JPS62255718A - Control of steam type air preheater - Google Patents

Control of steam type air preheater

Info

Publication number
JPS62255718A
JPS62255718A JP61098856A JP9885686A JPS62255718A JP S62255718 A JPS62255718 A JP S62255718A JP 61098856 A JP61098856 A JP 61098856A JP 9885686 A JP9885686 A JP 9885686A JP S62255718 A JPS62255718 A JP S62255718A
Authority
JP
Japan
Prior art keywords
steam
air preheater
pressure
type air
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098856A
Other languages
Japanese (ja)
Inventor
Yozo Imai
庸三 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61098856A priority Critical patent/JPS62255718A/en
Publication of JPS62255718A publication Critical patent/JPS62255718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To miniaturize the heating area as well as the device of a preheater by a method wherein the source of heating steam is switched by a difference between the pressure of heating steam source and a pressure in a steam type air preheater. CONSTITUTION:Steam, entering into a steam type air preheater 2, is switched to an auxiliary steam, fifth extraction steam and fourth extraction steam respectively in accordance with a low, medium and high load. During employing the auxiliary steam and the fifth extraction steam, valves 21, 22 are controlled by the difference of pressure against a temperature regulating valve 24 or a difference between the pressure of an employing steam source and a pressure in the steam type air preheater 2. During employing the fourth extraction steam, the valve 23 is fully opened and the pressure in the preheater 2 is controlled by the temperature regulating valve 24 in a manner that the opening degree of the valve is regulated all over the load zones by the element temperature of an air preheater 3 as ever. The fore pressures of the temperature regulating valves 24 are the same, therefore, water hammer phenomenon upon switching will never be generated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、火力発電設備の蒸気式空気予熱器に適用され
る制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control method applied to a steam air preheater for thermal power generation equipment.

従来の技術 従来、火力発電設備にお(−・ては、プラント効率をア
ップさせるため、高負荷になればなる程低圧抽気側より
蒸気式空気予熱器の加熱蒸気源を抽気するようにしてい
る。一般的には、その加熱蒸気源として、補助蒸気・低
温再熱蒸気、復水タービン中間段からの抽気例えに第4
段及び第5段抽気04種類程度が使用され、負荷及びそ
れに相当する蒸気源圧力により切替えを実施している。
Conventional technology Conventionally, in order to increase plant efficiency in thermal power generation equipment, the higher the load, the more the heating steam source of the steam air preheater is extracted from the low-pressure extraction side. Generally, the heating steam source is auxiliary steam, low-temperature reheated steam, or extracted air from the intermediate stage of the condensing turbine.
Approximately four types of stage and fifth stage bleed air are used, and switching is performed depending on the load and the corresponding steam source pressure.

尚、第4段抽気は第5段抽気より低圧である。Note that the pressure of the fourth stage bleed air is lower than that of the fifth stage bleed air.

蒸気式空気予熱器の機能について概略説明すると、蒸気
式空気予熱器は空気予熱器メタル保護のため、空気予熱
器のメタル温度を排ガス中のイオウ分の露点温度以下に
しないよ5にする目的で、空気予熱器の入口空気を暖め
るものである。
To give an overview of the function of the steam-type air preheater, the purpose of the steam-type air preheater is to protect the air preheater metal and prevent the metal temperature of the air preheater from falling below the dew point temperature of the sulfur in the exhaust gas. , which warms the inlet air of the air preheater.

焼用空気として送り込むために昇圧している。The pressure is increased to feed it as baking air.

空気は空気ダクト4で連結された蒸気式空気予熱器(S
AH) 2、空気予熱器(AH) 3を経て図示しない
ボイラへ送り込まれる。ボイラで燃焼したガスは、空気
予熱器3を通った後煙突から大気へ放出される。5はガ
スダクトである。
Air is supplied to a steam air preheater (S) connected by air duct 4.
AH) 2. The air is sent to a boiler (not shown) through an air preheater (AH) 3. The gas combusted in the boiler passes through the air preheater 3 and is then released into the atmosphere from the chimney. 5 is a gas duct.

高温ガスを大気へ放出することは熱ロスとなるので、空
気予熱器3でガスから空気への熱交換により、排熱の回
収を行っている。
Since releasing high-temperature gas to the atmosphere results in heat loss, the air preheater 3 recovers waste heat by exchanging heat from the gas to the air.

ところで、重油、原油等の燃料にはイオウ分が含まれて
いるので、ガス温度を空気予熱器3でイオウ分の露点以
下に下げると、硫化物を空気予熱器3に付着させ、空気
予熱器3のエレメントを腐食させることとなる。そこで
、空気予熱器3を通過するガス温度を、イオウ分の露点
以上とするため、空気予熱器3へ供給する空気を予め蒸
気式空気予熱器2で暖める。
Incidentally, fuels such as heavy oil and crude oil contain sulfur, so when the gas temperature is lowered to below the dew point of sulfur in the air preheater 3, sulfides are deposited on the air preheater 3 and the air preheater This will corrode the element No.3. Therefore, in order to make the temperature of the gas passing through the air preheater 3 higher than the dew point of the sulfur component, the air supplied to the air preheater 3 is warmed in advance by the steam air preheater 2.

このために、蒸気式空気予熱器2内を流れる蒸気量は空
気予熱器3のエレメント温度又は空気予熱器3を通過す
るガス温度等で制御される。
For this purpose, the amount of steam flowing through the steam air preheater 2 is controlled by the element temperature of the air preheater 3 or the temperature of the gas passing through the air preheater 3.

第2図は蒸気式空気予熱器2の蒸気系統を示したもので
ある。
FIG. 2 shows the steam system of the steam air preheater 2.

前述のように、蒸気式空気予熱器2へ導入される加熱蒸
気源としては、負荷に合せて3〜4種類使用されるのが
一般的であり、これは高負荷ではより低圧抽気を使用し
てプラント効率をよくすることをねらっているためであ
る。第2図には3種類の加熱蒸気源が使用されるものが
示されており、21は補助蒸気からの供給を制御するた
めの弁、22および23は夫々復水タービンの第5段抽
気、第4段抽気からの供給を制御するための弁である。
As mentioned above, three to four types of heating steam sources are generally used to be introduced into the steam air preheater 2, depending on the load. This is because the aim is to improve plant efficiency. FIG. 2 shows that three types of heating steam sources are used, 21 is a valve for controlling the supply from auxiliary steam, 22 and 23 are respectively the 5th stage bleed air of the condensing turbine, This is a valve for controlling the supply from the fourth stage bleed air.

これらの弁21,22,23を介して供給される蒸気は
、温調弁24を介して蒸気式空気予熱器2へ導入される
Steam supplied through these valves 21, 22, and 23 is introduced into the steam air preheater 2 through a temperature control valve 24.

なお、26は蒸気式空気予熱器2において、燃焼用空気
との熱交換により生じたドレンを溜めるドレンタンクで
あり、蒸気式空気予熱器2とドレンタンク26のドレン
溜部とをドレン管25によって連結されている。また、
27はドレンポンプで、ドレンタンク26中のドレンを
ドレンタンク水位弁28を介して、低圧ヒータ等へ送り
出すのに使用される。更に、29は、蒸気式空気予熱器
2とドレンタンク26との圧力バランスを保つために設
けた圧力バランス管でアル。
In addition, 26 is a drain tank that stores the drain generated by heat exchange with the combustion air in the steam type air preheater 2, and the steam type air preheater 2 and the drain reservoir part of the drain tank 26 are connected by the drain pipe 25. connected. Also,
A drain pump 27 is used to send drain from the drain tank 26 to a low pressure heater or the like via a drain tank water level valve 28. Furthermore, 29 is a pressure balance pipe provided to maintain the pressure balance between the steam air preheater 2 and the drain tank 26.

次に、第2図の系統のもとでの蒸気式空気予熱器の従来
の制御方法を第3図を参照して説明する。
Next, a conventional control method for a steam air preheater based on the system shown in FIG. 2 will be explained with reference to FIG. 3.

第3図は負荷に対する各部の圧力を、メーカがユーザに
対して性能を保証している大気温度(日本では通常20
℃で、これを保証温度という)について示したものであ
る。10は蒸気式空気予熱器2の器内圧、11は補助蒸
気圧力、12は第5抽気圧力、13は第4抽気圧力、1
5は蒸気式空気予熱器が所定の性能を発揮するために必
要となる蒸気源元圧を示し、これは符号10で示した器
内圧よりも若干高ければよい。
Figure 3 shows the pressure at each part relative to the load at the atmospheric temperature at which the manufacturer guarantees performance to the user (usually 20°C in Japan).
℃, which is called the guaranteed temperature). 10 is the internal pressure of the steam air preheater 2, 11 is the auxiliary steam pressure, 12 is the fifth bleed pressure, 13 is the fourth bleed pressure, 1
5 indicates the steam source source pressure necessary for the steam air preheater to exhibit a predetermined performance, and this need only be slightly higher than the internal pressure indicated by 10.

そこで、従来は、大気温度に関係なく、負荷に応じて低
負荷時(0%〜mql、−−−第3図中符号14で示す
点に相当)には補助蒸気を、中負荷時(mチルn %−
−−第3図中符号16で示す点に相当)には第5抽気を
、そして高負荷時(n%〜100%)には第4抽気を蒸
気式空気予熱器2へ導入するように、各部21,22,
23を制御する。この補助蒸気使用中および第5抽気使
用中は、弁21.22は24の前圧は夫々、補助蒸気使
用中は第3図の符号11線上の圧力、第5抽気使用中は
第3図の符号14から16に至る線上の圧力、第4抽気
使用中は第3図の符号13線上の圧力となる。そして、
蒸気源切替ポイントである符号14.160点て温調弁
24の前圧が同圧となり、切替時に圧力が変動しないこ
とは、ドレン系のウォータハンマ現象を発生させないた
めに重要である。
Therefore, conventionally, regardless of the atmospheric temperature, auxiliary steam was supplied at low loads (0% to mql, ---corresponding to the point 14 in Figure 3) according to the load, and auxiliary steam was supplied at medium loads (mql). Chill n%-
--corresponding to the point indicated by the reference numeral 16 in FIG. Each part 21, 22,
23. During the use of this auxiliary steam and during the use of the fifth bleed air, the front pressure of the valves 21 and 22 is set to the pressure on the line 11 in Fig. 3 when the auxiliary steam is used, and the pressure on the line 11 in Fig. 3 when the 5th bleed air is used. The pressure is on the line from 14 to 16, and when the fourth bleed air is in use, the pressure is on the line 13 in FIG. and,
It is important that the pressure in front of the temperature control valve 24 is the same at the steam source switching point 14.160, and that the pressure does not fluctuate at the time of switching, in order to prevent water hammer from occurring in the drain system.

なお、温調弁240開度は、全負荷帯にわたり空気予熱
器3のエレメント温度(又は空気予熱器3の出口排ガス
温度)によって制御される。従って、第3図に符号10
で示す曲線の如く、負荷に応じて蒸気式空気予熱器2の
器内圧力が制御される。
Note that the opening degree of the temperature control valve 240 is controlled by the element temperature of the air preheater 3 (or the outlet exhaust gas temperature of the air preheater 3) over the entire load range. Therefore, the reference numeral 10 in FIG.
As shown by the curve, the internal pressure of the steam air preheater 2 is controlled according to the load.

発明が解決しようとする問題点 従来は、負荷に応じて弁21,22.23を選択制御す
るようにしている。そして、その切替ポイントの検出は
、負荷自体を検出するか、負荷に比例した値を示す抽気
圧力を検出することによって行なっている。そのため、
保証温度とは無関係に、大気の最低温度(例えばo ’
c >で蒸気源の切替ポイントを決める必要があり、こ
の最低温度でも蒸気式空気予熱器2が所望の性能を発揮
できるように、そのエレメント段数を決定していた。従
って、蒸気式空気予熱器の加熱面積が犬となり、装置が
大形化して配置上大きなスペースを占めるとともに、コ
スト高をきたすという問題があった。
Problems to be Solved by the Invention Conventionally, the valves 21, 22, and 23 are selectively controlled depending on the load. The switching point is detected by detecting the load itself or by detecting the bleed air pressure, which has a value proportional to the load. Therefore,
Regardless of the guaranteed temperature, the minimum temperature of the atmosphere (e.g. o'
It was necessary to determine the switching point of the steam source at > c >, and the number of element stages was determined so that the steam-type air preheater 2 could exhibit the desired performance even at this lowest temperature. Therefore, the heating area of the steam-type air preheater becomes large, resulting in a large-sized device that occupies a large space in terms of arrangement and increases costs.

問題点を解決するための手段 本発明は、上記の問題点を解決するために、負荷に応じ
て加熱蒸気源を選択的に切替える蒸気式空気予熱器の制
御方法において、加熱蒸気源圧力と蒸気式空気予熱器内
圧力との差を監視し、その圧力差によって加熱蒸気源を
切替えるようにしている。
Means for Solving the Problems In order to solve the above problems, the present invention provides a control method for a steam-type air preheater that selectively switches the heating steam source according to the load. The difference between the internal pressure of the air preheater and the internal pressure of the air preheater is monitored, and the heating steam source is switched based on the pressure difference.

作用 蒸気式空気予熱器の内圧と各加熱蒸気源圧力との差圧を
監視することによって、より低圧側の加熱蒸気源への切
替を円滑に行なうことができ、最小限の伝熱面積の蒸気
式生気予熱器の採用を可能とする。
By monitoring the differential pressure between the internal pressure of the working steam air preheater and the pressure of each heating steam source, it is possible to smoothly switch to the heating steam source on the lower pressure side, and the steam with the minimum heat transfer area can be smoothly switched to the heating steam source on the lower pressure side. Enables the adoption of a type fresh air preheater.

実施例 以下本発明に係る蒸気式空気予熱器の制御方法について
説明する。なお、火力発電設備の空気−ガス系統および
蒸気式空気予熱器の蒸気系統は、第1図および第2図に
示したものと同様である。
EXAMPLE A method of controlling a steam air preheater according to the present invention will be described below. The air-gas system of the thermal power generation equipment and the steam system of the steam air preheater are the same as those shown in FIGS. 1 and 2.

第3図において、101は本発明における蒸気式空気予
熱器の器内圧を、15’は蒸気式空気予熱器が所定の性
能を発揮するために必要となる蒸気源元圧を示している
。また、11,12,13は前述のとおりである。なお
、ここで、従来の場合の器内圧10に対し、本発明の場
合の器内圧10′の方が高くなっているが、これは、蒸
気式空気予熱器の特性上これの出入口温度が同じであれ
ば、その伝熱面積が小さい程器内圧が高くなることとな
り、本発明の場合、蒸気源の切替ポイントを保証温度で
定めるようにして蒸気式空気予熱器の伝熱面積を小さく
しているので、その器内圧が高くなっている。
In FIG. 3, 101 indicates the internal pressure of the steam-type air preheater in the present invention, and 15' indicates the steam source source pressure necessary for the steam-type air preheater to exhibit a predetermined performance. Further, 11, 12, and 13 are as described above. Note that the internal pressure 10' in the case of the present invention is higher than the internal pressure 10 in the conventional case, but this is because the inlet and outlet temperatures of the steam air preheater are the same due to the characteristics of the steam air preheater. If so, the smaller the heat transfer area, the higher the internal pressure.In the case of the present invention, the switching point of the steam source is determined at the guaranteed temperature to reduce the heat transfer area of the steam air preheater. Because of this, the pressure inside the vessel is high.

さて、本発明では、保証温度において蒸気源の切替ポイ
ントを定めており、低負荷時(O%〜m′チーーー第3
図中符号14’で示す点に相当)には補助蒸気を、中負
荷時(m’%〜n%)には第5抽気を、そして高N負荷
時(nチル100 % )には第4抽気を蒸気式空気予
熱器2へ導入するように制御する。このとき、補助蒸気
使用中および第5抽気使用中は、弁21.22は温調弁
24との差圧制御すなわち、これら使用中の蒸気源圧力
と蒸気式空気予熱器2の器内圧との差を例えば配管圧損
のような形で検出して制御するものであるが実質的には
弁21.22そのものの制御により、温調弁24の前圧
は第3図に符号15′で示す曲線上にある。また、第4
抽気使用中も同様に制御され、このときは弁23は全開
であり、温調弁24の前圧は第3図に符号13で示す線
上にある。この第4抽気使用中の器内圧力は温調弁24
によって制御されるもので、従来と同様に全負荷帯にわ
たって空気予熱器3のエレメント温度(又は出口排ガス
温度)によって、弁開度を調整することによって行なわ
れる。なお、このような制御において、温調弁24前圧
は、蒸気源切替ポイン)14’、16で同じなので、蒸
気源切替に伴なうウォータ・・ンマ現象を発生させる恐
れはない。そして、大気温度が下れば、蒸気式空気予熱
器2の器内圧は上り、蒸気源の切替ポイン)14’、1
6は各々第3図の幀噌へ 鴫^I++yへ、++−r 
I−IP+−−イ 加#Jノ喝ノ【息荷を上昇させるこ
とになる。また、大気温度が保発明の効果 以上詳述したように、本発明によれば、蒸気式空気予熱
器の内圧と各加熱蒸気源の元圧との差圧を規定温度の配
管圧損のような形で監視することによって、より低圧側
の加熱蒸気源側に円滑に切替えが進み、性能上は満足さ
れ、しかも最小限の伝熱面積ですむのでコストダウンが
図られ、配置上のスペースの問題も解決する。また、温
調弁の差圧を最低圧力の抽気を除き各蒸気源に設置した
弁でコントロールすることにより、温調弁前圧を防止で
きる。
Now, in the present invention, the switching point of the steam source is determined at the guaranteed temperature, and the switching point of the steam source is determined at the guaranteed temperature.
(corresponding to the point indicated by reference numeral 14' in the figure), auxiliary steam is used, 5th bleed air is used at medium load (m'% to n%), and 4th bleed air is used at high N load (n chill 100%). The extraction air is controlled to be introduced into the steam air preheater 2. At this time, while the auxiliary steam is in use and the fifth bleed air is in use, the valves 21 and 22 control the differential pressure with the temperature control valve 24, that is, the pressure between the steam source pressure and the internal pressure of the steam air preheater 2 during use. Although the difference is detected and controlled in the form of a pipe pressure drop, for example, by controlling the valves 21 and 22 themselves, the front pressure of the temperature control valve 24 is controlled by the curve 15' shown in FIG. 3. It is above. Also, the fourth
Control is carried out in the same manner during use of bleed air, at which time the valve 23 is fully open and the front pressure of the temperature control valve 24 is on the line indicated by reference numeral 13 in FIG. The internal pressure during this fourth bleed air is controlled by the temperature control valve 24.
This is controlled by adjusting the valve opening depending on the element temperature (or outlet exhaust gas temperature) of the air preheater 3 over the entire load range, as in the conventional case. In addition, in such control, since the pressure in front of the temperature control valve 24 is the same at the steam source switching points 14' and 16, there is no risk of causing a water leakage phenomenon due to switching the steam source. When the atmospheric temperature falls, the internal pressure of the steam air preheater 2 rises, and the steam source switching point) 14', 1
6 goes to the 幀噙 of Figure 3, respectively, to ^^I++y, ++-r
I-IP+--I 加#Jの懙ノ【It will increase the breath load. Furthermore, as described in detail above, according to the present invention, the pressure difference between the internal pressure of the steam-type air preheater and the original pressure of each heating steam source can be adjusted to By monitoring the shape, the switching to the heating steam source on the lower pressure side progresses smoothly, and the performance is satisfied.Moreover, the heat transfer area is kept to a minimum, which reduces costs and eliminates the problem of installation space. will also be solved. Moreover, by controlling the differential pressure of the temperature control valve with a valve installed at each steam source except for the lowest pressure bleed air, pressure in front of the temperature control valve can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は火力発電設備における空気−ガス系統を示す系
統図、第2図は蒸気式空気予熱器の蒸気系統を示す系統
図、第3図は保証温度における負荷に対する各部の圧力
を従来の制御方法と本発明の制御方法による場合とを比
較して示した特性図である、 2・・蒸気式空気予熱器、3・・空気予熱器、(ほか7
名) 第1図 第Z図
Figure 1 is a system diagram showing the air-gas system in a thermal power generation facility, Figure 2 is a system diagram showing the steam system of a steam-type air preheater, and Figure 3 is a system diagram showing the steam system of a steam-type air preheater. 2. Steam type air preheater, 3. Air preheater (and 7 others).
Figure 1 Figure Z

Claims (1)

【特許請求の範囲】[Claims] 負荷に応じて加熱蒸気源を選択的に切替える蒸気式空気
予熱器の制御方法において、加熱蒸気源圧力と蒸気式空
気予熱器内圧力との差を監視し、その圧力差によって加
熱蒸気源を切替えることを特徴とする蒸気式空気予熱器
の制御方法。
In a control method for a steam-type air preheater that selectively switches the heating steam source according to the load, the difference between the heating steam source pressure and the internal pressure of the steam-type air preheater is monitored, and the heating steam source is switched based on the pressure difference. A method of controlling a steam-type air preheater, characterized in that:
JP61098856A 1986-04-28 1986-04-28 Control of steam type air preheater Pending JPS62255718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098856A JPS62255718A (en) 1986-04-28 1986-04-28 Control of steam type air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098856A JPS62255718A (en) 1986-04-28 1986-04-28 Control of steam type air preheater

Publications (1)

Publication Number Publication Date
JPS62255718A true JPS62255718A (en) 1987-11-07

Family

ID=14230872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098856A Pending JPS62255718A (en) 1986-04-28 1986-04-28 Control of steam type air preheater

Country Status (1)

Country Link
JP (1) JPS62255718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
KR20150128588A (en) * 2014-05-08 2015-11-18 알스톰 테크놀러지 리미티드 Oxy boiler power plant oxygen feed system heat integration
CN109416176A (en) * 2016-03-31 2019-03-01 英万茨热科技有限公司 Combustion system including the separation of temperature swing adsorption gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
KR20150128588A (en) * 2014-05-08 2015-11-18 알스톰 테크놀러지 리미티드 Oxy boiler power plant oxygen feed system heat integration
JP2015227658A (en) * 2014-05-08 2015-12-17 アルストム テクノロジー リミテッドALSTOM Technology Ltd Oxy boiler power plant oxygen feed system heat integration
CN109416176A (en) * 2016-03-31 2019-03-01 英万茨热科技有限公司 Combustion system including the separation of temperature swing adsorption gas

Similar Documents

Publication Publication Date Title
US4207842A (en) Mixed-flow feedwater heater having a regulating device
JPH08121703A (en) Waste heat recovery apparatus
JP2005534883A (en) Waste heat steam generator
US5279356A (en) Waste heat recovery system
US4370949A (en) Waste heat recovery system
US6851265B2 (en) Steam cooling control for a combined cycle power plant
RU2090761C1 (en) Gas and steam turbine plant
JP2747543B2 (en) Method of operating a steam turbine device at low load level
JPH04503095A (en) System and method for reheat steam temperature control in circulating fluidized bed boiler
JPS62255718A (en) Control of steam type air preheater
CN112628790A (en) Preheating system of air for combustion of garbage furnace
JPH01113507A (en) Exhaust heat recovering heat exchanger
JPS6149486B2 (en)
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
CA1112527A (en) High pressure high temperature boiler start up
KR100446991B1 (en) The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating
JPH0367904A (en) Drain pump up device for feed water heater
US3175366A (en) Steam turbine with regulated bleeding of steam
JPS60252109A (en) Compound generation plant
JPH01159501A (en) Waste heat recovery boiler
JPH03242429A (en) Gas turbine plant
SU657180A1 (en) Steam-gas installation
RU2069291C1 (en) Method of temperature control of superheated steam of power-generating boiler and boiler plant for realization of this method
SU1184860A1 (en) Method of controlling loads of gas-tight recuperators
JPS61235685A (en) Temperature control device in waste heat retrieving device for thermal plant