JPS62256804A - Silicon-containing alpha-methylstyrene polymer, composition containing same and its use - Google Patents

Silicon-containing alpha-methylstyrene polymer, composition containing same and its use

Info

Publication number
JPS62256804A
JPS62256804A JP10136786A JP10136786A JPS62256804A JP S62256804 A JPS62256804 A JP S62256804A JP 10136786 A JP10136786 A JP 10136786A JP 10136786 A JP10136786 A JP 10136786A JP S62256804 A JPS62256804 A JP S62256804A
Authority
JP
Japan
Prior art keywords
resist
formula
pattern
layer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10136786A
Other languages
Japanese (ja)
Other versions
JPH0535864B2 (en
Inventor
Kazuhide Saigo
斎郷 和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10136786A priority Critical patent/JPS62256804A/en
Publication of JPS62256804A publication Critical patent/JPS62256804A/en
Publication of JPH0535864B2 publication Critical patent/JPH0535864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains

Abstract

PURPOSE:To obtain a composition which forms a fine pattern highly sensitivity and excels in dry-etching resistance, by mixing a specified Si-containing alpha- methylstyrene polymer with a bisazide. CONSTITUTION:A composition is obtained by mixing an Si-containing alpha- methylstyrene polymer of an MW of 10,000-200,000, obtained by anion- polymerizing a monomer of formula I and comprising structural units of formula II (wherein X is a positive integer) with 0.1-30wt% bisazide (e.g., 4, 4'- diazidochalcone). A thin resist layer comprising said composition is formed on an organic film formed on a substrate and made into a resist pattern by lithography. This resist pattern is used as a dry etching mask for the organic layer as the base layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はケイ素原子を含むα−メチルスチレン系重合体
及びレジスト組成物および使用方法に関し、特に半導体
集積回路、磁気バブルメモリ等の微細パターン形成法に
適したケイ素原子含むスチレン系重合体及びレジスト組
成物及びパターン形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an α-methylstyrene polymer containing silicon atoms, a resist composition, and a method for using it, particularly for forming fine patterns in semiconductor integrated circuits, magnetic bubble memories, etc. The present invention relates to a styrenic polymer containing silicon atoms, a resist composition, and a pattern forming method suitable for the method.

(従来の技術) 集積回路、バブルメモリ素子などの製造において光学的
リソグラフィまたは電子ビームリソグラフィーを用いて
微細なパターンを形成する際、光学的リソグラフィにお
いては基板からの反射波の影響、電子ビームリソグラフ
ィにおいては電子散乱の影響によりレジストが厚い場合
は解像度が低下することが知られている。現像により得
られたレジストパターンを精度よく基板に転写するため
に、ドライエツチングが用いられるが、高解像度のレジ
ストパターンを得るために、薄いレジスト層を使用する
と、ドライエツチングによりレジストもエツチングされ
基板を加工するための十分な耐性を示さないという不都
合さがある。又、段差部においては、この段差を平坦化
するために、レジスト層を厚く塗る必要が生じ、かかる
レジスト層に微細なパターンを形成することは著しく困
難であるといえる。
(Prior art) When forming fine patterns using optical lithography or electron beam lithography in the manufacture of integrated circuits, bubble memory devices, etc., in optical lithography, the influence of reflected waves from the substrate, and in electron beam lithography, It is known that the resolution decreases when the resist is thick due to the effects of electron scattering. Dry etching is used to accurately transfer the resist pattern obtained by development onto the substrate. However, if a thin resist layer is used to obtain a high-resolution resist pattern, the resist will also be etched by dry etching and the substrate will be etched. It has the disadvantage that it does not exhibit sufficient resistance for processing. Furthermore, in order to flatten the step portion, it is necessary to apply a thick resist layer, and it can be said that it is extremely difficult to form a fine pattern on such a resist layer.

かかる不都合さを解決するために三層構造レジストがジ
エイ・エム・モラン(J、M、Moran)らによって
ジャーナル・オブ・バキューム・サイエンス・アンド・
テクノロジー)(J、Vacuum 5cience 
and Technology)第16巻1620ペー
ジ(1979年)に提案されている。三層構造において
は、第一層(最下層)に厚い有機層を塗布したのち中間
層としてシリコン酸化膜、シリコン窒化膜、シリコン膜
などのように02を使用するドライエツチングにおいて
蝕刻され難い無機物質材料を形成する。しかる後、中間
層の上にレジストをスピン塗布し、電子ビームや光によ
りレジストを露光、現像する。得られたレジストパター
ンをマスクに中間層をドライエツチングし、しかる後こ
の中間層をマスクに第一層の厚い有機層を02を用いた
反応性スパッタエツチング法によりエッチングする。こ
の方法により薄い高解像度のレジストパターンを厚い有
機層のパターンに変換することが出来る。しかしながら
、このようり方1去においては第一層を形成した後、中
間層を蒸着法、スパッタ法あるいはプラズマCVD法に
より形成し、さらにパターンニング用レジストを塗布す
るため工程が複雑で、かつ長くなるという欠点がある。
In order to solve these inconveniences, a three-layer resist was developed by J.M. Moran et al. in the Journal of Vacuum Science and
Technology) (J, Vacuum 5science
and Technology), Vol. 16, p. 1620 (1979). In a three-layer structure, after coating a thick organic layer as the first layer (bottom layer), an inorganic material that is difficult to be etched by dry etching using 02, such as a silicon oxide film, silicon nitride film, or silicon film, is used as an intermediate layer. Form the material. Thereafter, a resist is spin-coated onto the intermediate layer, and the resist is exposed and developed using an electron beam or light. Using the obtained resist pattern as a mask, the intermediate layer is dry etched, and then, using this intermediate layer as a mask, the first thick organic layer is etched by a reactive sputter etching method using 02. This method allows converting thin high-resolution resist patterns into thick organic layer patterns. However, in method 1, after forming the first layer, the intermediate layer is formed by vapor deposition, sputtering, or plasma CVD, and then a patterning resist is applied, making the process complicated and long. It has the disadvantage of becoming.

パターニング用レジストがドライエツチングに対して強
ければ、パターニング用レジストがマスクに厚い有機層
をエツチングすることができるので、二層構造とするこ
とができ工程を簡略化することができる。
If the patterning resist is resistant to dry etching, a thick organic layer can be etched onto the mask using the patterning resist, so that a two-layer structure can be obtained and the process can be simplified.

(発明が解決しようとする問題点) ポリジメチルシロキサンは02RIEに対して耐性が著
しく優れ、エツチングレートはほぼ零であることは公知
である(ジー・エヌ・テーラ−、ティー・エム・ウォル
ファンドジエー・エム・七ラン、ジャーナルオブバキュ
ームサイエンスアンドテクノロジー。
(Problems to be Solved by the Invention) It is known that polydimethylsiloxane has excellent resistance to 02RIE and has an etching rate of almost zero (G.N. Taylor, T.M. - M. Nanaran, Journal of Vacuum Science and Technology.

19(4)、 872.1981XG、N、Toylo
r、 T、M、Wolf and J、M。
19(4), 872.1981XG,N,Toylo
r, T, M, Wolf and J, M.

Moran、 J、Vacuum Sci、and T
ech、、 19(4)、 872.1981)が、こ
のポリマーは常温で液状であるので、はこりが付着しや
すい。流動性があるため高解像度が得にくいなどの欠点
がありレジスト材料としては適さない。
Moran, J., Vacuum Sci, and T.
ech, 19(4), 872.1981), but since this polymer is liquid at room temperature, lumps easily adhere to it. Due to its fluidity, it has drawbacks such as difficulty in obtaining high resolution, making it unsuitable as a resist material.

われわれはすでに上記パターンニング用レジストとして
トリアルキルシリルスチレンの単独重合体および共重合
体を提案した(特願昭57−123866号(特開昭5
9−15419号)、特願昭57−123865号(特
開昭59−15243号))。しかしこれらの重合体は
Deep UVもしくはEB露光に対して感度は優れて
おり、DeepUVもしくはEB露充用レジストとして
は適しているが、近紫外および可視光の露光に対しては
架橋せず、フォト用レジストとして使用出来なかった。
We have already proposed homopolymers and copolymers of trialkylsilylstyrene as resists for patterning (Japanese Patent Application No. 123866/1983).
No. 9-15419), Japanese Patent Application No. 57-123865 (Japanese Unexamined Patent Publication No. 59-15243)). However, although these polymers have excellent sensitivity to deep UV or EB exposure and are suitable as resists for deep UV or EB exposure, they do not crosslink to near-ultraviolet and visible light exposure, making them suitable for photo applications It could not be used as a resist.

又、われわれはすでに上記パターニング用学露光用レジ
ストを提供した(特願昭60−001636号、特願昭
60−001637号)。しかしこれらの重合体は、シ
リコン原子濃度が重合体に対して約10〜13%(wm
)なので下層が厚い場合、たとえば1.5μm以上では
上記パターニング用の上層としてドライエツチング耐性
は不十分である。一般にLSI製造工程において、基板
表面は0.8〜111m程度の段差をもつ。この上に有
機層を形成して平坦化するためには、1゜5μm以上の
厚さが必要である。
Furthermore, we have already provided the above-mentioned patterning resist for chemical exposure (Japanese Patent Application No. 60-001636 and Japanese Patent Application No. 60-001637). However, these polymers have a silicon atom concentration of about 10-13% (wm
) Therefore, if the lower layer is thick, for example, 1.5 .mu.m or more, it will not have sufficient dry etching resistance as the upper layer for patterning. Generally, in the LSI manufacturing process, the substrate surface has a step difference of about 0.8 to 111 m. In order to form an organic layer on this and planarize it, a thickness of 1.5 μm or more is required.

本発明の目的は、電子線、X線、深紫外線、イオンビー
ムあるいはこれらに加えて近紫外線に対しても非常に高
感度で微細なパターンが形成でき、しかもドライエツチ
ングに対してより強い耐性をもつ重合体およびそれを含
む組成物およびその使用方法を提供することにある。
The object of the present invention is to be able to form fine patterns with extremely high sensitivity to electron beams, X-rays, deep ultraviolet rays, ion beams, or near ultraviolet rays in addition to these, and to have greater resistance to dry etching. An object of the present invention is to provide a polymer having the same properties, a composition containing the same, and a method for using the same.

(問題点を解決するための手段) 本発明者らは、このような状況に鑑みて研究を続けた結
果、重合体の単量体ユニット中にシリコン原子を2個有
しおよびアリル基を有すると、02による反応性スパッ
タエツチングに対して極めて強く、厚い有機膜をエツチ
ングする際のマスクになること、また電子線、X線、深
紫外線、イオンビームに対して、非常に高感度であるこ
と、さらにビスアジド化合物を添加すると、近紫外線に
対しても非常に高感度であることを見出し、本発明をな
すに至った。
(Means for solving the problem) As a result of continuing research in view of the above situation, the present inventors discovered that the monomer unit of the polymer has two silicon atoms and an allyl group. As a result, it is extremely resistant to reactive sputter etching by 02, can be used as a mask when etching thick organic films, and is extremely sensitive to electron beams, X-rays, deep ultraviolet rays, and ion beams. It was discovered that when a bisazide compound was further added, the sensitivity to near ultraviolet light was extremely high, and the present invention was completed.

本発明において使用した単量体は次の様な方法で製造g
i、s・            、゛・、(以下余部
) 示した式の様に、ヘキサメチルジシランと2倍モル量の
無水塩化アルミニウムに、同じく2倍モル量の塩化アセ
チルを室温で滴下させ、反応終了後、蒸留によって1,
2−ジクロロテトラメチルジシランを合成した。さらに
、シリクロライドをメトキシ化した後、等モル量のアリ
ルプロヌイドのグリニヤール試薬と反応させ1−メトキ
ン−2−アリルテトラメチルジシランを製造した。4−
クロロ−α−メチルスチレンのグリニヤール試薬と反応
させ上記に示した単量体を製造した。
The monomer used in the present invention is manufactured by the following method.
i,s. , by distillation 1,
2-Dichlorotetramethyldisilane was synthesized. Furthermore, after methoxylating the silichloride, 1-methquine-2-allyltetramethyldisilane was produced by reacting an equimolar amount of allylpronuide with a Grignard reagent. 4-
The monomer shown above was prepared by reacting chloro-α-methylstyrene with Grignard reagent.

(以下余白) 〜゛°′□ 本発明で使用した重合体は下記の式に基づいて製造した
(The following is a blank space) ~゛°'□ The polymer used in the present invention was produced based on the following formula.

°(式中、Xは正の整数を表わす) 上式で示した様に、本発明で製造した単量体はBuLi
で、すなわちアニオン重合法により、多分散度の小さい
、そしてかつ低分子量がら高分子量の任意の分子量の重
合体を製造することが出来る。
° (In the formula, X represents a positive integer) As shown in the above formula, the monomer produced in the present invention is BuLi
That is, by the anionic polymerization method, it is possible to produce a polymer having a low polydispersity and having any molecular weight ranging from low to high molecular weight.

この重合体は一般の有機溶剤、例えばベンゼン、トルエ
ン、キシレン、クロロベンゼン、アセトン、クロロホル
ム等に可溶で、メタノール、エタノールなどには不溶で
ある。
This polymer is soluble in common organic solvents such as benzene, toluene, xylene, chlorobenzene, acetone, chloroform, etc., and insoluble in methanol, ethanol, etc.

本発明におけるレジスト材料は、そのままで電子線、X
線、深紫外線、イオンビームに対して極めて高感度であ
るが、光架橋剤として知られているビスアジドを添加す
ると近紫外線に対しても高感度なレジストとなる。本発
明で用いられるビスアジドとしては、4,4′−ジアジ
ドカルコン、2,6−ジー(4”−アジドベンザル)シ
クロヘキサノン、2,6−ジー(4−アジドベンザル)
−4−メチルシクロヘキサノン、2,6−ジー(4′−
アジドベンザル)−4−ハイドロオキシシクロヘキサノ
ンなどが埜げられる。光架橋剤の添加量は、過少または
過大であると紫外線に対する感度が低下し、又過大に添
加した組成物は02のドライエツチングに対する耐性を
悪くするので、重合体に対して0.1〜30重量%加え
ることが望ましい。特に望ましくは5〜15重量%加え
るとよい。
The resist material in the present invention can be directly exposed to electron beams,
The resist is extremely sensitive to radiation, deep ultraviolet rays, and ion beams, but when bisazide, which is known as a photocrosslinking agent, is added, it becomes a resist that is also highly sensitive to near ultraviolet rays. The bisazides used in the present invention include 4,4'-diazidechalcone, 2,6-di(4''-azidobenzal)cyclohexanone, and 2,6-di(4-azidobenzal).
-4-methylcyclohexanone, 2,6-di(4'-
Azidobenzal)-4-hydroxycyclohexanone and the like are excluded. If the amount of the photocrosslinking agent added is too little or too much, the sensitivity to ultraviolet rays will decrease, and if too much is added, the composition will deteriorate the resistance to dry etching of 02. It is desirable to add % by weight. Particularly preferably, it is added in an amount of 5 to 15% by weight.

また重合体は一般にネガ型レジストとして用いるとき高
分子量であれば高感度となるが現像時の膨潤により解像
度を損う。通例、分子量百方を越えるものは、高い解像
性を期待できない。一方、分子量を小さくすることは解
像性を向上させるが、感度は分子量に比例して低下して
実用性を失うだけでなく、分子量玉子以下では均一で堅
固な影形成がむづかしくなるという問題がある。望まし
くは1万〜20万である。
Furthermore, when a polymer is used as a negative resist, if the molecular weight is high, the sensitivity is generally high, but the resolution is impaired due to swelling during development. Generally, if the molecular weight exceeds 100, high resolution cannot be expected. On the other hand, reducing the molecular weight improves resolution, but not only does the sensitivity drop in proportion to the molecular weight, making it impractical, but it also becomes difficult to form uniform and solid shadows below the molecular weight. There's a problem. Desirably it is 10,000 to 200,000.

分子量分布の均一性も解像性に影響を与えることが知ら
れており、多分散度が小さいほど良好な解像を示す。こ
の点、アニオン重合法から製造される場合は、分子量分
別せずに、直接多分散度の小さいたとえば1.2もしく
はそれ以下の重合体が得られるので、そのレジスト材料
は優れた解像性を有する。
It is known that the uniformity of molecular weight distribution also affects resolution, and the smaller the polydispersity, the better the resolution. On this point, when produced using an anionic polymerization method, a polymer with a low polydispersity, for example, 1.2 or less, can be obtained directly without molecular weight separation, so the resist material has excellent resolution. have

(実施例1) 1.2−ジクロロテトラメチルジシランは次の様な方法
で製造した。
(Example 1) 1.2-Dichlorotetramethyldisilane was manufactured by the following method.

300meフラスコ中に粉末にしたAlCl329.2
g(0,2モル)、ヘキサメチルジシラン29.2g(
0,2モル)を仕込み、塩化アセチル35.0g(0,
45モル)を2時間を要して滴下した。滴下終了後、さ
らに1時間室温で反応を続け、蒸留して目的化合物を得
た。31g(83%)の収率であった。沸点65°C1
52mmHg(実施例2) 1c三つロフラスコ中に、メタノール25.6g([1
8モル)、ピリジン63.2g(0,8モル)、ベンゼ
ン300mCを仕込み、メカニカルスタラーで攪拌した
。水浴にて冷却し、1,2−ジクロロテトラメチルジシ
ラン65g(0゜35モル)を2時間反応を続け、ろ過
を行った。減圧下で溶剤を留出させた後、残留物を蓋部
して目的化合物を得た。44.8g(72%)の収率で
あった。沸点90°C/110mmHg (実施例3) 1−アリル−2−メトキシテトラメチルジシランは次の
様な方法で製造した。
Powdered AlCl329.2 in 300me flask
g (0.2 mol), hexamethyldisilane 29.2 g (
0.2 mol) and 35.0 g (0.2 mol) of acetyl chloride.
45 mol) was added dropwise over a period of 2 hours. After the dropwise addition was completed, the reaction was continued for another hour at room temperature and distilled to obtain the target compound. The yield was 31 g (83%). boiling point 65°C1
52 mmHg (Example 2) 25.6 g of methanol ([1
8 mol), 63.2 g (0.8 mol) of pyridine, and 300 mC of benzene were charged and stirred with a mechanical stirrer. The mixture was cooled in a water bath, and 65 g (0.35 mol) of 1,2-dichlorotetramethyldisilane was continued to react for 2 hours, followed by filtration. After distilling off the solvent under reduced pressure, the residue was covered with a lid to obtain the target compound. The yield was 44.8 g (72%). Boiling point: 90°C/110mmHg (Example 3) 1-allyl-2-methoxytetramethyldisilane was produced in the following manner.

300mcフラスコフラスコ中シウム4.3グラム原子
、エーテル10meを仕込んだ。少量のエチルブロマイ
ドを加えて加熱し、マグネシウムを活性化させた後、エ
ーテル200mrを加えた。アリルブロマイド25.5
g(0,14モル)を2時間を要して滴下した。さらに
2時間攪拌を続けて反応を完結させた。別の500mr
フラスコに、1,2−ジメトキシテトラメチルジシラン
25.5g(0,14モル)、エーテル50meを仕込
み、アリルブロマイドのグリニヤール試薬をゆっくり約
4時間を要して滴下した。ろ過後、減圧下で溶剤を留出
し、蒸留して目的化合物を得た。16.2g(60%)
の収率であった。沸点83°C/45mmHg(実施例
4) 4−アリルジメチルシリルジメチルシリル−a−メチル
スチレン(単量体)は次の様な方法で製造した。
A 300 mc flask was charged with 4.3 gram atoms of sium and 10 me of ether. After adding a small amount of ethyl bromide and heating to activate magnesium, 200 ml of ether was added. Allyl bromide 25.5
g (0.14 mol) was added dropwise over a period of 2 hours. Stirring was continued for an additional 2 hours to complete the reaction. another 500mr
A flask was charged with 25.5 g (0.14 mol) of 1,2-dimethoxytetramethyldisilane and 50 me of ether, and Grignard reagent of allyl bromide was slowly added dropwise over a period of about 4 hours. After filtration, the solvent was removed under reduced pressure and distilled to obtain the target compound. 16.2g (60%)
The yield was . Boiling point: 83°C/45mmHg (Example 4) 4-allyldimethylsilyldimethylsilyl-a-methylstyrene (monomer) was produced in the following manner.

300me三つロフラスコ中にマグネシウム2.4g(
0゜1グラム原子)THFlomCを仕込み、少し加熱
した後、少量のエチルマグネシウムを加えてマグネシウ
ムを活性化させた。さらにTHFloomrを加えた後
、4−クロロ−α−メチルスチレン13.7g(0,0
9モル)を3時間を要して滴下した。さらに2時間反応
を続けた後、1−アリル4−メトキシテトラメチルジシ
ラン13.7g(0,072モル)を1時間を要して滴
下した。加熱して還流させ、2時間反応させた。反応終
了後、希HCI水溶液中に投入し、エーテルを加えて抽
出した。エーテル層をMgSO4で乾燥させた後、エー
テルを留出させ、残留物を蒸留して単量体を得た。
2.4 g of magnesium in a 300me three-necked flask (
After charging THFlomC (0°1 gram atom) and heating it a little, a small amount of ethylmagnesium was added to activate the magnesium. After further addition of THFloomr, 13.7 g of 4-chloro-α-methylstyrene (0,0
9 mol) was added dropwise over a period of 3 hours. After continuing the reaction for an additional 2 hours, 13.7 g (0,072 mol) of 1-allyl 4-methoxytetramethyldisilane was added dropwise over a period of 1 hour. The mixture was heated to reflux and reacted for 2 hours. After the reaction was completed, the mixture was poured into a dilute HCI aqueous solution and extracted with ether. After drying the ether layer with MgSO4, the ether was distilled off and the residue was distilled to obtain the monomer.

13.6g(56%)の収率であった。沸点115〜1
17°C/1゜mmHg (実施例5) H3 H2 H H2 なる重合体は次の様な方法で製造した。
The yield was 13.6 g (56%). boiling point 115~1
17°C/1°mmHg (Example 5) A polymer called H3 H2 H H2 was produced by the following method.

実施例4で合成した単量体およびTHFを水素化カルシ
ウムで予備乾燥した。以下に述べる重合反応はすべて高
真空下で行なった。実施例4で製造した単量体11gを
100mr技付きフラスコに仕込み、技をラバーセプタ
ムで封をし、フラスコを高真空ラインに接続した。液体
窒素浴で凍結してから、減圧にし、液体状態にもどした
。この操作を4回くり返して単量体中に含まれる空気を
脱気した後、n−ブチルリチウム(1,6M:ヘキサン
中)0.5mlを加えて単量体を完全脱水した。その後
、同様の技付きフラスコへ蒸留した。THF50m<も
同様に脱気、脱水を行ない重合フラスコへ蒸留した。室
温にてラバーセプタムからミクロシリンジを用いてn−
ブチルリチウム(1,6M:ヘキサン中)80prを加
え、すぐにア七トンードライアイス浴で冷却させて重合
を行なった。2時間後、メタノール1meをシリンジを
用いて加えて重合を停止し、常圧にもどし、重合体溶液
を500meのメタノール中に役牛した。重合体は白色
固体となって析出し、ろ過して分離した。さらにベンゼ
ン100mrに溶解させ、メタノール500meに投入
した。
The monomer synthesized in Example 4 and THF were pre-dried with calcium hydride. All polymerization reactions described below were performed under high vacuum. 11 g of the monomer produced in Example 4 was placed in a 100 ml grated flask, the grated flask was sealed with a rubber septum, and the flask was connected to a high vacuum line. It was frozen in a liquid nitrogen bath and then returned to a liquid state by applying vacuum. After repeating this operation four times to remove air contained in the monomer, 0.5 ml of n-butyllithium (1,6M in hexane) was added to completely dehydrate the monomer. It was then distilled into a similarly equipped flask. THF50m was similarly degassed and dehydrated and distilled into the polymerization flask. n- from the rubber septum using a microsyringe at room temperature.
80 pr of butyl lithium (1,6M in hexane) was added, and the mixture was immediately cooled in a dry ice bath to carry out polymerization. After 2 hours, 1me of methanol was added using a syringe to stop the polymerization, the pressure was returned to normal, and the polymer solution was poured into 500me of methanol. The polymer precipitated as a white solid and was separated by filtration. Furthermore, it was dissolved in 100ml of benzene and poured into 500ml of methanol.

この操作を3回くり返した後、減圧下50°Cで乾燥し
た。軟化点は132〜135°Cを示した。10.5g
(はぼ100%)の収率であった。
After repeating this operation three times, it was dried at 50°C under reduced pressure. The softening point was 132-135°C. 10.5g
The yield was 100%.

重量平均分子量(Mw)=40,000数平均分子量(
Mn)= 35,700多分散度(Mw/Mn)= 1
.12 重合体の分析値は次の様になる。
Weight average molecular weight (Mw) = 40,000 number average molecular weight (
Mn) = 35,700 Polydispersity (Mw/Mn) = 1
.. 12 The analytical values of the polymer are as follows.

赤外線吸収スペクトル(cm−”): 1250、1630.1600.1050.820.7
90核磁気共鳴スペクトル(δ)pPm: 0.0〜0.2(6H)、 0.2〜0.7(9H)、
 1.2〜2.0(2H)。
Infrared absorption spectrum (cm-”): 1250, 1630.1600.1050.820.7
90 Nuclear magnetic resonance spectrum (δ) pPm: 0.0-0.2 (6H), 0.2-0.7 (9H),
1.2-2.0 (2H).

1.4〜1.7(2H)、 4.5〜6.2(3H)、
 6.3〜7.3(4H)この重合体は一つの単位の中
にシリコン原子を2個有しているためシリコン含有量は
重合体全体に対して20.5%(W/W)となる。
1.4-1.7 (2H), 4.5-6.2 (3H),
6.3-7.3 (4H) This polymer has two silicon atoms in one unit, so the silicon content is 20.5% (W/W) of the entire polymer. Become.

(実施例6) 実施例5で製造した重合体0.42gと2,6−ジー(
4′−アジドベンザル)−4−メチルシクロへキサノン
0.021gをキシレン6.0mrに溶解し、十分攪拌
した後、0.2pmのフィルターで濾過し試料溶液をと
した。この溶液をシリコン基板上にスピン塗布(300
0rpm) シ、8o0c、30分間乾燥を行った。紫
外線露光装置(4800DSW(GCA社製))を用い
て、クロムマスクを介して露光を行なった。
(Example 6) 0.42 g of the polymer produced in Example 5 and 2,6-G(
0.021 g of 4'-azidobenzal)-4-methylcyclohexanone was dissolved in 6.0 ml of xylene, thoroughly stirred, and then filtered through a 0.2 pm filter to obtain a sample solution. This solution was spin-coated onto a silicon substrate (300
Drying was performed at 8o0c for 30 minutes. Exposure was performed using an ultraviolet exposure device (4800DSW (manufactured by GCA)) through a chrome mask.

メチルイソブチルケトン(MIBK)に1分間浸漬して
現像を行なった後、イソプロパツールにて1分間リンス
を行なった。乾燥したのち被照射部の膜厚を触針法によ
り測定した。初期膜厚は0.25pmであった。微細な
パターンを解像しているが否がは種々の寸法のラインア
ンドスペースのパターンを描画し、現像処理によって得
られたレジスト像を光学顕微鏡、走査型電子顕微鏡で観
察することによって調べた。
After developing by immersing it in methyl isobutyl ketone (MIBK) for 1 minute, it was rinsed with isopropanol for 1 minute. After drying, the film thickness of the irradiated area was measured using a stylus method. The initial film thickness was 0.25 pm. Whether fine patterns were resolved or not was investigated by drawing line-and-space patterns of various dimensions and observing the resist images obtained by development using an optical microscope and a scanning electron microscope.

感度曲線からゲル化点(Di)が約0.7秒であること
がわかった。紫外線露光でひろく用いられている7オト
レジストであるシプレー社MP−1300(lpm厚)
の適正露光量は0.35秒であった。
From the sensitivity curve, it was found that the gel point (Di) was about 0.7 seconds. Shipley MP-1300 (lpm thickness), a 7-otoresist widely used in ultraviolet exposure
The appropriate exposure amount was 0.35 seconds.

(実施例7) シリコン基板上にノボラック樹脂を主成分とするレジス
ト材料(MP−1300(シラプレー社製))を厚さ1
.5pm!布し、250°Cにおいて1時間焼きしめを
行なった。しかる後、実施例6で調整した溶液をスピン
塗布し、80°Cにて30分間乾燥を行なって0゜25
μm厚の均一な塗膜をえた。この基板を紫外線露光装置
(4800DSW(GC8社製))を用いクロムマスク
を介して10.0秒露光した。MIBK/n−BuOH
(50/100(V/V)に1分間浸漬して現像を行な
ったのち、イソプロパツールにて1分間リンスを行なっ
た。この基板を平行平板の反応性スパッタエツチング装
置(アネルバ社製DEM−451)を用い、発明が解決
しようとする問題点の項でのべた条件をつまり022S
CCm、3゜OPa、 0.16W/cm2の条件で2
8分間エツチングを行なった。走査型電子顕微鏡で観察
した結果、サブミクロンの上層のパターンが下層レジス
ト材料により正確に転写されより垂直なパターンが形成
されていることがわかった。
(Example 7) A resist material (MP-1300 (manufactured by Silapray)) containing novolak resin as the main component was deposited on a silicon substrate to a thickness of 1
.. 5pm! It was baked and baked at 250°C for 1 hour. After that, the solution prepared in Example 6 was applied by spin coating and dried at 80°C for 30 minutes to give a temperature of 0°25.
A uniform coating film with a thickness of μm was obtained. This substrate was exposed to light for 10.0 seconds through a chrome mask using an ultraviolet exposure device (4800DSW (manufactured by GC8)). MIBK/n-BuOH
(After developing by immersing in 50/100 (V/V) for 1 minute, rinsing was performed for 1 minute with isopropanol. This substrate was processed using a parallel plate reactive sputter etching device (DEM- 451), and the conditions stated in the section of the problem to be solved by the invention, that is, 022S
CCm, 3°OPa, 2 under the conditions of 0.16W/cm2
Etching was performed for 8 minutes. Observation with a scanning electron microscope revealed that the submicron upper layer pattern was accurately transferred to the lower resist material, forming a more vertical pattern.

(発明の効果) 以上説明したように本発明の重合体は1ユニット当りシ
リコン原子2個を有しているため高い濃度20゜5%(
W/W)となり、レジスト組成物はドライエツチングに
対して極めて強く、200OA程度の膜厚があれば、1
.5pm程度の厚い有機層をエツチングするためのマス
クになり得る。したがって、パターン形成用のレジスト
膜は薄くてよい。また、下地に厚い有機層があると電子
ビーム露光においては、近接効果が低減されるため、光
学露光においては、反射波の悪影響が低減されるために
、高解像度のパターンが容易に得られる。また他の露光
法においても高解像度のパターンが容易に得られる。
(Effects of the Invention) As explained above, since the polymer of the present invention has two silicon atoms per unit, it has a high concentration of 20°5% (
W/W), the resist composition is extremely resistant to dry etching, and if the film thickness is about 200OA,
.. It can be used as a mask for etching organic layers as thick as 5 pm. Therefore, the resist film for pattern formation may be thin. Further, a thick organic layer on the base reduces the proximity effect in electron beam exposure, and in optical exposure, the negative effects of reflected waves are reduced, making it easy to obtain a high-resolution pattern. Also, high-resolution patterns can be easily obtained using other exposure methods.

さらに本発明で使用した重合体はアニオン重合法により
合成しているため分子量分布の多分散度が小さくそのた
め前記重合体とビスアジドとの組成物をレジストとして
用いたとき、得られるパターンの解f象度は優れている
Furthermore, since the polymer used in the present invention is synthesized by an anionic polymerization method, the polydispersity of the molecular weight distribution is small, so when a composition of the polymer and bisazide is used as a resist, the resulting pattern is The degree is excellent.

Claims (4)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ (式中xは正の整数を表わす)で示される構成単位から
なるケイ素原子を含むα−メチルスチレン系重合体。
(1) An α-methylstyrene polymer containing a silicon atom consisting of a structural unit represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (in the formula, x represents a positive integer).
(2)一般式 ▲数式、化学式、表等があります▼ (式中xは正の整数を表わす)で示される構成単位から
なるケイ素原子を含むα−メチルスチレン系重合体とビ
スアジドとの組成物。
(2) A composition of bisazide and an α-methylstyrene polymer containing a silicon atom consisting of a structural unit represented by the general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (in the formula, x represents a positive integer) .
(3)基板上に有機膜を形成した後、その上層に薄いレ
ジスト層を形成し、リソグラフィーによってこのレジス
ト層にパターンを形成し、このレジストパターンを下層
有機膜に対するドライエッチマスクとして用いる2層構
造レジスト法によるパターン形成方法において、上層の
レジストは一般式▲数式、化学式、表等があります▼ (式中xは正の整数を表わす)で示される構成単位から
なるケイ素原子を含むα−メチルスチレン系重合体を用
いることを特徴とするパターン形成方法。
(3) After forming an organic film on a substrate, a thin resist layer is formed on top of the organic film, a pattern is formed on this resist layer by lithography, and this resist pattern is used as a dry etch mask for the lower organic film. In the pattern formation method using the resist method, the upper layer resist is α-methylstyrene containing a silicon atom consisting of a constituent unit represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (in the formula, x represents a positive integer) A pattern forming method characterized by using a system polymer.
(4)基板上に有機膜を形成した後、その上層に薄いレ
ジスト層を形成し、ソリグラフィーによってこのレジス
ト層にパターンを形成し、このレジストパターンを下層
有機膜に対するドライエッチマスクとして用いる、2層
構造法によるパターン形成方法において、上層のレジス
トは、一般式 ▲数式、化学式、表等があります▼ (式中xは正の整数を表わす)で示される構成単位から
なるケイ素原子を含むα−メチルスチレン系重合体とビ
スアジドとの組成物を用いることを特徴とするパターン
形成方法。
(4) After forming an organic film on the substrate, forming a thin resist layer on top of it, forming a pattern on this resist layer by lithography, and using this resist pattern as a dry etch mask for the lower organic film. In the pattern formation method using the layer structure method, the upper layer resist is α- containing a silicon atom consisting of a constituent unit represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (in the formula, x represents a positive integer). A pattern forming method characterized by using a composition of a methylstyrene polymer and a bisazide.
JP10136786A 1986-04-30 1986-04-30 Silicon-containing alpha-methylstyrene polymer, composition containing same and its use Granted JPS62256804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136786A JPS62256804A (en) 1986-04-30 1986-04-30 Silicon-containing alpha-methylstyrene polymer, composition containing same and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136786A JPS62256804A (en) 1986-04-30 1986-04-30 Silicon-containing alpha-methylstyrene polymer, composition containing same and its use

Publications (2)

Publication Number Publication Date
JPS62256804A true JPS62256804A (en) 1987-11-09
JPH0535864B2 JPH0535864B2 (en) 1993-05-27

Family

ID=14298852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136786A Granted JPS62256804A (en) 1986-04-30 1986-04-30 Silicon-containing alpha-methylstyrene polymer, composition containing same and its use

Country Status (1)

Country Link
JP (1) JPS62256804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142720A (en) * 1987-11-30 1989-06-05 Toray Silicone Co Ltd Composition curable with high energy beam and resist composition
EP0333591A2 (en) * 1988-03-16 1989-09-20 Fujitsu Limited Process for formation of resist patterns
US5008362A (en) * 1988-04-02 1991-04-16 Hoechst Aktiengesellschaft Binders soluble in aqueous alkali and containing silanyl groups in the side chain, process for preparing same and also photosensitive mixture containing these compounds
US5194364A (en) * 1988-03-16 1993-03-16 Fujitsu Limited Process for formation of resist patterns
US5206111A (en) * 1988-04-02 1993-04-27 Hoechst Aktiengesellschaft Binders soluble in aqueous alkali and containing silanyl groups in the side chain for a photosensitive mixture
WO2007026010A3 (en) * 2005-09-01 2007-06-14 Freescale Semiconductor Inc Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereof, and material for coupling a dielectric layer and a metal layer in a semiconductor device
US7803719B2 (en) 2006-02-24 2010-09-28 Freescale Semiconductor, Inc. Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereof, and passivating coupling material comprising multiple organic components for use in a semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142720A (en) * 1987-11-30 1989-06-05 Toray Silicone Co Ltd Composition curable with high energy beam and resist composition
EP0333591A2 (en) * 1988-03-16 1989-09-20 Fujitsu Limited Process for formation of resist patterns
US5194364A (en) * 1988-03-16 1993-03-16 Fujitsu Limited Process for formation of resist patterns
US5008362A (en) * 1988-04-02 1991-04-16 Hoechst Aktiengesellschaft Binders soluble in aqueous alkali and containing silanyl groups in the side chain, process for preparing same and also photosensitive mixture containing these compounds
US5206111A (en) * 1988-04-02 1993-04-27 Hoechst Aktiengesellschaft Binders soluble in aqueous alkali and containing silanyl groups in the side chain for a photosensitive mixture
WO2007026010A3 (en) * 2005-09-01 2007-06-14 Freescale Semiconductor Inc Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereof, and material for coupling a dielectric layer and a metal layer in a semiconductor device
US7691756B2 (en) 2005-09-01 2010-04-06 Nxp B.V. Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereof, and material for coupling a dielectric layer and a metal layer in a semiconductor device
US7951729B2 (en) 2005-09-01 2011-05-31 Nxp B.V. Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereor, and material for coupling a dielectric layer and a metal layer in a semiconductor device
US7803719B2 (en) 2006-02-24 2010-09-28 Freescale Semiconductor, Inc. Semiconductor device including a coupled dielectric layer and metal layer, method of fabrication thereof, and passivating coupling material comprising multiple organic components for use in a semiconductor device

Also Published As

Publication number Publication date
JPH0535864B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
US4826943A (en) Negative resist material
EP0096596B2 (en) Microelectronic device manufacture
JP2619358B2 (en) Photosensitive resin composition
JPS62256804A (en) Silicon-containing alpha-methylstyrene polymer, composition containing same and its use
JP2726348B2 (en) Radiation-sensitive resin composition
JPH0583563B2 (en)
JPS62296139A (en) Silicon atom-containing styrene polymer
JPS6234908A (en) Alpha-methylstyrene polymer containing silicon and vinyl group, composition containing same and use thereof
JPH0615584B2 (en) Silicon atom-containing ethylene polymer
JPH0535865B2 (en)
JPH01101308A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPH0615585B2 (en) Silicon atom-containing ethylene polymer
JPS59208542A (en) Resist material
JPS6127537A (en) Resist agent
JPH0734113B2 (en) Resist material
JPH01101310A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPH01101307A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPS5915243A (en) Resist material
JPH01101309A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPH05323612A (en) Radiation sensitive resin composition
JPS62190229A (en) Vinyl group-containing silane based polymer
JPS6391654A (en) Photosensitive resin composition
Park et al. Room temperature processable organic-inorganic hybrid photolithographic materials based on a methoxysilane cross-linker
JPH0157333B2 (en)
JPS6370846A (en) Silicon-containing negative type photoresist composition