定に
コントロールされる。また浸炭窒化された製品
は、蓋体10を炉1から離脱して図示しない適当
な手段によつて炉外へ取り出される。 処理中、ノズル8a,8bから流動層中に噴出
されなかつた余剰の燃料ガスは、配管3a,3b
の排出側へ送られ、そして再び供給側へ送られ
る。また配管4a,4bに設けられている補助ノ
ズル13a,13bから流動層の上面A上の炉内
空間に噴出される空気によつて排ガスのより完全
な燃焼を行なうことができ、更に通路14に冷気
を供給することによつて分散板6及び圧力室5内
の雰囲気用ガスが過度に加熱されるのを防止する
ことができる。なお図中、15は断熱材である。 本発明においては、燃料用ガス及び空気を第3
図あるいは第4図に示す方法で供給してもよい。
第3図においては、配管16からの空気と、配管
17からの燃料ガスとが、噴出口18で合流混合
されて流動層の上面Aよりわずか下方に噴出され
る。また第4図においては、配管19からの空気
と、配管20からの燃料ガスとが、噴出口21で
合流混合されて流動層の上面Aよりわずか上方に
水平に噴出される。なお斜め下方に向けて噴出口
21を配してもよい。また配管19と配管20を
分離して配してもよい。この場合、配管19は配
管20の上方に配される。また上述の流動層の加
熱は、燃料ガスの燃焼が主体であり、流動層を通
過して来る使用済の雰囲気用ガスは反応中に各成
分が消耗されているので、このガスのみでは十分
な熱量が得られない。 しかしこのガスを混合することによつて燃料ガ
スの消費量を減らすことができる。 なお雰囲気用ガスは、窒素:アンモニア:二酸
化炭素:メタンもしくはプロパンの混合割合を各
種にすることができるが、50%(窒素):35%
(アンモニア):5%(二酸化炭素):10%(メ
タンもしくはプロパン)の混合割合が好ましい。
また処理温度ゾーンは、600℃〜710℃が好まし
い。更に燃料ガスを噴出するノズル8a,8b
は、水平方向のみに噴出しうるように設ける場合
のみならず、斜め上方のみもしくは斜め下方の
み、または水平と斜め上下の多方向に噴出しうる
ように設けてもよい。斜め上方に噴出しうるよう
に設ける場合は60゜以下に、また斜め下方に噴出
しうるように設ける場合は30゜以下の範囲が好ま
しい。 実施例 1 直径500mmのコンテナ7内に深さ約500mmに120
メツシユ篩上80メツシユ篩下のアルミナ粒子を入
れ、これに280ないし340Nl/分の割合で金属製
多孔板である分散板6を介しガスを吹き込んで流
動層を形成した。流動化時のアルミナ層の深さは
600mmないし700mmであつた。 サンプル処理時のガス粗成は窒素50%、アンモ
ニア35%、二酸化炭素4%、メタン10%の割合と
し、燃料ガスにはプロパンを使用した。 処理サンプルは、直径10mm、長さ300mmの
SACM645材を用い流動層のほぼ中央部に流動層
表面から約200mm浸漬した。 プロパンと空気の流量を変え処理温度を、570
℃ないし750℃に変更して夫々1時間処理した。
処理中、アンモニア臭はなく完全に分解されてい
た。後、常温の油槽にて冷却、窒化深さとビツカ
ース硬度(HV)を測定した。測定結果を表1a、
1bに示す。なお、窒化深さは顕微鏡観察によ
る。
(Industrial Application Field) The present invention relates to a carbonitriding method. More specifically, the present invention relates to a carbonitriding method suitable for obtaining a carbonitrided product having a surface hardness of about 700 Hv. (Prior Art) In order to obtain desired wear resistance and rigidity for clutch plates and the like used in certain types of devices, carbonitriding treatment is required to achieve a surface hardness of approximately 700 Hv. Therefore, in the past, treatment was carried out using a salt bath carbonitriding method, but in this method, the object to be treated is immersed in a salt bath of cyanide salt heated to a temperature higher than the Ac 1 point (approximately 723°C). Therefore, transformation occurs in the thickness direction of the object to be processed, and the rate of deformation of the object to be processed and defective products is high. Treatment has also been carried out by gas carbonitriding, but this also has the same drawbacks because the treatment is carried out in a gas furnace heated to a temperature higher than the Ac 1 point. In addition, these conventional methods are not preferable from the viewpoint of pollution. (Problems to be Solved by the Invention) The present invention was invented in view of the drawbacks of the conventional methods, and it is possible to always obtain a carbonitrided product without deformation and with a surface hardness of approximately 700 Hv. The present invention aims to provide a carbonitriding method that can reduce costs by preventing the production of defective products and is free from pollution. (Means for Solving the Problem) That is, this method uses a mixed gas of nitrogen, ammonia, carbon dioxide, and methane or propane in such a way that the refractory granules in the hearth can form a fluidized bed. and supplying fuel gas and air necessary to combust the fuel gas and the atmospheric gas passing through the fluidized bed slightly below or above the upper surface of the fluidized bed,
The fuel gas and the atmospheric gas are combusted only in the area near the top surface of the fluidized bed at a temperature of 600°C to
This method is characterized in that the workpiece immersed in the fluidized bed is carbonitrided while heating the inside of the furnace to a predetermined temperature within 710°C. (Example) The following will explain based on the drawings. In FIGS. 1 and 2, atmospheric gas is supplied to the furnace 1 from the pipe 2, fuel gas is supplied from the pipes 3a and 3b, and the furnace 1 is supplied with the gas from the pipe 4a. , 4b. The atmospheric gas is a mixture of nitrogen, ammonia, carbon dioxide, and methane or propane, which are mixed in a predetermined ratio through an appropriate mixing device (not shown).
Further, as the fuel gas, hydrocarbon gas such as methane, ethane, propane, butane, or natural gas is used. The atmospheric gas supplied from the piping 2 to the pressure chamber 5 of the furnace 1 is uniformly distributed within the container 7 via the distribution plate 6 made of porous ceramic material, and is deposited on the distribution plate 6. The alumina particles are fluidized to form a fluidized bed. As the heat-resistant granules, in addition to alumina particles, zircon sand, silica sand, etc. are used, and as the dispersion plate, a metal porous plate, a laminated wire mesh, etc. are used. Note that the upper surface of this fluidized bed is located at A in the figure. On the other hand, the required amount of fuel gas supplied through the pipes 3a, 3b is ejected into the fluidized bed from the nozzles 8a, 8b.
Also, the air supplied through the pipes 4a and 4b is also supplied to the nozzle 9.
It is ejected into the fluidized bed from a and 9b. These nozzles 8a, 8b and 9a, 9b are arranged slightly below the upper surface A of the fluidized bed, and the nozzles 8a, 8b are arranged slightly below the nozzles 9a, 9b. Therefore, nozzle 8
The fuel gas ejected into the fluidized bed from a and 8b is
It is flowed upward by the atmospheric gas supplied from the pipe 2 and rising in the fluidized bed, and mixes with the atmospheric gas, and further mixes with the air jetted into the fluidized bed from the nozzles 9a and 9b. When it becomes combustible and is ignited by an ignition device (not shown), it burns and heats the fluidized bed. The fluidized bed is heated gradually downward from the upper surface A side, and after a predetermined time elapses, it is uniformly heated to a predetermined temperature. For example, it is heated to 700℃±5℃. Note that the exhaust gas from the furnace 1 is passed through a filter 11 of a lid 10 that is removably attached to the upper end of the furnace 1.
a, 11b and is exhausted. A workpiece to be processed, such as a pressed clutch plate, is immersed into the fluidized bed from above the furnace 1 by suitable means (not shown) and supported by a horizontal grid 12. In this case, the lid 10 is removed from the furnace 1 in advance and is reattached once the object to be treated is immersed in the fluidized bed. The workpiece being immersed in the fluidized bed is
It is uniformly heated and brought into contact with a flowing atmospheric gas to be carbonitrided. The atmospheric gas is in an incomplete combustion state in the fluidized bed in the area below the nozzles 8a, 8b. A predetermined reaction takes place in this atmosphere, and each component in the atmosphere gas is consumed in a predetermined amount. In general, if the processing temperature is below the Ac 1 point (approximately 723°C), transformation of the processed material will not occur, but if carbon, especially nitrogen, diffuses onto the surface of the processed material, Fe-C-N system
The Ac 1 point drops below 700℃, and only the very surface layer begins to metamorphose. The total penetration depth is 0.1 mm after approximately 2 hours of treatment, and becomes martensite after quenching and tempering. Structurally, the layer below the surface layer of about 20 microns is a martensite layer with a voltage of 650Hv to 700Hv. In this way, since transformation does not occur in most parts of the workpiece in the thickness direction, there is no problem of deformation, and desired surface hardness and wear resistance can be obtained. Note that during the process, the supply amount of atmospheric gas, fuel gas supply, and air supply amount are controlled to predetermined values. Further, the carbonitrided product is removed from the furnace 1 by removing the lid 10 and taken out of the furnace by an appropriate means (not shown). During the treatment, excess fuel gas that was not ejected into the fluidized bed from the nozzles 8a and 8b is transferred to the pipes 3a and 3b.
is sent to the discharge side, and then sent back to the supply side. Furthermore, more complete combustion of the exhaust gas can be achieved by the air jetted into the furnace space above the upper surface A of the fluidized bed from the auxiliary nozzles 13a and 13b provided in the pipes 4a and 4b. By supplying cold air, it is possible to prevent the atmospheric gas in the distribution plate 6 and the pressure chamber 5 from being excessively heated. In addition, in the figure, 15 is a heat insulating material. In the present invention, fuel gas and air are
It may be supplied by the method shown in the figure or FIG.
In FIG. 3, air from the pipe 16 and fuel gas from the pipe 17 are mixed together at the jet port 18 and jetted slightly below the upper surface A of the fluidized bed. Further, in FIG. 4, air from the pipe 19 and fuel gas from the pipe 20 are mixed together at the jet port 21 and are jetted horizontally slightly above the upper surface A of the fluidized bed. Note that the spout 21 may be arranged diagonally downward. Further, the pipe 19 and the pipe 20 may be arranged separately. In this case, the pipe 19 is arranged above the pipe 20. In addition, heating of the fluidized bed mentioned above is mainly done by combustion of fuel gas, and each component of the spent atmosphere gas that passes through the fluidized bed is consumed during the reaction, so this gas alone is not sufficient. Can't get enough heat. However, by mixing these gases, the amount of fuel gas consumed can be reduced. For the atmosphere gas, the mixing ratio of nitrogen: ammonia: carbon dioxide: methane or propane can be varied, but 50% (nitrogen): 35%
A preferred mixing ratio is (ammonia):5% (carbon dioxide):10% (methane or propane).
Further, the treatment temperature zone is preferably 600°C to 710°C. Furthermore, nozzles 8a and 8b eject fuel gas.
may be provided not only so as to be able to eject only horizontally, but also so as to be able to eject only diagonally upward, only diagonally downward, or in multiple directions including horizontally and diagonally up and down. The angle is preferably 60° or less when the air is provided so that it can eject diagonally upward, and the angle is preferably 30° or less when it is provided so that it can eject diagonally downward. Example 1 120 cells at a depth of about 500 mm in a container 7 with a diameter of 500 mm
80 mesh sieves of alumina particles above the mesh sieve were added, and gas was blown into the mixture at a rate of 280 to 340 Nl/min through the dispersion plate 6, which was a porous metal plate, to form a fluidized bed. The depth of the alumina layer during fluidization is
It was 600mm to 700mm. The gas composition during sample processing was 50% nitrogen, 35% ammonia, 4% carbon dioxide, and 10% methane, and propane was used as the fuel gas. The processed sample has a diameter of 10 mm and a length of 300 mm.
SACM645 material was used and immersed approximately 200 mm from the surface of the fluidized bed approximately in the center of the fluidized bed. Change the flow rate of propane and air to adjust the processing temperature to 570.
The temperature was changed from °C to 750 °C and the treatment was carried out for 1 hour each.
During treatment, there was no ammonia odor and the product was completely decomposed. After that, it was cooled in an oil bath at room temperature, and the nitriding depth and Vickers hardness (HV) were measured. The measurement results are shown in Table 1a,
Shown in 1b. Note that the nitriding depth is determined by microscopic observation.

【表】【table】

【表】 実施例 2 実施例1と同じ装置で窒素50%、アンモニア35
%、二酸化炭素7%、プロパン3%の雰囲気ガス
を流し、直径150mm、厚さ2mmのクラツチプレー
ト(S15C円板)10枚を流動層内の底部から50
mm、表面から100mmの中間部に個別に縦に吊るし
て700℃、1時間処理した後、油冷した。 このようにして処理した各クラツチプレートの
硬化深さ、表面硬度、歪は表2a、2b、2cにおい
て示す通りであつた。 なお、各クラツチプレートの硬化深さは、マイ
クロビツカース硬さ計で断面硬さ分布を測定し、
HV550までの位置を有効硬化深さとしてこれを表
示したものである。また、各クラツチプレートの
歪は、処理後において測定した最大値に対する処
理前において測定した最大値の差(千分の1で四
捨五入)を表示したものであり、前記最大値は、
定盤上に載置されているクラツチプレートの上方
からマイクロメータの接触子を当接させ、かつク
ラツチプレートを手で軽く定盤に対して押し付け
ながらゆつくり一回転させて測定したときの上下
方向の最大変位値であつて、マイクロメータの接
触子はクラツチプレートの直径方向の端部に当接
させた。 比較例 1 実施例2のクラツチプレートと同一のクラツチ
プレート10枚を雰囲気炉で850℃、30分間処理し
た。なお、この処理において、アンモニア10%、
プロパン2%、残りをRX変性ガスとする組成の
雰囲気ガスを用いた。各プレートの硬化深さ、表
面硬度、歪は表2a、2b、2cにおいて示す通りで
あつた。硬化深さ、表面硬度、歪は実施例2と同
方法で測定した。
[Table] Example 2 Using the same equipment as Example 1, 50% nitrogen and 35% ammonia
%, carbon dioxide 7%, and propane 3%, and 10 clutch plates (S15C disks) with a diameter of 150 mm and a thickness of 2 mm were placed 50 mm from the bottom of the fluidized bed.
mm, and were individually hung vertically at the midpoint of 100 mm from the surface, treated at 700°C for 1 hour, and then cooled in oil. The hardening depth, surface hardness, and strain of each clutch plate treated in this manner were as shown in Tables 2a, 2b, and 2c. The hardening depth of each clutch plate is determined by measuring the cross-sectional hardness distribution using a micro-Vickers hardness tester.
The position up to HV550 is shown as the effective hardening depth. In addition, the strain of each clutch plate is the difference between the maximum value measured before treatment and the maximum value measured after treatment (rounded to the nearest thousandth), and the maximum value is:
Vertical direction when measured by touching the micrometer contact from above the clutch plate placed on the surface plate, and gently pressing the clutch plate against the surface plate by hand while slowly rotating it once. At the maximum displacement value, the micrometer contact was brought into contact with the diametrical end of the clutch plate. Comparative Example 1 Ten clutch plates identical to those of Example 2 were treated in an atmospheric furnace at 850°C for 30 minutes. In addition, in this treatment, ammonia 10%,
An atmosphere gas having a composition of 2% propane and the remainder RX modified gas was used. The hardening depth, surface hardness, and strain of each plate were as shown in Tables 2a, 2b, and 2c. The hardening depth, surface hardness, and strain were measured in the same manner as in Example 2.

【表】【table】

【表】【table】

【表】 (発明の効果) 以上、述べたように、本発明によると、次のよ
うな効果が得られる。 (イ) Ac1点以下の温度ゾーン(600℃〜710℃)で
処理するから変形のない、かつ表面硬度が約
700Hvの浸炭窒化製品が得られる。 (ロ) 流動層の上面付近領域のみにおいて使用済の
雰囲気用ガス及び燃料ガスを燃焼させるから公
害や衛生上の問題がなく安全化が図れると共
に、温度コントロールが容易で、かつ省エネル
ギー化が図れる。 (ハ) 実質的に、層上におけるガス燃焼によつて流
動層を加熱することにより、浸炭窒化するに好
適な均一な温度分布及び雰囲気が得られるか
ら、浸炭窒化むらの発生防止化が図れると共に
被処理物の変形防止化も図ることができ、かつ
伝熱速度、浸炭窒化速度がはやく、合理的に浸
炭窒化を行なうことができる。 (ニ) プレス加工された厚さが2mmのクラツチプレ
ートのような薄い板状物についても変形をおこ
さずに所望の耐摩耗性及び剛性が得られるよう
に浸炭窒化を行なうことができる。
[Table] (Effects of the Invention) As described above, according to the present invention, the following effects can be obtained. (b) Since it is processed in the temperature zone below Ac 1 point (600℃~710℃), there is no deformation and the surface hardness is approximately
A carbonitrided product of 700Hv is obtained. (b) Since the used atmosphere gas and fuel gas are burned only in the area near the top of the fluidized bed, there is no pollution or hygiene problem, making it safer, making temperature control easier, and saving energy. (c) By substantially heating the fluidized bed by gas combustion on the bed, a uniform temperature distribution and atmosphere suitable for carbonitriding can be obtained, so uneven carbonitriding can be prevented from occurring, and It is possible to prevent deformation of the object to be treated, and the heat transfer rate and carbonitriding rate are high, and carbonitriding can be carried out rationally. (d) Carbonitriding can be performed on a thin plate-shaped object such as a press-formed clutch plate having a thickness of 2 mm so as to obtain the desired wear resistance and rigidity without causing deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉の縦断面図、第2図は第1図の1部
斜視図、第3,4図は燃料ガス及び空気の供給方
法の他の例を示す概略図である。 1:炉、2:雰囲気用ガスを供給する配管、3
a,3b:燃料ガスを供給する配管、4a,4
b:燃料ガス及び使用済の雰囲気用ガスを燃焼さ
せるに必要な空気を供給する配管、A:流動層の
上面。
FIG. 1 is a longitudinal sectional view of the furnace, FIG. 2 is a partial perspective view of FIG. 1, and FIGS. 3 and 4 are schematic views showing other examples of the method of supplying fuel gas and air. 1: Furnace, 2: Piping for supplying atmospheric gas, 3
a, 3b: Piping for supplying fuel gas, 4a, 4
b: Piping that supplies the air necessary to burn the fuel gas and used atmospheric gas; A: the top surface of the fluidized bed;

Claims (1)

【特許請求の範囲】[Claims] 1 窒素と、アンモニアと、二酸化炭素と、メタ
ンもしくはプロパンとを混合した雰囲気用ガス
を、炉床の耐火性粒状物が流動層を形成しうるよ
うに供給すると共に、前記流動層の上面よりわず
か下方もしくは上方に、燃料ガスと、この燃料ガ
ス及び前記流動層を通過して来る前記雰囲気用ガ
スを燃焼させるに必要な空気とを供給し、前記流
動層の上面付近領域のみにおいて前記燃料ガス及
び前記雰囲気用ガスを燃焼させて600℃〜710℃内
の所定温度に炉内を加熱しながら前記流動層中に
浸漬されている被処理物を浸炭窒化することを特
徴とする浸炭窒化方法。
1. An atmospheric gas containing a mixture of nitrogen, ammonia, carbon dioxide, and methane or propane is supplied so that the refractory granules in the hearth can form a fluidized bed, and at a distance slightly below the top surface of the fluidized bed. A fuel gas and air necessary for combusting the fuel gas and the atmosphere gas passing through the fluidized bed are supplied below or above, and the fuel gas and air are supplied only in the region near the upper surface of the fluidized bed. A carbonitriding method characterized by carbonitriding the workpiece immersed in the fluidized bed while heating the inside of the furnace to a predetermined temperature within 600° C. to 710° C. by burning the atmospheric gas.
JP7523980A 1980-06-03 1980-06-03 Carbonitriding method Granted JPS56169769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7523980A JPS56169769A (en) 1980-06-03 1980-06-03 Carbonitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7523980A JPS56169769A (en) 1980-06-03 1980-06-03 Carbonitriding method

Publications (2)

Publication Number Publication Date
JPS56169769A JPS56169769A (en) 1981-12-26
JPS6225745B2 true JPS6225745B2 (en) 1987-06-04

Family

ID=13570460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7523980A Granted JPS56169769A (en) 1980-06-03 1980-06-03 Carbonitriding method

Country Status (1)

Country Link
JP (1) JPS56169769A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (en) * 1982-04-02 1983-10-13 Oriental Eng Kk Gas soft nitriding method
DE3630487A1 (en) * 1986-09-08 1988-03-10 Kempten Elektroschmelz Gmbh PROCESS FOR THE SURFACE HARDENING OF WORKPIECES AND DEVICE FOR IMPLEMENTING THE PROCESS
DE3718240C1 (en) * 1987-05-30 1988-01-14 Ewald Schwing Process for the heat treatment of metallic workpieces in a gas-flowed fluidized bed
JPH01298146A (en) * 1988-05-26 1989-12-01 Toray Eng Co Ltd Treatment for metal surface
JP5305876B2 (en) * 2008-12-05 2013-10-02 株式会社エフ・シー・シー Manufacturing method of driven side rotating body, driven side rotating body, clutch device including the driven side rotating body, and manufacturing method of the clutch device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050210A (en) * 1973-08-09 1975-05-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050210A (en) * 1973-08-09 1975-05-06

Also Published As

Publication number Publication date
JPS56169769A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
CA1197981B (en) Fluidized bed
US4512821A (en) Method for metal treatment using a fluidized bed
US4547228A (en) Surface treatment of metals
JPH09506583A (en) Method for densifying porous substrate
CA1245920A (en) Apparatus and method for burning a combustible gas
GB2108156A (en) Heat treatment of metals
JPH0633949B2 (en) Fluidized bed equipment
JPS6225745B2 (en)
US4013279A (en) Treatment furnace
US20030205573A1 (en) Microwave firing furnace and microwave firing method
US4131565A (en) Process for reactivating spent activated-carbon
JPS622625B2 (en)
US1238011A (en) Sheet-heating furnace.
US3492378A (en) Method of operation of a continuous strip heating furnace
US1469178A (en) Apparatus for supplying heat
US4597807A (en) Accelerated carburizing method with discrete atmospheres
JPS6148579B2 (en)
Gao et al. Fluidized-bed heat treating equipment
JP2591970B2 (en) Control device for atmosphere in fluidized bed furnace
US1821375A (en) Process of treating glass
CN219378973U (en) Simple and easy quick dewaxing device
US4792301A (en) Method and furnace apparatus for continuously heating steel blanks
US4617742A (en) Heat treat apparatus
JPS56136919A (en) Method and apparatus for continuous heat treatment of metal
KR100735434B1 (en) Method and device for thermal treatment of steel wire