JPS62254906A - Method for producing titanium slab which decreases generation of seam from circular columnar ingot - Google Patents

Method for producing titanium slab which decreases generation of seam from circular columnar ingot

Info

Publication number
JPS62254906A
JPS62254906A JP9687986A JP9687986A JPS62254906A JP S62254906 A JPS62254906 A JP S62254906A JP 9687986 A JP9687986 A JP 9687986A JP 9687986 A JP9687986 A JP 9687986A JP S62254906 A JPS62254906 A JP S62254906A
Authority
JP
Japan
Prior art keywords
rolling
slab
ingot
blooming
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9687986A
Other languages
Japanese (ja)
Other versions
JPH0446643B2 (en
Inventor
Takeo Fukutomi
福富 建夫
Yoichi Sugimoto
杉本 要一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9687986A priority Critical patent/JPS62254906A/en
Publication of JPS62254906A publication Critical patent/JPS62254906A/en
Publication of JPH0446643B2 publication Critical patent/JPH0446643B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the generation of seams and to produce a titanium slab having a good shape and dimensional accuracy by executing blooming at >=900 deg.C until the thickness of <=40% diameter is attained, then executing adjusted rolling in the transverse direction in the beta phase temp. region of >=883 deg.C by using caliber rolls. CONSTITUTION:A slab for continuous hot sheet rolling is produced from a circular cylindrical titanium ingot by a blooming method without casting in this method. The substantial blooming is executed at >=900 deg.C until the thickness of <=40% diameter of the ingot is attained. The purpose of executing the rolling at >=900 deg.C until the slab thickness decreases to <=40% diameter is to prevent the generation of the seams and to permit easy cross spreading. The adjusted rolling essentially consisting of setting the shape and size is then executed. Said rolling is executed in the beta phase temp. region of >=883 deg.C by using the caliber rolls in the case of executing rolling in the transverse direction. The seams are thereby additionally decreased and the shape is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円柱形チタン鋳塊を、鍛造を行うことなく、分
塊圧延法で連続熱間薄板圧延用のスラブを製造する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a slab for continuous hot thin plate rolling using a blooming method using a cylindrical titanium ingot without forging.

〔従来の技術〕[Conventional technology]

チタン熱延板の製造方法として、連続熱間圧延設備を使
用し、チタンスラブを加熱炉で700〜950℃に加熱
しつつ炉内搬送し、ついで熱間圧延を行い、その熱延板
を450〜750℃の温度に調整しつつ巻取る方法は、
特公昭54−029458号公報で公知であるが、この
方法は前の工程で既に鋳造組織の破壊、加工を済ませた
スラブを出発材料としたホットコイルの製造方法である
。熱間圧延薄板圧延用のスラブを鍛造工程を経て分塊圧
延により製造する方法は特公昭59−16858号公報
に開示されている。また他の方法としてチタン鋳塊を7
00〜980℃に加熱し、圧下量1〜25%で、かつ圧
延温度が400〜900℃で分塊圧延する方法が特開昭
56−163001号公報で開示されている。しかしな
がら、鍛造工程を要するものは工程の繁雑さとコスト高
をまねく欠点があり、鍛造によらない方法では表面疵と
スラブの形状寸法において満足できるレベルに至ってい
ないのが現状である。
As a method for producing hot-rolled titanium sheets, a continuous hot-rolling facility is used, and a titanium slab is heated in a heating furnace to 700 to 950°C while being conveyed into the furnace, then hot rolled, and the hot-rolled sheet is heated to 450°C. The method of winding while adjusting the temperature to ~750℃ is as follows:
This method, which is known from Japanese Patent Publication No. 54-029458, is a hot coil manufacturing method using as a starting material a slab whose casting structure has already been destroyed and processed in the previous step. A method for manufacturing a hot-rolled thin plate slab by blooming through a forging process is disclosed in Japanese Patent Publication No. 16858/1983. Another method is to use titanium ingots.
JP-A-56-163001 discloses a method of heating to 00 to 980°C, blooming with a rolling reduction of 1 to 25%, and at a rolling temperature of 400 to 900°C. However, those that require a forging process have the disadvantage of complicating the process and increasing costs, and currently methods that do not involve forging have not reached a satisfactory level in terms of surface flaws and the shape and size of the slab.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

チタンは大気中の酸素、窒素との反応性が強い金属であ
るため、鋳塊は真空下で製造され、真空アーク溶解法に
よる円柱形の鋳塊が広く使用されている。円柱形の鋳塊
を鍛造し、又は鍛造後に分塊圧延してスラブを製造する
方法では、鍛造作業は生産性が低く、又鍛造材には表面
疵が多く、チタン材料のコストを非常に高くする方法で
あった。
Since titanium is a metal that is highly reactive with oxygen and nitrogen in the atmosphere, ingots are manufactured under vacuum, and cylindrical ingots produced by vacuum arc melting are widely used. In the method of manufacturing a slab by forging a cylindrical ingot or by blooming and rolling after forging, the forging operation has low productivity, and the forged material has many surface defects, making the cost of titanium material very high. This was the way to do it.

一方鍛造によらないで分塊圧延のみによりスラブを形成
しようとすれば、圧延中の巾拡がりが小さく、広巾材が
得られないという問題がある。円柱形チタン鋳塊の真空
アーク溶解設備としては小径鋳塊用のものが一般的であ
り、又鍛造や分塊のための加熱に際して、中心部名の均
熱が早く、加熱炉での表面の酸化や窒化が少ないため、
直径700鶴程度の寸法のものが多い。すなわち円柱形
のチタン鋳塊は、鍛造では巾を拡げる事は容易であるが
、これを軸方向に圧延する分塊圧延では困難である。
On the other hand, if an attempt is made to form a slab by only blooming and rolling without forging, there is a problem that the width expansion during rolling is small and a wide material cannot be obtained. Vacuum arc melting equipment for cylindrical titanium ingots is generally for small-diameter ingots, and when heating for forging or blooming, uniform heating of the center part is quick, and the surface of the ingot in the heating furnace is Because there is little oxidation and nitridation,
Many of them are about 700 cranes in diameter. That is, it is easy to expand the width of a cylindrical titanium ingot by forging, but it is difficult to expand the width by rolling it in the axial direction.

第3図の(A) 、 (B) 、 (C)に円柱形鋳塊
1からスラブ2に至る圧延過程を示すが、圧下はa部か
ら、゛すなわち中心部からのみ加えられる宿命にある。
Figures 3 (A), (B), and (C) show the rolling process from the cylindrical ingot 1 to the slab 2, and rolling is intended to be applied only from part a, that is, from the center.

チタン鋳塊を鍛造を行うことなく450〜850℃で分
塊圧延する際に発生する第2の問題点は、スラブの全表
面に発生するシワ疵である。このシワ疵はスラブの表面
に深さ2、〜5鰭の無数の縦筋状に発生し、第3図のb
部に相当する側面に著しい。これは連続熱間薄板圧延に
よるホットコイルの品質を害するため、あらかじめスラ
ブの表面研削を行ない全量除去する必要があり、コスト
上また歩留り上の損失が大きい。
The second problem that occurs when a titanium ingot is bloomed at 450 to 850° C. without forging is wrinkles that occur on the entire surface of the slab. These wrinkle defects occur on the surface of the slab in the form of countless vertical stripes with a depth of 2 to 5 fins, as shown in Figure 3b.
It is noticeable on the side corresponding to the part. Since this impairs the quality of the hot coil produced by continuous hot thin plate rolling, it is necessary to remove the entire amount by grinding the surface of the slab in advance, resulting in a large loss in cost and yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、円柱形チタン鋳塊を鍛造を行うことなく分塊
圧延法で連続熱間薄板圧延用のスラブを製造する方法で
あり、円柱形鋳塊から順次厚さを減じる過程で、当該鋳
塊の直径の40%以下の厚みになるまでの実質的な分塊
圧延を900℃以上の温度において行ない、次いで調整
圧延を行なう際に巾方向の圧延を孔型ロールを用いて8
83℃以上のβ相温度域で行って、良好な中出し圧延と
、特にスラブコーナ一部に多発するシワ疵を低減せしめ
、形状ならびに寸法精度の良好なスラブを製造する方法
である。円柱形チタン鋳塊の多くは消耗電極型真空アー
ク溶解法により製造されている。
The present invention is a method for manufacturing slabs for continuous hot thin plate rolling using the blooming method without forging a cylindrical titanium ingot, and in the process of successively reducing the thickness of the cylindrical titanium ingot, Substantial blooming rolling is performed at a temperature of 900°C or higher until the thickness becomes 40% or less of the diameter of the lump, and then, when performing adjustment rolling, rolling in the width direction is performed using grooved rolls.
This method is carried out in the β-phase temperature range of 83° C. or higher to produce a slab with good shape and dimensional accuracy by achieving good mid-rolling and reducing wrinkles that occur frequently, especially in some slab corners. Most cylindrical titanium ingots are manufactured by the consumable electrode vacuum arc melting method.

分塊圧延のための加熱炉としては、鉄鋼用の加熱炉(均
熱炉)を使用してもよいが、炉内を真空に保持できる加
熱炉や、短時間で鋳塊を均熱できる低周波誘導加熱炉等
、円柱形チタン鋳塊の加熱に適した炉を使用するとよい
。分塊圧延は鋳塊の温度が950℃で開始するのが望ま
しい。加熱炉の温度は上記鋳塊の温度が確保できるよう
に設定すればよい。通常の加熱炉では960〜1000
℃が適当であるが、炉内を真空に保持できる加熱炉や短
時間で鋳塊を均熱できる低周波誘導加熱炉等では950
〜1100℃の範囲内で保定加熱や仕上げ昇熱を行えば
よい。分塊圧延設備としては、通常のハイリフト分塊圧
延機、ユニバーサル圧延機、厚板圧延機等、円柱形チタ
ン鋳塊の粗粒鋳造組織を破壊するに適した圧延機が使用
できる。
As a heating furnace for blooming rolling, a heating furnace for steel (soaking furnace) may be used, but a heating furnace that can maintain a vacuum inside the furnace or a It is recommended to use a furnace suitable for heating cylindrical titanium ingots, such as a frequency induction heating furnace. It is desirable that the blooming rolling starts when the temperature of the ingot is 950°C. The temperature of the heating furnace may be set so as to ensure the temperature of the ingot. 960 to 1000 in a normal heating furnace
℃ is appropriate, but for heating furnaces that can maintain a vacuum inside the furnace or low-frequency induction heating furnaces that can soak the ingot in a short time, 950℃ is appropriate.
Retention heating or finishing heating may be performed within the range of ~1100°C. As the blooming equipment, a rolling mill suitable for destroying the coarse grain casting structure of the cylindrical titanium ingot can be used, such as a normal high-lift blooming mill, a universal rolling mill, and a plate rolling mill.

スラブの厚さが鋳塊の直径の40%以下になるまでの圧
延を900℃以上の温度で行うのは、シワ疵の発生を防
止するとともに巾拡がりを容易にするためである。厚さ
を鋳塊の直径の40%以下迄に圧延するように限定した
理由は、本発明者等が直径700Rの円柱形チタン鋳塊
を用いてスラブを製造した記録を解析した結果によるも
ので、シワ疵を安定して低減するには、この範囲で行う
とより望ましい結果が得られたためである。本発明者等
はシワ疵の発生原因を研究した結果、円柱形チタン鋳塊
の鋳造組織は一触に非常に粗粒で=10番程度(1ケの
平均直径が約11mm)であること、この粗粒な組織は
鍛造では破壊されるために鍛造を経由したスラブの表面
にはシワ疵とはならないが、通常のチタン材料の熱間加
工温度である450〜850℃、即ちαチタン(883
℃以下)の状態での圧延では充分に破壊されずにシワ疵
としてスラブ表面に残るとの知見を得た。本発明者等は
、さらにこの粗粒な組織部について、圧延条件とシワ疵
の関係を研究し第1表にその結果を例示した。この試験
は、厚さ:55鶴、巾=240tm、長さ:240mの
矩形状鋳塊を用いて行ったものである。表中R,+は圧
延前の初期状態を示し、R1−R4は各圧延パス後の状
態を示している。その結果明かなことは、鋳造組織を有
しない通常のチタン材料とおなし温度範囲、即ちαチタ
ンの状態で圧延した試験片2.4.6のスラブのシワ疵
は深いが、900℃以上の温度範囲即ちβチタンの状態
で圧延した試験片1,3.5のスラブのシワ疵は浅いこ
とである。なお第1表は、横断面が矩形の被圧延材の例
であるが、円柱形チタン鋳塊の分塊圧延では、第3図(
A) 、 (B)に示したように、円柱形被圧延材の左
右端のb部は、圧延の初期は圧延ロールとの接触はなく
、上下端のa部の延伸に追従する引張り応力により変形
され、従って粗粒な組織の破壊はa部とb部では異なり
、矩形断面の被圧延材に関する第1表の結果とは異なり
、両側端部に肌荒れやシワ疵がより発生しやすい大きな
原因でもある。更に本発明者等は、円、 柱形チタン鋳
塊を用いて、圧延巾拡がりを大きくする圧延方法を研究
して来たが、その結果を第2表に示す。又その時のバス
スケジュールを第3表に示した。
The reason why the slab is rolled at a temperature of 900° C. or higher until the thickness of the slab becomes 40% or less of the diameter of the ingot is to prevent wrinkles from occurring and to facilitate width expansion. The reason why the thickness was limited to 40% or less of the diameter of the ingot was based on the results of the inventors' analysis of the records of manufacturing slabs using cylindrical titanium ingots with a diameter of 700R. This is because, in order to stably reduce wrinkle defects, more desirable results were obtained when the treatment was carried out within this range. As a result of research into the causes of wrinkling, the present inventors found that the cast structure of cylindrical titanium ingots is extremely coarse grained, with grains of approximately No. 10 (average diameter of one piece being approximately 11 mm). This coarse-grained structure is destroyed by forging, so there are no wrinkles on the surface of the forged slab.
It was found that rolling at temperatures below 30°F (°C or lower) does not break down sufficiently and leaves wrinkles on the surface of the slab. The present inventors further studied the relationship between rolling conditions and wrinkle defects regarding this coarse-grained structure, and the results are illustrated in Table 1. This test was conducted using a rectangular ingot with a thickness of 55 mm, a width of 240 tm, and a length of 240 m. In the table, R and + indicate the initial state before rolling, and R1-R4 indicate the state after each rolling pass. As a result, it is clear that the wrinkles in the slab of test specimen 2.4.6, which was rolled in the same temperature range as that of a normal titanium material without a cast structure, i.e. in the α titanium state, were deep, but the wrinkles were deep in the slab at temperatures above 900°C. The wrinkling defects in the slabs of test specimens 1 and 3.5 rolled in the β titanium state are shallow. Table 1 shows an example of a rolled material having a rectangular cross section.
As shown in A) and (B), portions b at the left and right ends of the cylindrical rolled material do not come into contact with the rolling rolls at the initial stage of rolling, but due to the tensile stress that follows the stretching of portions a at the upper and lower ends. The deformation and therefore the destruction of the coarse-grained structure is different between parts a and b, and this is a major reason why rough skin and wrinkles are more likely to occur on both side edges, unlike the results in Table 1 for the rolled material with a rectangular cross section. There is also. Furthermore, the present inventors have researched a rolling method that increases the rolling width using circular and columnar titanium ingots, and the results are shown in Table 2. The bus schedule at that time is shown in Table 3.

第1図は、円柱形チタン鋳塊を分塊圧延によってスラブ
とした場合の巾拡がりの状態を模式的に示した説明図で
ある。1は鋳塊、2はスラブを示す。第2表から明かな
如く、950℃で圧延を開始し、厚さを鋳塊直径の40
%とする圧延を900°C以上で行った場合、即ちβチ
タンの領域で分塊加工を行ったスラブの巾は、鋳塊の直
径の120%に達し、αチタンの領域で圧延を行った場
合の105%に比べて、巾拡がりが太き(、又シワ疵発
生の少ないことが明かである。なお900℃以上で行う
上述の実質的な分塊圧延は、スラブの寸法や形状を整え
るための調整圧延量を残して、できるだけ所望のスラブ
の寸法、形状に近づく迄行うのが望ましい。このような
実質的な分塊圧延についで、形状および寸法を整えるこ
とを主体とする調整圧延を行うが、本発明においては、
巾方向の圧延を行う場合に孔型ロールを用いて、883
℃以上のβ相温度域で行うことを特徴としている。
FIG. 1 is an explanatory diagram schematically showing the state of width expansion when a cylindrical titanium ingot is made into a slab by blooming rolling. 1 indicates an ingot, and 2 indicates a slab. As is clear from Table 2, rolling was started at 950°C, and the thickness was adjusted to 40% of the ingot diameter.
%, when rolling was performed at 900°C or higher, that is, the width of the slab that was subjected to blooming in the β titanium region reached 120% of the diameter of the ingot, and rolling was performed in the α titanium region. It is clear that the width spread is thicker (and there are fewer wrinkles) than in the case of 105% in the case of the slab. It is desirable to carry out adjustment rolling until the dimensions and shape of the slab are as close as possible to the desired dimensions, leaving an amount of adjustment rolling for this purpose.After such substantial blooming rolling, adjustment rolling is carried out that mainly aims to adjust the shape and dimensions. However, in the present invention,
When rolling in the width direction, using a grooved roll, 883
It is characterized by being carried out in the β-phase temperature range of ℃ or higher.

第2図はこのような圧延に用いる孔型ロールの一例を示
す要部断面図である。3は圧延機の上ロールまたは左右
に置かれた圧延機であればその一方のロールを示し、4
は相対する下ロールまたは同様に相対する他方のロール
を示し、5.6はそれぞれのカリバーを示す。lはカリ
バーの巾、hはカリバー深さを示し、Rは底部コーナ一
部の半径を示している。本発明に用いる孔型ロールにお
いて、それらの最適値は1=(スラブの仕上り厚さ)X
(1,1〜1.5)、h=(スラブの仕上り中)×(0
,09〜0.20)、R=10〜3011である。
FIG. 2 is a sectional view of a main part showing an example of a grooved roll used for such rolling. 3 indicates the upper roll of the rolling mill or one of the rolls if the rolling mill is placed on the left and right sides, and 4
indicates the opposing lower roll or the other opposing roll as well, and 5.6 indicates the respective caliber. l indicates the width of the caliber, h indicates the depth of the caliber, and R indicates the radius of a portion of the bottom corner. In the grooved roll used in the present invention, their optimum values are 1 = (finished thickness of slab) x
(1,1~1.5), h=(finishing slab)×(0
, 09-0.20), R=10-3011.

寸法や形状を整えるこれらの調整圧延は、分塊圧延とは
別の機能であるため、実質的な分塊圧延を行った圧延機
で行ってもよいが、調整圧延に適した別の圧延機で行っ
てもよく、また実質的な分塊圧延に引き続き900℃以
上で行ってもよい。
These adjustment rollings to adjust the dimensions and shape have a separate function from blooming rolling, so they may be performed in the rolling mill that actually performed the blooming rolling, but they may be performed in another rolling mill suitable for adjustment rolling. Alternatively, the rolling may be carried out at 900° C. or higher following substantial blooming.

β相温度域で圧延すると巾拡がり率が大きいため、コー
ナ一部がカリバーに充満しシワ疵が減少する。
When rolled in the β-phase temperature range, the width expansion rate is large, so a part of the corner is filled with the caliber and wrinkles are reduced.

通常中圧下圧延は数パス行うが、1バス当りの圧下量(
ΔH)が40〜80龍で2パス以上圧延すると形状も良
好となり、表面性状も大巾に改善できる。
Normally, medium reduction rolling is performed several passes, but the reduction amount per pass (
When rolled for two or more passes with ΔH) of 40 to 80, the shape becomes good and the surface quality can be greatly improved.

〔発明の効果〕〔Effect of the invention〕

本発明は円柱形チタン鋳塊を、鍛造を行うことなく、分
塊圧延法で性状の優れた連続熱間薄板圧延用のスラブを
実用的に製造する方法を示したもので、チタン鋳塊に固
有な粗粒な組織に起因するシワ疵の低減方法と、チタン
鋳塊に固有な円柱形状鋳塊から、連続熱間薄板圧延に適
した広巾のスラブを製造する方法を明かにしたものであ
り、高価なチタン材を無駄にすることなく製造すること
を可能とするものであって、産業上極めて有益なもので
ある。
The present invention shows a method for practically producing slabs for continuous hot rolling of thin sheets with excellent properties using the blooming method without forging cylindrical titanium ingots. This study reveals a method for reducing wrinkles caused by the inherent coarse-grained structure and a method for manufacturing wide slabs suitable for continuous hot thin plate rolling from cylindrical ingots, which are unique to titanium ingots. , which makes it possible to manufacture expensive titanium materials without wasting them, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円柱形チタン鋳塊から分塊圧延によってスラブ
とした場合の幅拡がりの状態を模式的に示した説明図、
第2図は孔型ロールの形状の一例を示す要部断面図、第
3図は円柱形チタン鋳塊からスラブを製造する過程を示
す説明図である。 1:チタン鋳塊、2ニスラブ、3.4:孔型ロール。 Wニスラブ巾 第2図
Figure 1 is an explanatory diagram schematically showing the state of width expansion when a cylindrical titanium ingot is made into a slab by blooming rolling.
FIG. 2 is a sectional view of a main part showing an example of the shape of a grooved roll, and FIG. 3 is an explanatory view showing a process of manufacturing a slab from a cylindrical titanium ingot. 1: titanium ingot, 2 varnish slab, 3.4: grooved roll. W nislab width diagram 2

Claims (1)

【特許請求の範囲】[Claims] 円柱形チタン鋳塊から鍛造を行なうことなく分塊圧延に
より順次厚さを減じて連続熱間薄板圧延用スラブを製造
する方法であって、厚さが鋳塊直径の40%以下となる
までの実質的な分塊圧延を900℃以上の温度で行ない
、続く調整圧延において巾方向の圧延を孔型ロールを用
いて883℃以上のβ相温度域で行うことを特徴とする
円柱鋳塊からシワ疵発生の少ないチタンスラブを製造す
る方法。
This is a method for producing slabs for continuous hot rolling by sequentially reducing the thickness from a cylindrical titanium ingot by blooming rolling without forging, until the thickness becomes 40% or less of the ingot diameter. Wrinkles from a cylindrical ingot, characterized in that substantial blooming rolling is performed at a temperature of 900°C or higher, and in the subsequent adjustment rolling, rolling in the width direction is performed using grooved rolls in a β-phase temperature range of 883°C or higher. A method for manufacturing titanium slabs with less occurrence of defects.
JP9687986A 1986-04-28 1986-04-28 Method for producing titanium slab which decreases generation of seam from circular columnar ingot Granted JPS62254906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9687986A JPS62254906A (en) 1986-04-28 1986-04-28 Method for producing titanium slab which decreases generation of seam from circular columnar ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9687986A JPS62254906A (en) 1986-04-28 1986-04-28 Method for producing titanium slab which decreases generation of seam from circular columnar ingot

Publications (2)

Publication Number Publication Date
JPS62254906A true JPS62254906A (en) 1987-11-06
JPH0446643B2 JPH0446643B2 (en) 1992-07-30

Family

ID=14176700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9687986A Granted JPS62254906A (en) 1986-04-28 1986-04-28 Method for producing titanium slab which decreases generation of seam from circular columnar ingot

Country Status (1)

Country Link
JP (1) JPS62254906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008978A (en) * 2011-09-21 2013-04-03 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing titanium plate billet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008978A (en) * 2011-09-21 2013-04-03 攀钢集团攀枝花钢铁研究院有限公司 Method for preparing titanium plate billet

Also Published As

Publication number Publication date
JPH0446643B2 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
JP2000271603A (en) Hot-rolling method of extra-thin strip and rolling apparatus
EP3178584A1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
JPH0730404B2 (en) New production method of austenitic stainless steel sheet with excellent surface characteristics and materials
JPH0461048B2 (en)
US4486242A (en) Method for producing superplastic aluminum alloys
JPS62254906A (en) Method for producing titanium slab which decreases generation of seam from circular columnar ingot
JPS61159562A (en) Hot rolling method of titanium material
JPH05295502A (en) Production of alpha plus beta titanium alloy sheet for superplastic working
CN114309116B (en) Preparation method of wide ultrathin titanium foil strip
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JP3252704B2 (en) Method for producing hot-rolled steel sheet excellent in pickling properties and surface properties
JP3671516B2 (en) Method for producing hot-rolled steel sheet with excellent pickling and surface properties
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JPH0257128B2 (en)
JPH07251202A (en) Manufacture of hot rolled plate of pure titanium
JPS634907B2 (en)
JPH0336214A (en) Method for continuously annealing non-oriented electrical steel sheet
JP4240590B2 (en) Low carbon steel cold rolled sheet manufacturing method
JP4265054B2 (en) Method for producing hot-rolled steel sheet with excellent surface properties
JP2864890B2 (en) Manufacturing method of titanium electrodeposition drum
JPH11256234A (en) Production of high delta ferritic stainless wire rod
JPH09291311A (en) Method and equipment for manufacturing hot rolled stainless steel plate excellent in surface characteristic and descaling property
JPH05295503A (en) Production of alpha plus beta titanium alloy sheet
SU1567649A1 (en) Method of producing semifinished product from high-carbon steels
JPH0776411B2 (en) Method for manufacturing thin-walled high-strength blind aluminum material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees