JPS62257032A - Variable interference apparatus - Google Patents

Variable interference apparatus

Info

Publication number
JPS62257032A
JPS62257032A JP10298986A JP10298986A JPS62257032A JP S62257032 A JPS62257032 A JP S62257032A JP 10298986 A JP10298986 A JP 10298986A JP 10298986 A JP10298986 A JP 10298986A JP S62257032 A JPS62257032 A JP S62257032A
Authority
JP
Japan
Prior art keywords
interference device
variable interference
electrodes
cavity
reflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10298986A
Other languages
Japanese (ja)
Other versions
JPH0446369B2 (en
Inventor
Masanori Watanabe
昌規 渡辺
Masayuki Katagiri
片桐 真行
Masaya Hijikigawa
枡川 正也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10298986A priority Critical patent/JPS62257032A/en
Priority to GB8628157A priority patent/GB2186708B/en
Priority to US06/934,843 priority patent/US4859060A/en
Priority to DE19863640340 priority patent/DE3640340C2/en
Priority to DE3645238A priority patent/DE3645238C2/en
Publication of JPS62257032A publication Critical patent/JPS62257032A/en
Priority to GB8911757A priority patent/GB2217839B/en
Publication of JPH0446369B2 publication Critical patent/JPH0446369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain a wide scanning wavelength, by simple constitution such that electrodes are arranged to the opposed surfaces of a cavity type Fabry- Perot interferometer and changing the distance between reflecting mirrors by the electrostatic attraction force between the counter electrodes. CONSTITUTION:Metal reflecting films 11, 21 are provided to light pervious substrates 10, 20 by vapor deposition and both substrates 10, 20 are bonded through a spacer 30. A cavity Fabry-Perot interferometer is made of the opposed reflecting films 11, 21. The metal reflecting films 11, 21 also act as electrodes and are connected to a power source 50. The electrodes are formed to both surfaces forming a cavity and the cavity interval changes by the electrostatic attraction force between the electrodes.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各種分光測定9色識別、さらには光伝送にお
ける波長選択等に用いられるファプリーペロー干渉を利
用した分光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a spectroscopic device that utilizes Fapley-Perot interference, which is used for various spectroscopic measurements, nine-color discrimination, wavelength selection in optical transmission, and the like.

〈従来の技術〉 従来、分光装置としては、回折格子を用いたものが多く
使われている。これは、回折格子を機械的に回転させる
ことにより必要な単色光を得るものであって、高い分解
能が得られる反面、各光学素子の位置設定に高い精度を
必要とし、また大型化する等の問題、壱を有している。
<Prior Art> Conventionally, many spectroscopic devices using a diffraction grating have been used. This method obtains the necessary monochromatic light by mechanically rotating a diffraction grating, and while it provides high resolution, it requires high precision in positioning each optical element, and it also requires large size. Problem, I have one.

一方、他の方式の分光装置として、圧電素子を用いたフ
ァプリーペロー干渉装置が知られている。これは、対向
する2つの反射鏡間隔を、圧電素子の伸縮によって制御
し、干渉特性の変化から必要な単色光を得るものである
。この方式を用いると機械的、常動部分をなくすことが
でき光軸が曲げられないため設定が単純となるが、圧電
素子の伸縮率が、最大で01%程度と極めて小さいため
、単神な構成のまま走査波長域を広げるのが難しいとい
う問題を有している。
On the other hand, as another type of spectroscopic device, a Fapley-Perot interference device using a piezoelectric element is known. In this method, the distance between two opposing reflecting mirrors is controlled by expanding and contracting a piezoelectric element, and the necessary monochromatic light is obtained from changes in interference characteristics. Using this method, the setup is simple because mechanical and constantly moving parts can be eliminated and the optical axis cannot be bent. The problem is that it is difficult to expand the scanning wavelength range with the same configuration.

〈発明が解決しようとする問題点〉 本発明によれば、回折格子を用いた分光器のもつ機械部
分を省くことができ、単細な構成で広い走査波長域を得
られるため、軽量・小型で携帯可能な分光装置を堤供す
ることができる。
<Problems to be Solved by the Invention> According to the present invention, the mechanical parts of a spectrometer using a diffraction grating can be omitted, and a wide scanning wavelength range can be obtained with a simple structure, making it lightweight and compact. portable spectroscopic equipment can be provided.

〈間電点を解決するだめの手段〉 本発明は、上記目的を達成するだめに空洞型ファプリー
ペロー干渉装置の対向する面に電極を配じ、対向する電
極間の静電引力によって反射鏡間の距離を変化させるこ
とにより、干渉装置の透過光もしくは反射光の波長を選
択す6ようにしたことを特徴とするものである。
<Means for Solving the Electrostatic Point> In order to achieve the above object, the present invention arranges electrodes on opposing surfaces of a hollow Fabry-Perot interference device, and uses electrostatic attraction between the opposing electrodes to generate a reflection mirror. This feature is characterized in that the wavelength of transmitted light or reflected light of the interference device can be selected by changing the distance between the interference devices.

〈実yq傍j〉 以下、本発明を実施例に基いて、詳細に説明する。第1
図(a)は本発明の第1の実施例を示す可変干渉装置で
あって、ガラス等の透光性基板10゜20にAり、At
、Au等の金属反射膜11.21を蒸着し、スペーサー
30を介して両基板10.20を接合したものである。
<Actual yq> The present invention will be described in detail below based on examples. 1st
Figure (a) shows a variable interference device showing a first embodiment of the present invention, in which A is mounted on a transparent substrate such as glass at 10° and 20°.
, a metal reflective film 11.21 made of Au or the like is deposited, and both substrates 10.20 are bonded via a spacer 30.

対向する反射膜11..21によって空洞型ファプリー
ベロー干渉装置が形成さ几ている。金属反射膜11.2
1は、電極としての(ハ)きを兼ねており、電源50に
接続されている。このように、空洞を形成する両面に電
極が形成され、電極間の静電引力にこって空洞間】が変
化する構造を具備する。尚、本実施例では、反射膜11
.21は電極を兼ねているが、これは下受独立なもので
ある。
Opposing reflective film 11. .. 21 forms a hollow Fapley-Bello interference device. Metal reflective film 11.2
1 also serves as an electrode (c) and is connected to a power source 50. In this way, electrodes are formed on both surfaces forming the cavity, and the structure has a structure in which the distance between the cavities changes due to the electrostatic attraction between the electrodes. Note that in this embodiment, the reflective film 11
.. Reference numeral 21 also serves as an electrode, but this is independent of the lower receiver.

本実施例における波長走査法について述べる。The wavelength scanning method in this example will be described.

第1図(d)においてガラス等の基板10ば、両端をス
ペーサー30で支持さh、中央部は支持されていないた
め、中央部に力を加えることにより曲げることができる
。この曲げによって、対向する反射鏡間隔dは変化する
。doを一切の力を加えない時の間隔とすると、d =
 do−aFとおくことができる。ただしαはdの単位
力に対する変化量であって、本実施例においては、a 
= 1.6 /1m/に? fである。
In FIG. 1(d), a substrate 10 made of glass or the like is supported at both ends by spacers 30, but the center portion is not supported, so that it can be bent by applying force to the center portion. This bending changes the distance d between the opposing mirrors. If do is the interval when no force is applied, then d =
It can be set as do-aF. However, α is the amount of change in d with respect to unit force, and in this example, a
= 1.6 /1m/? It is f.

上記力として、静電引力を用いる場合について計算する
。ここで電極11.21が第1図(b)の様に両スペー
サーの中間の部分にだけ存在すると仮定する。このよう
な条件設定により、この領域においてdは一定とみなす
ことができ、計算が容易になる。
Calculations will be made for the case where electrostatic attraction is used as the above force. Here, it is assumed that the electrode 11.21 exists only in the middle part between both spacers as shown in FIG. 1(b). By setting such conditions, d can be regarded as constant in this region, which facilitates calculation.

引力Fは、電極面積をS、印加電圧をVとしてただし 
Q=CV  (電荷@) E=V/d  (電界強度) と与えられる。本実施例においては空洞内は空気で満た
されているのでε(誘電率)としてε。(真空の誘電率
)を用いることができ、 と寂ける。ここでd = d 、 −aF  なる関係
がありdばFに依存するだめFとdの関係は複雑になる
1゜S:4 mA 、α= 1.6 pm/ k f 
fとした時の数値計算結果を第2図に示す。ここで空洞
間隔が0.24751tmから0.188μmまで変化
するものとした。このとき後に示す通り、660〜44
0 nmの波長走査を行うことができる。
The attractive force F is expressed as follows, where S is the electrode area and V is the applied voltage.
It is given as follows: Q=CV (charge @) E=V/d (electric field strength). In this example, the cavity is filled with air, so ε (permittivity) is ε. (vacuum dielectric constant) can be used, which makes it sad. Here, there is a relationship such as d = d, -aF, and d depends on F, so the relationship between F and d becomes complicated. 1°S: 4 mA, α = 1.6 pm/k f
Fig. 2 shows the numerical calculation results when f is taken as f. Here, the cavity spacing was assumed to vary from 0.24751 tm to 0.188 μm. At this time, as shown later, 660 to 44
A wavelength scan of 0 nm can be performed.

第2図において27.9 Vで不連続な変化が見られる
。これは、これにより電圧が高いとdが縮み、それによ
ってさらにFが大きくなりさらにdが縮む、という暴走
を引起こすためである。従って、動作電圧は27.9V
を超えてはならないっこの時d id d oから2d
 o/3まで変化する。
In FIG. 2, a discontinuous change is seen at 27.9 V. This is because when the voltage is high, d shrinks, which causes a runaway in which F further increases and d further shrinks. Therefore, the operating voltage is 27.9V
This time d id do should not exceed 2d
It changes up to o/3.

ここで、ファプリーベロー干渉@社としての′動きにつ
いて述べる。簡単のため、入射光は反射膜に対して垂直
であるものと考える。干渉装置が選択的に透過する波長
ノ、□は次式を満足するここで、mは共鳴次数(整P1
.)、0は反射膜での反射の際に生ずる位相のとび、n
は対向する反射鏡間での屈折率、dは対向する反射鏡間
の間隔である。
Here, we will discuss the movements of Fapley Bellow Interference @ Inc. For simplicity, it is assumed that the incident light is perpendicular to the reflective film. The wavelength that the interference device selectively transmits, □, satisfies the following equation, where m is the resonance order (integer P1
.. ), 0 is the phase jump that occurs during reflection on the reflective film, n
is the refractive index between the opposing reflecting mirrors, and d is the distance between the opposing reflecting mirrors.

本実施例においては、選択放長λが440〜660nm
となる様に設計した。反射膜としてはAり500xをガ
ラス基板に蒸着したものを用いたが、その場合の0は訃
よそ135°(3π/4)となる。、この0は厳密に言
えば波長依存性を有するが、その量は小さいので、第2
図の計算時において0は波長によらず一定としだ。
In this example, the selective emission length λ is 440 to 660 nm.
It was designed to be. The reflective film used was Al 500x vapor-deposited on a glass substrate, and in that case 0 was 135° (3π/4). , strictly speaking, this 0 has wavelength dependence, but since the amount is small, the second
In the calculations shown in the figure, 0 is assumed to be constant regardless of the wavelength.

また反射鏡開空洞の屈折率nは、空洞内が空気の場合約
1である。
Further, the refractive index n of the reflecting mirror open cavity is approximately 1 when the interior of the cavity is air.

本実施例においては、440〜660 nm内に1本含
まれる選択透過波長として、共鳴次数mが0の場合の選
択透過波長大。を用いた。この時、ノ、。=660nm
で、λ1=283nmとなり副透過波長λ1は440〜
660 nmの間に含まれない。
In this example, the selective transmission wavelength large when the resonance order m is 0 is defined as one selective transmission wavelength included within 440 to 660 nm. was used. At this time, no. =660nm
So, λ1 = 283 nm, and the sub-transmission wavelength λ1 is 440~
660 nm.

440 nmより短波長側の副透過波長λ1.^2・・
・の影響を除くためにはこの領域の光を除去するかこの
領域に感度をもたない受光素子を用いるなどする必要が
ある。
Sub-transmission wavelength λ1 on the shorter wavelength side than 440 nm. ^2...
In order to eliminate the influence of ・, it is necessary to remove the light in this region or use a light-receiving element that is not sensitive to this region.

ここで反射膜として好ましい材料について述べるっ波長
分解能は反射膜の反射率によって決定される。
Here, we will discuss preferred materials for the reflective film.Wavelength resolution is determined by the reflectance of the reflective film.

例えば反射率90%、波長550 nmにおける分解能
はおよそ20 nmとなり、反射率を上げることにより
さらに分解能を上げることができる。反射率は、誘電体
多層膜を用いることにより、狭い波長域でなら99%以
上にできる。しかし反射率が広い波長領域で一定という
点では、誘電体多層反射膜より金属反射膜の方が有利で
ある。
For example, the resolution at a reflectance of 90% and a wavelength of 550 nm is approximately 20 nm, and the resolution can be further increased by increasing the reflectance. By using a dielectric multilayer film, the reflectance can be increased to 99% or more in a narrow wavelength range. However, a metal reflective film is more advantageous than a dielectric multilayer reflective film in that the reflectance is constant over a wide wavelength range.

金属反射膜には一般に光の損失がある。この損失は、光
の透過がほぼ0になる厚さの金属反射膜における反射率
が高いほど小さい。可視領域(400〜700nm  
)で反射率の高い金属はA2(反射率98%)、At(
反射率92%)等である。また光フアイバ伝送に適した
近赤外領域(700〜1600nm)あるいは赤外領域
(〜10μm)ではAl(反射率995%)、An(反
射率98%)等がよい。これらの金属は導電性も良好で
あるので、静電引力を印加するための電極を兼ねること
ができる。
Metallic reflective films generally suffer from light loss. This loss becomes smaller as the reflectance of the metal reflective film is so thick that the transmission of light becomes almost zero. Visible region (400-700nm
), metals with high reflectance are A2 (reflectance 98%), At(
reflectance of 92%). In the near-infrared region (700 to 1600 nm) or infrared region (up to 10 μm) suitable for optical fiber transmission, Al (reflectance 995%), An (reflectance 98%), etc. are preferable. Since these metals also have good conductivity, they can also serve as electrodes for applying electrostatic attraction.

もしも、波長可変範囲が540〜560nmの様に小さ
くてよければ、TiO2,5i02  、ZnS 。
If the wavelength tunable range is as small as 540-560 nm, use TiO2, 5i02, ZnS.

MS’F2等を積層した誘電体多層膜を用いることがで
きる。この反射膜は、最大反射率99%以上と大きくす
ることができるので、波長分解能の高い分光装置が得ら
れる。誘電体反射膜は導電性を持たないので、新だに電
極を配設する必要がある。
A dielectric multilayer film in which MS'F2 and the like are laminated can be used. Since this reflective film can have a maximum reflectance of 99% or more, a spectroscopic device with high wavelength resolution can be obtained. Since the dielectric reflective film has no conductivity, it is necessary to provide a new electrode.

ここで透明基板に適した材料について述べる。Here, we will discuss materials suitable for transparent substrates.

入手の容易さ9反射膜の蒸着のし易さから、まずガラス
が基板材料として挙げられる。ここで特に熱膨張率が小
さく耐熱性に優れた石英あるいは石英、ガラスとすれば
、高温使用あるいは高温作成プロセスに耐えられるもの
となる。一方、光学プラスチックは、耐熱性、耐湿性等
に問題を残しているが、安価であること、柔かくて加工
が容易であることなどの特徴を生かした用途での使用が
考、1られる。
Ease of Availability 9 Glass is first mentioned as a substrate material because of the ease of vapor deposition of the reflective film. Here, if quartz, quartz, or glass is used, which has a small coefficient of thermal expansion and excellent heat resistance, it will be able to withstand high-temperature use or high-temperature production processes. On the other hand, optical plastics still have problems with their heat resistance, moisture resistance, etc., but they can be considered for use in applications that take advantage of their characteristics such as being inexpensive, soft, and easy to process.

ここで、対向する反射鏡間の空洞内は、真空。Here, the inside of the cavity between the opposing reflecting mirrors is a vacuum.

気体、液体等で満たしてもよいが、固体では満たされな
いものとする。
It may be filled with gas, liquid, etc., but must not be filled with solid.

さて、本実施例に示しだ形状についてさまざまな応用変
形が可能である。第3図ら)は第1図l1b)に示しだ
本実施例の斜視図である。形状が単紬であり設計が容易
であるという特徴を有する。第3図(b)は、スペーサ
ー30をドーナツ状にしたものである。第3図cc)は
、第3図(a)におけるスペーサー30を片方のみにし
たものである。この片持梁構造は、電圧印加時の反射鏡
間Rdの変化が太きいため、低電圧6堅動に適している
。なお第3図(a) (b)(c)においてはQRおよ
びそこからのリード・腺は省略されている。
Now, various applied modifications are possible to the shape shown in this embodiment. Figures 3 and 3) are perspective views of the embodiment shown in Figure 1 l1b). It is characterized by its simple pongee shape and easy design. FIG. 3(b) shows a spacer 30 shaped like a doughnut. In FIG. 3 cc), the spacer 30 in FIG. 3(a) is used only on one side. This cantilever structure is suitable for low voltage 6-steady movement because the change in Rd between the reflecting mirrors when voltage is applied is large. Note that in FIGS. 3(a), 3(b), and 3(c), the QR and the leads/glands from there are omitted.

本発明の第2の実施例を第4図に示す。これは可変干渉
装置とSi  フォトダイオードを一体化したものであ
る。Si  フォトダイオード100ば、N型基板10
2に5i02層104をマスクとしてP型拡散層101
を形成し、裏面電極103等を設け、カソード電極10
5とアノード電極106を引出したものとした。その上
に反射膜と静電駆動電極を兼ねたA!P膜11を蒸着し
、スペーサー30を介して、A2薄膜21の蒸着された
ガラス基板20を接合した。この様に受光素子と可変干
渉装置を一体化することにより、あたかも1つの波長選
択性受光素子の様に手軽に扱うことができる。受光素子
としては、Sl フォトトランジスタ、a −S i太
陽電池、GaAsなどの化合物半導体フォトダイオード
等を用いる事もできる。
A second embodiment of the invention is shown in FIG. This integrates a variable interference device and a Si photodiode. Si photodiode 100, N type substrate 10
2, using the 5i02 layer 104 as a mask, the P-type diffusion layer 101
is formed, a back electrode 103 etc. are provided, and a cathode electrode 10 is formed.
5 and the anode electrode 106 are drawn out. On top of that, A! which also serves as a reflective film and an electrostatic drive electrode! A P film 11 was deposited, and a glass substrate 20 on which an A2 thin film 21 was deposited was bonded via a spacer 30 . By integrating the light-receiving element and the variable interference device in this manner, they can be easily handled as if they were one wavelength-selective light-receiving element. As the light receiving element, an Sl phototransistor, an a-Si solar cell, a compound semiconductor photodiode such as GaAs, etc. can also be used.

〈発明の効果〉 以上の様に、本発明によれば、機械的駆動部分がなく、
比較的波長走査帯の広い可変干渉装置を得ることができ
る。このことから、小型、軽量化。
<Effects of the Invention> As described above, according to the present invention, there is no mechanically driven part,
A variable interference device with a relatively wide wavelength scanning band can be obtained. This makes it smaller and lighter.

低価格を実現することができ、従来の分光装置の様な分
光測定に用いられるのみならず、携帯型の色識別装置、
光ファイバーあるいは光空間伝搬を用いた光伝送システ
ムにおける波長選択素子等への応用をも可能とするもの
である。
It can be realized at a low price, and can be used not only for spectroscopic measurements like conventional spectrometers, but also as a portable color identification device,
It also enables application to wavelength selection elements in optical transmission systems using optical fibers or optical spatial propagation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す可変干渉装置の断
面図である。 第2図は第1図に示寸可変干渉装置の特性計算結果を示
す特性図である。 第3図は第1図の″I!施例及びその変形構造の可変干
渉装置の斜視図でちる。 第4図は本発明の第2の実施例になるSi  フォトダ
イオードと一体化した可変干渉装置の断面図である。 10.20・・・透光性基板 11.21・・・金属反射膜(兼電極)30   ・・
・スペーサー 50   ・・・電源 100  ・・・Si  フすトダイオード代理人 弁
理士 杉 山 毅 至(他1名)(a) 第1 図 $4 図
FIG. 1 is a sectional view of a variable interference device showing a first embodiment of the present invention. FIG. 2 is a characteristic diagram showing the characteristic calculation results of the variable size interference device shown in FIG. FIG. 3 is a perspective view of the "I!" embodiment shown in FIG. 1 and a variable interference device having a modified structure. FIG. It is a sectional view of the device. 10.20...Transparent substrate 11.21...Metal reflective film (also electrode) 30...
・Spacer 50 ... Power supply 100 ... Si Foot diode agent Patent attorney Takeshi Sugiyama (and 1 other person) (a) Figure 1 $4 Figure

Claims (1)

【特許請求の範囲】 1、2つの対向する反射体と、該反射体を支持する支持
体と、前記2つの反射体に囲まれた空洞と、前記反射体
にそれぞれ接して設けられた電極と、該電極に電圧を印
加するための電源とを有し、印加電圧に応じて前記各反
射体間に生ずる静電引力により変形する前記反射体に対
応して変動する前記空洞の容積によって干渉特性が決定
されることを特徴とする可変干渉装置。 2、前記反射体は基板に金属薄膜を形成したものである
特許請求の範囲第1項記載の可変干渉装置。 3、前記金属薄膜は前記電極を兼ねている特許請求の範
囲第2項記載の可変干渉装置。 4、前記金属薄膜は、銀、金またはアルミニウムである
特許請求の範囲第2項、または第3項記載の可変干渉装
置。 5、前記反射体は基板に誘電体反射膜を形成したもので
ある特許請求の範囲第1項記載の可変干渉装置。 6、前記基板の少なくとも一方はガラス、石英またはプ
ラスチックである特許請求の範囲第1項記載の可変干渉
装置。 7、前記基板の一方が透光性基板、他方が受光素子であ
る特許請求の範囲第1項記載の可変干渉装置。
[Claims] 1. Two opposing reflectors, a support that supports the reflectors, a cavity surrounded by the two reflectors, and electrodes provided in contact with the reflectors, respectively. , a power supply for applying a voltage to the electrode, and interference characteristics are determined by the volume of the cavity that changes in response to the reflector, which is deformed by the electrostatic attraction generated between the reflectors in response to the applied voltage. A variable interference device characterized in that: is determined. 2. The variable interference device according to claim 1, wherein the reflector is a thin metal film formed on a substrate. 3. The variable interference device according to claim 2, wherein the metal thin film also serves as the electrode. 4. The variable interference device according to claim 2 or 3, wherein the metal thin film is silver, gold, or aluminum. 5. The variable interference device according to claim 1, wherein the reflector is a substrate with a dielectric reflective film formed thereon. 6. The variable interference device according to claim 1, wherein at least one of the substrates is made of glass, quartz, or plastic. 7. The variable interference device according to claim 1, wherein one of the substrates is a transparent substrate and the other is a light receiving element.
JP10298986A 1985-11-26 1986-04-30 Variable interference apparatus Granted JPS62257032A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10298986A JPS62257032A (en) 1986-04-30 1986-04-30 Variable interference apparatus
GB8628157A GB2186708B (en) 1985-11-26 1986-11-25 A variable interferometric device and a process for the production of the same
US06/934,843 US4859060A (en) 1985-11-26 1986-11-25 Variable interferometric device and a process for the production of the same
DE19863640340 DE3640340C2 (en) 1985-11-26 1986-11-26 Variable interferometer arrangement
DE3645238A DE3645238C2 (en) 1985-11-26 1986-11-26 Variable Fabrv Perot type interferometer
GB8911757A GB2217839B (en) 1985-11-26 1989-05-22 An optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298986A JPS62257032A (en) 1986-04-30 1986-04-30 Variable interference apparatus

Publications (2)

Publication Number Publication Date
JPS62257032A true JPS62257032A (en) 1987-11-09
JPH0446369B2 JPH0446369B2 (en) 1992-07-29

Family

ID=14342111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298986A Granted JPS62257032A (en) 1985-11-26 1986-04-30 Variable interference apparatus

Country Status (1)

Country Link
JP (1) JPS62257032A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973120A (en) * 1989-05-01 1990-11-27 At&T Bell Laboratories Optical isolator with resonant cavity having gyrotropic material
JPH11167076A (en) * 1997-09-19 1999-06-22 Commiss Energ Atom Integrated type tunable fabri-perot interferometer
JP2010266876A (en) * 2010-06-18 2010-11-25 Seiko Epson Corp Optical device, method of producing optical device, wavelength variable filter, wavelength variable filter module, and optical spectrum analyzer
JP2013218194A (en) * 2012-04-11 2013-10-24 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, electronic apparatus, and driving method of wavelength variable interference filter
JP2013242359A (en) * 2012-05-18 2013-12-05 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, and electronic equipment
JP2014074754A (en) * 2012-10-03 2014-04-24 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, and electronic equipment
US9372293B2 (en) 2012-08-30 2016-06-21 Seiko Espon Corporation Variable wavelength interference filter, optical module, electronic apparatus, and method of manufacturing variable wavelength interference filter
WO2016147908A1 (en) * 2015-03-13 2016-09-22 国立大学法人豊橋技術科学大学 Physical/chemical sensor, physical/chemical sensor array and physical/chemical sensing device
US9658446B2 (en) 2013-03-18 2017-05-23 Seiko Epson Corporation Sealing structure, interference filter, optical module, and electronic apparatus
CN107250741A (en) * 2014-12-29 2017-10-13 芬兰国家技术研究中心股份公司 Runner plate and optical interferometer for optical interferometer
CN110809711A (en) * 2017-07-03 2020-02-18 芬兰国家技术研究中心股份公司 Microelectromechanical (MEMS) Fabry-Perot interferometer, apparatus and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241434A (en) * 1987-03-30 1988-10-06 Sharp Corp Variable interference device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973120A (en) * 1989-05-01 1990-11-27 At&T Bell Laboratories Optical isolator with resonant cavity having gyrotropic material
JPH11167076A (en) * 1997-09-19 1999-06-22 Commiss Energ Atom Integrated type tunable fabri-perot interferometer
JP4578587B2 (en) * 1997-09-19 2010-11-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Integrated tunable Fabry-Perot interferometer
JP2010266876A (en) * 2010-06-18 2010-11-25 Seiko Epson Corp Optical device, method of producing optical device, wavelength variable filter, wavelength variable filter module, and optical spectrum analyzer
JP2013218194A (en) * 2012-04-11 2013-10-24 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, electronic apparatus, and driving method of wavelength variable interference filter
US9389412B2 (en) 2012-05-18 2016-07-12 Seiko Epson Corporation Variable-wavelength interference filter, optical filter device, optical module and electronic apparatus
JP2013242359A (en) * 2012-05-18 2013-12-05 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, and electronic equipment
US9372293B2 (en) 2012-08-30 2016-06-21 Seiko Espon Corporation Variable wavelength interference filter, optical module, electronic apparatus, and method of manufacturing variable wavelength interference filter
JP2014074754A (en) * 2012-10-03 2014-04-24 Seiko Epson Corp Wavelength variable interference filter, optical filter device, optical module, and electronic equipment
US9658446B2 (en) 2013-03-18 2017-05-23 Seiko Epson Corporation Sealing structure, interference filter, optical module, and electronic apparatus
CN107250741A (en) * 2014-12-29 2017-10-13 芬兰国家技术研究中心股份公司 Runner plate and optical interferometer for optical interferometer
CN107250741B (en) * 2014-12-29 2018-06-05 芬兰国家技术研究中心股份公司 For the runner plate and optical interferometer of optical interferometer
US10088362B2 (en) 2014-12-29 2018-10-02 Teknologian Tutkimuskeskus Vtt Oy Mirror plate for an optical interferometer and an optical interferometer
WO2016147908A1 (en) * 2015-03-13 2016-09-22 国立大学法人豊橋技術科学大学 Physical/chemical sensor, physical/chemical sensor array and physical/chemical sensing device
CN110809711A (en) * 2017-07-03 2020-02-18 芬兰国家技术研究中心股份公司 Microelectromechanical (MEMS) Fabry-Perot interferometer, apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0446369B2 (en) 1992-07-29

Similar Documents

Publication Publication Date Title
EP0668490B1 (en) Electrically tunable fabry-perot interferometer produced by surface micromechanical techniques for use in optical material analysis
US6466354B1 (en) Method and apparatus for interferometric modulation of light
US10288870B2 (en) Wavelength tunable MEMS-Fabry Perot filter
US5629521A (en) Interferometer-based bolometer
US6556338B2 (en) MEMS based variable optical attenuator (MBVOA)
Aratani et al. Surface micromachined tuneable interferometer array
US4859060A (en) Variable interferometric device and a process for the production of the same
EP0235801B1 (en) Fiber fabry-perot etalon
JPS62257032A (en) Variable interference apparatus
JPH0194312A (en) Variable interference device
JP3450180B2 (en) Tunable laser
US6958818B1 (en) Fabry-Perot interferometer including membrane supported reflector
Antoszewski et al. Toward MEMS-based infrared tunable microspectrometers
WO2014019398A1 (en) Single-mode continuously tunable optical filter
US20150010026A1 (en) Mems based swept laser source
JPH01101421A (en) Variable interference device
TWI238272B (en) High free-space range MOEMS tunable filter
Gupta et al. Microelectromechanical systems–based visible-near infrared Fabry-Perot tunable filters using quartz substrate
Mendez et al. Micromachined Fabry-Perot interferometer with corrugated silicon diaphragm for fiber optic sensing applications
US6727562B2 (en) Basic common optical cell configuration of dual cavities for optical tunable devices
JP4700698B2 (en) Wavelength-tunable selective optoelectronic filter
TW490554B (en) Miniaturized infrared gas analyzing apparatus
Park et al. Wavelength tunable thermo-optic filter using buckling effect of etalon composed poly-Si/SiO2 multi-layers
FI95838B (en) Electrically adjustable surface-micromechanical Fabry- Perot interferometer for use with an optical pick-up, for example a Fabry-Perot interferometer
Srivastava et al. Microfabricated interferometer and integrated fluidic channel for infrared spectroscopy of aqueous samples

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees